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Abstract

Takai duality for full C*-crossed products holds for twisted actions in the sense of Green and
fails for coactions.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 L 55.

1. Introduction

In [5], Katayama proved Takai duality for what we will call "reduced" crossed
products of C*-algebras by "reduced" coactions of locally compact groups.
This involves regular representations of the crossed product and the dual
crossed product, and the duality isomorphism is implemented by a unitary
operator. In [12], Raeburn defined what we will call "full" coactions and
corresponding "full" crossed products, and proved the appropriate version of
Takai duality. This involves the full C* -algebra of the group, and the theory
has a more categorical flavor than in the reduced case. In a little more detail
(refer to the next section for definitions), if A is a C*-algebra carrying an
automorphic action of a locally compact group G, then Raeburn defines a
dual (full) coaction of G on the (full) crossed product A x G and proves
that the dual (full) crossed product AxGxG is isomorphic to the tensor
product A ®3P, where J? denotes the C*-algebra of compact operators on
the Hilbert space L (G). He leaves open the question whether this result
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[2] Full C*-crossed product duality 35

extends to twisted actions, which we answer in the affirmative (Theorem 3.6)
for the case of twisted actions in Green's sense. He also shows that if A
carries a coaction of G, then there is natural way to define a dual action
of G on the crossed product Ax G, and asks whether the dual crossed
product AxGxG is isomorphic to A ®X. We answer this in the negative
(Example 2.12); roughly speaking, what "goes wrong" is that crossed products
by coactions are automatically reduced.

A comprehensive reference for C* -algebras, locally compact groups, and
C* -crossed products by actions is [10].

Part of the research for this paper was carried out while the author was
visiting the mathematics department at the University of Georgia, and he
would like to thank his hosts, especially Elliot Gootman, for their hospitality.

1. Full coactions

We first establish some notation and recall some of the definitions of [12].
Let A be a C*-algebra and let M{A) denote its multiplier algebra. If B is
another C*-algebra, we call a homomorphism n:A —• M(B) "strict" if for
every bounded approximate identity {e(} of A the net {?:(£,)} converges
strictly to 1. Recall that for C*-algebras A and B

M(A ®B) = {me M(A ® B): m(l ® B) u (1 <g> B)m cA®B},

where ® denotes the minimal C*-tensor product. Let G be a locally com-
pact group. Let C*(G) and C*{G) denote the full and the reduced C*-
algebras of G, respectively, let UG, k, and p denote the universal, left
regular, and right regular representations of G, respectively, and let A(G)
and B(G) denote the Fourier and the Fourier-Stieltjes algebras of G, respec-
tively.

DEFINITION 2.1. A full coaction of G on A is a strict monomorphism
S: A -f M(A ® C*(G)) such that

d ®lod = l®d od ,

where 8G:C*{G) -> M(C*{G) ® C*(G)) is the homomorphism determined
by

SG(UG(s)) = UG(s)®UG(s), seG.

For cf> E B(G) we use 8, to denote S. oS , where S, is the slice map from
A ® C*(G), hence M(A ® C*(G)) (see [6, Lemma 1.5]) to A. Although in
[12] Raeburn does not require S to be injective, we have no need of this
extra generality. However, as Raeburn points out, if 6 were not injective
then A would be the semidirect product (not C*-algebraic direct sum, as
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stated in [12]) of the ideal / = ker<J and the C*-subalgebra B = 8{{A). For
example, if A is such a semidirect product, one can define a "noninjective
coaction" of G on A by

8(x + b) = b®\, xel, beB.

Since we require 8 to be faithful, we have 8l = iA, the identity map on
A. Another slight departure from Raeburn's definition is that he uses the
maximal C*-tensor product. However, if 8 is an injective coaction in Rae-
burn's sense, then <$, = iA still holds, so that 5(A) has zero intersection with
the annihilator of A* <g> B{G), whence the composition formed by follow-
ing 8 by the canonical map into the minimal C*-tensor product (extended
naturally to the multiplier algebras) remains injective. Moreover, the covari-
ant representations (which we will define presently) are the same with either
choice of tensor product. Consequently, we saw no penalty to be incurred
through the use of the more manageable minimal C*-tensor product. On
the other hand, it is not clear whether every coaction, as we have defined the
term, factors through the maximal C*-tensor product, and the maximal C*-
tensor product could conceivably be useful for some purposes (for example,
investigation of ideals, perhaps), so it may prove convenient to return to the
maximal C*-tensor product at some other time.

We use the term "full" to distinguish the present type of coaction from
the more familiar version defined in, for example, [5, 6], which uses the
reduced rather than the full C* -algebra of G. We call this latter type of
coaction "reduced", and use the term "coaction" with no modifier to mean
"full coaction". As Katayama [5] points out, if 8 is a coaction, then i ®ko8
factors through a reduced coaction on a quotient of A . Observe that 8 is
a coaction of G on C*(G), and i ®A.o8G factors through the usual reduced
coaction on C*(G).

DEFINITION 2.2. 8 is called nondegenerate if 8A(G){A) is dense in A.
If 8 is nondegenerate, then so is the corresponding reduced coaction (on

the appropriate quotient of A). Katayama [5, Proposition 7] states that
full coactions are automatically nondegenerate, but we have been unable to
understand his proof. It is not hard to verify that 8G is nondegenerate.
Also, [5, Lemma 3] can be adapted to show that if 8 is nondegenerate then
8(A)(l <g> C*{G)) is dense in A <g> C*{G). Unless otherwise stated we shall
assume henceforth that all coactions are nondegenerate.

We follow Raeburn in using WG to denote the universal representation of
G, regarded as a unitary element of M(C0{G) ® C*(G)). If W is a repre-
sentation of C0(G) we also let W denote the unitary element W ®i(WG)
of M{W(C0(G)) ® C*(G)). The unitary i®k{W) is a "corepresentation" in
the sense of [6, Remark 3.2(2)], and conversely W is uniquely determined
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by this corepresentation. Recall the slice map property

Raeburn's definition of covariance and crossed product can be stated as fol-
lows.

DEFINITION 2.3. (i) A covariant representation of {A, G, d) is a pair
(n, W) of nondegenerate representations of A and C0(G), respectively,
such that

W e Hom(7T ® 1, n <g> i o d),

the set of intertwining operators for the representations n ® 1 and n <8> i o S
of A on %? ®£PG, where %* is the Hilbert space of (n, W) and WG is the
space of UG.

(ii) For a covariant representation (n, W) of (A, G, S) we define

C*(n,W) = C*[n(A)W(C0(G))],

where C*[S] denotes the C*-algebra generated by the set S. It can be shown
as in [6] that

n{A) U W{C0{G)) c M(C*(n, W)).

(iii) A covariant representation (n, W) is said to be weakly contained in
another covariant representation {a, V) if there is a representation v of
C*(a, V) such that

v ocr = n, v oV =W.

We call (7r, W) and {a, V) weakly equivalent if each weakly contains the
other.

(iv) A covariant representation is called weakly universal if it weakly con-
tains every covariant representation. Of course, a weakly universal covariant
representation is unique up to weak equivalence.

(v) The crossed product of A by the coaction S of G is

where (ns, Ws) will denote a weakly universal covariant representation of
(A, G, S). We write Ax G when S is understood. Of course, the isomor-
phism class of the crossed product is independent of the choice of the weakly
universal covariant representation. For a covariant representation (n, W) of
(A, G, S) we denote the corresponding representation of A x G by nxW.

If (n, W) is a covariant representation of (A, G, d) in the above sense,
then (n, i®A(W)) is a covariant pair of representations of (A, G, d) in the
sense of [6, Definition 3.5], and conversely (jr, W) is uniquely determined
by this covariant pair.
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PROPOSITION 2.4. If (n,W) is a covariant representation of {A, G,6),
then

defines a coaction of G on n{A). Moreover, 8W is nondegenerate if S is.

PROOF. One verifies routinely that 8W is a coaction on n(A), and non-
degeneracy then follows from the easily established identity

w
8 d /

The covariance condition for {n, W) may alternatively be written
w8 on — n®io8.

Let aG denote the action of G on C0(G) by left translation, that is,

a ? ( 0 ) ( O = <t>(s~ l t ) , <t> € C 0 ( G ) , s , t e G.

Recall that a C*-algebra B acts to the right on its dual by

co• b{c) = co(bc), coeB*, b,ceB.

PROPOSITION 2.5. If U and W are representations of G and C0(G),
respectively, on the same Hilbert space, then (U ,W) is a covariant represen-
tation of (C* (G), G, 8G) if and only if(W, U) is a covariant representation
of(C0(G),G,aG).

PROOF. Assume that (17, W) is a covariant representation of (C*(G),
G,8G). Then for <f> € B{G), s€G

W(<P)U(s) = S^{W)U(s) = S^W{U(s) ® 1)) = S£6W ° U(s)W)

= S+((U(s) <g> UG{s))W) = U(S)S4>.UG{S)(W)

= U{s)W{<t>-UG{s)) = U %

so that (W, U) is a covariant representation of (C0(G), G, aG). The above
argument can clearly be reversed, so we are done.

Let Xi^f) denote the C*-algebra of compact operators on the Hilbert
space ,/f\ and let 3? by itself denote 3?{L2(G)). Let M denote the repre-
sentation of C0(G) on L2(G) by multiplication.

COROLLARY 2.6. (A, M) is a weakly universal covariant representation of

5? = C*(G) xga G.

{C*{G),G,8G),and
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PROOF. Recall that every covariant representation of (C0{G), G, a ) is
of the form (1 <g> M, 1 ® A), and that

The above result shows that a weakly universal covariant representation
{ns, Ws) of {A, G, 8) is not necessarily faithful on A . However, by Propo-
sition 2.4, 8Wf is a coaction of G on ns{A), and clearly (A, G, 8) and
(ns(A), G,8W*) have (essentially) the same covariant representations and
therefore the same crossed product. Of course, {i, Ws) is a weakly universal
covariant representation of (ng(A), G, 8W'). As we shall see, Ws is always
faithful on C0(G).

Part (i) of the following definition is a routine adaptation of [2, Definition
2.2] to the context of full coactions.

DEFINITION 2.7. (i) If 7r is a representation of A on %?, then the induced
covariant representation, or covariant representation induced from n , is the
covariant representation of {A, G, S) on %?® L2(G) defined by

(n, Wn) = (n®ko8, \®M).

(ii) The regular covariant representation of {A, G, 8) is the covariant
representation induced from any faithful representation of A; it is easily
checked to be unique up to weak equivalence.

(iii) The reduced crossed product of A by 8 is

where n is any faithful representation of A. As usual, the isomorphism
class of the reduced crossed product is uniquely determined.

PROPOSITION 2.8. (i) The regular covariant representation of (A, G, 8) is
weakly universal, so that

(ii) ! ® A o 8W> is a reduced coaction of G on ns{A), and the associated
crossed product as defined in [5, 6] agrees with Ax3G.

PROOF, (i) In view of the remark following Definition 2.3, this follows
immediately from [6, Theorem 3.7].

(ii) By part (i) and Proposition 2.4 this is essentially [5, Proposition 7]
(minus the assertion regarding nondegeneracy—see the comment following
Definition 2.2).
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Observe that the reduced coaction i®A.o8Wi of G on ns{A) lifts to the
full coaction 8W*. We do not know if every reduced coaction lifts to a full
coaction.

Let 0G denote the action of G on C0(G) by right translation, that is,

fi 0 , s,teG.
The following definition is taken from [12].
DEFINITION 2.9. The dual action 8 of G on A x G is determined by

When AxG is identified with the crossed product of ns (A) by the reduced
coaction / ® A o Sw> (Proposition 2.8(ii)), it is readily verified that 8 agrees
with the dual action of Katayama [5]. Therefore, the following result is just
a restatement of Katayama's duality theorem [5, Theorem 8] (except that we
abstain from writing down the double dual coaction).

THEOREM 2.10. Ax GxrG = ns(A)®3?.

COROLLARY 2.11. A representation of AxG is (equivalent to one) induced
from a representation of A if and only if it extends to a representation of
AxGxrG.

PROOF. Thanks to Theorem 2.10 this follows almost immediately from [2,
Proposition 2.11 and Corollary 2.12].

The above result is an imprimitivity theorem, and it is a special case of a
result of Mansfield [7, Theorem 28], although he uses reduced coactions and
his dual action is by an amenable group. We point out that Theorem 2.10
can be derived from Corollary 2.11. To see this, first replace (temporarily)
A by ns{A), so that we need to show

Let nxWxU be a faithful representation of AxGxrG. By the imprimitivity
theorem there is a representation a of A such that n xW = a xWg, and
it follows from Mansfield's proof of the imprimitivity theorem (which shows
[7, Proposition 26] that Ax GxrG is the imprimitivity algebra in Rieffel's
sense [13] for induction from A to AxG) that the same equivalence takes
U to 1 <8> p • Since 8 is nondegenerate, it follows from [5, Theorem 5] that

C*(ax Wa, \®p) = o(A)®5lr.

Here we use the notation

C*(n,U) = C*[n(B)U(C*(G))]
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when (n, U) is a covariant representation of a system (B, G, a), with a an
action of G on a C*-algebra B. Finally, it again follows from Mansfield's
proof of the imprimitivity theorem that a is faithful since n x W x U is
faithful.

Theorem 2.10 can be used to show that full C*-crossed product duality
for coactions fails, answering in the negative a question left open by Raeburn
in [12]. Specifically, full duality would require

Ax GxG^

even when A has been replaced by a suitable quotient, allowing it to be
faithfully embedded in the multiplier algebra of the crossed product, Theo-
rem 2.10 shows that full duality will tend to fail to the extent that the full and
reduced double crossed products may differ. We illustrate this phenomenon
with an example.

EXAMPLE 2.12. We modify the canonical coaction on the C*-algebra of
G to get a full coaction on the reduced C*-algebra:

6(X(s)) = X(s) ® UG(s), seG.

By Corollary 2.6 this coaction has the same covariant representations as SG,
so

C*(G) xG= C*(G) xG = l .
Moreover, it is easy to see that the dual action on X is Ad p. This action
is implemented by a representation in M{3?) = ̂ (L2(G)) and is therefore
outer conjugate to the trivial action, so

C*{G) xGxG = JTxG = JT® C'{G),

which is not isomorphic to C*(G) ®S£ in general, for example, when G
is the free group on two generators. We will say more about failure of full
duality toward the end of Section 3.

3. Twisted actions

We extend Raeburn's duality theorem for full crossed products by actions
[12, Theorem 7] to the twisted crossed products of Green [3], at least in the
presence of a measurable cross section. Let a be an action of G on ^ , let
N be a closed normal subgroup of G, and let T be a strictly continuous
unitary representation of N in M(A) such that

0^01 = TO Ads (seG).

Modifying Green's notation and terminology slightly, we call (a, T) a twisted
action of G on A, define a covariant representation of (A, G, a, r) to be
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a covariant representation (n, U) of (A, G, a) which preserves T in the
sense that nor = U\N, and further define the twisted crossed product of A
by (a, T) to be

AxzG=C*(nT,UT)>

for a weakly universal covariant representation (nx, Uz) of (A, G, a, T) .
We write AxG when x is understood.

PROPOSITION 3.1. There is a nondegenerate coaction a of G/N on AxG
determined by

aonT = iiT®l, a o Ut = Ux ® UG/N.

PROOF. The above formulae clearly give a covariant representation of
(A,G,a,z).

We show that
a(AxG) C M{AxG O C*(G/N)).

Let a e A, f e Cc(<7), g e Ce(G/N). Then

= («t(a) 0 1 ) / /(s)(t/t(j) (8 UG/N(sN))ds
JG

xf g(tN)(l®UG/N(tN))d(tN)
JG/N '

= (nx(a) <8>1) [ [ As)g{tN)(UT(s) ® UG/N(stN))d(tN)ds
JG J G/N

= (n<a)®l)f f f(s)g(s ltN)(UJs)®UG/N(tN))d(tN)ds
JG JG/N '

= (nt(a) ®\) ( I y2ft(s)gt{tN)(UT{s) ® UG/N(tN))d(tN)ds
JG JG/N JT{

(approximate (s, tN) i-» f(s)g(s tN) in the inductive limit topology of
Ce(G x G/N) by Zfi 9 g,)

= E JG xx(a)f,(s)Ut(s)ds ®JGN gi(tN)UG/N(tN)d(tN)

GAxG®C*{G/N),
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and similarly for
(l®UG/N(g))a(nx(a)Ux(f)).

It is obvious that a is a strict monomorphism, the injectivity following
from the weak equivalence of the covariant representations (nT, Ur) and
(a o nT, a o Ut). The coaction identity

a® l oa = l ®d oa

is readily checked on the generators.
Finally, the nondegeneracy follows from

for 4> e A(G/N), aeA, f e Ll (G), where <j> has been lifted to a continu-
ous bounded function on G.

For a representation n of A on ^ (one formulation of) Green's induced
covariant representation (n, Un) of (A, G, a, t) acts on the Hilbert space
<%* of measurable maps <!;: G —> ^ " satisfying

£(.?«) = 7 r o x { n ~ )£{s), seG, n&N,

a n d

/ \\Z(s)\\2d(sN)< oc,

and it is defined by the formulae

[n(a)£](t) = n o at-\(a)£,(t), [Ua(s)£](t) = £(s~ t),

for a e A, £ e <%*, s, teG. Define a representation Wn of C0(G/N) on

, T by

for <j> € C0(G/N), £ € ^ , ( € ( ? . That ( i x C/̂ , JFJ is a covariant
representation of (^4xG, G/iV, a) follows from the following result.

PROPOSITION 3.2. Let (n, U) be a covariant representation of (A, G,a,x),
and let W be a representation of C0(G/N) on the same Hilbert space. Then
(n x U, W) is a covariant representation of (AxG, G/N, a) if and only if
n commutes with W and

Ad U(s)oW=Woa%N, s<=G.

PROOF. This is a routine computation using slice map techniques, and is
similar to [8, pages 194-195].
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Green defines a twisted action (ft, K) of G on A ® C0(G/N) by

and shows that (A <g> C0(G/N))xG is the imprimitivity algebra for induc-
tion from A to (v4, G, a, r). Because of this the crux of our duality the-
orem is the following result. Let (7T~ x U~, W~) and {nK x WK, UK) be
weakly universal covariant representations of (AxG, G/N, a) and (A <B>
C0(G/N),G,0,K), respectively.

PROPOSITION 3.3. (nK x UK , WK) is a covariant representation of (AxG,
G/N, a), and determines an isomorphism of AxG x (G/N)~ with

(A®C0(G/N))ZG.

PROOF. The first statement is readily verified, and the second can be seen
by checking that (TT^X^J, U~) is a covariant representation of (A®C0(G/N),
G, ft ,K) which determines an inverse map for (nKx UK, WK).

COROLLARY 3.4. Every covariant representation of (AxG, G/N, a) is
equivalent to (n xUn,Wn) for some representation n of A.

PROOF. This follows from Green's imprimitivity theorem [3, Theorem 6]
by checking that the inverse of the isomorphism of Proposition 3.3 transforms
the induced representation of the imprimitivity algebra (A <g) C0(G/N))xG
into the representation n x Un x Wn of AxG x (G/N)" .

COROLLARY 3.5. If n is a faithful representation of A, then (nxUn, Wn)
is a weakly universal covariant representation of (AxG, G/N, a).

PROOF. This follows from the fact that a faithful representation induces
a faithful representation of the imprimitivity algebra.

Now assume that c:G/N —* G is a measurable cross section such that
c(N) = e, and let A be faithfully represented on &. Denote 3?(L2(G/N))
simply by X.

THEOREM 3.6. There is an isomorphism of AxG x (G/N)" with A ®3?
which transforms the double dual action a into the action a of G/N on
A® 3? defined by

asN = Ad((l ® pG/N(sN))v(sN, •)) o ac{sN) ® i,

where
v(sN, tN) = r(c(sN)c(t~lN)c(st~lN)~1)*.
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PROOF. Green [4] gives a discussion which, adapted to our context, shows
that the (faithful) representation of the imprimitivity algebra Ax{G/N)^
induced from the identity representation of A on £? can be realized on
X ® L2(G/N) as ncxUcxWc, where for £ € X ® L2(G/N), teG

[nc(a)$](tN) = a ^ a X m , aeA,

[Uc{s)£](tN) = T(c(tN)~lsc{s~ltN))Z(s~ltN), seG,

[Wc(ct>)Z](tN) = <t>(tN)£(tN), <f> e C0(G/N),

and that moreover the image of nc x Uc x Wc is A ® 3£. This is not quite
the representation we require, however. Define

= v(sN,t~lN)*, s,teG.

It is routine to verify that (aoc, u) is a twisted action of G/N on A in the
sense of Busby and Smith [1], that is, aoc: G/N —^ AatA is strongly measur-
able, M: G/N x G/N —^ U(M(A)) is strictly measurable, and for r, s, t G G

ac(N) = 1' u(sN, N) = u(N,sN) = e,
ac(sN)ac(tN) = AdM(sJV, tN) o ac{stN),

ac(rN) ° u(sN> tN)u(rN, stN) = u(rN, sN)u(rsN, tN).

Define a unitary operator T on %? ®L2(G/N) by

The representation of AxG x (G/N)~ which we require is

n x U x W = Ad T o (nc x Uc x We).

Perhaps the easiest way to see that Ad T leaves A®J? invariant is to use the
observation of Packer and Raeburn [9, Lemma 3.5] to the effect that ^ ® J
is the closure of {K^ : <j> e L2{G/N x G/N, A)}, where

[KA\(sN) = I cf>{sN, tN)${tN)d{tN).
JG/N

Packer and Raeburn impose separability restrictions which are not needed
for this result.

We determine the representations n, U, and W. For n we have

[n(a)£](tN) = [AdTo nc{a)Z]{tN) = u{t~XN, tN)[nc(a)T*£](tN)

= Adu(t~lN, tN) oa-
l
tN)(a)i(tN) = ac{riN)(a)t(tN).
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For U, since

U(s) = U(sc(sN)~l)U o c(sN) = n o x(sc{sN)~l)U o c(5Ar),

we need only determine Uoc. We have

[Ucoc(sN)Z](tN) = T(c(tN)~lc(sN)c(c(sN)~ltN))£(c(sN)~ltN)

= T(c(tN)~ic(sN)c(s~itN))i(s~ltN)

= T°Adc(tN)~\c(sN)c(s~itN)(c(tN)~l)Z(s~itN)

= a~,tN) o u(sN, s~ tN)£(s~

so

= u(t~lN, tN)[Ucoc(sN)T*£](tN)

[U o c(sN)£](tN) = [AdToUco c(sN)£](tN)

= u(t~lN,

x u(t~lN, tN)u(t~lsN, s~ltN)*£{s~ltN)

= (xc(riN)ou(sN,s~1tN)

Of course, for W we have

[W(4>){](tN) = [AdToWc(<t>)Z](tN)

= Aduit^N, tN)(<j>(tN))Z(tN) = <f>{tN)£{tN).

Now, by Definition 2.9 the double dual action a of G/N on AxGx(G/N)~
may be characterized in terms of the faithful representation n x U x W by

asNo(nxU) = nxU, %NoW=Wop^N.

Therefore, we can conclude the proof by showing that S as defined in the
statement of the theorem has these properties. For n ,

[(! ® PG/N(sN))v(sN, -)ac{sN) (8) i o x{a)£](tN)

= AG/N(sN)l/2[v(sN, -)ac{sN) ® i o n(a)£]{tsN)

= AGfN(sN)lf2u(sN, S-
lrlN)*[ac{sN) ® i o n(a)Z](tsN)

pG/N(sN))v(sN, -)Z](tsN)

= [n(a)(\®pG/N(sN))v{sN, -)
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[14] Full C*-crossed product duality 47

For U, it suffices to check Uoc:

[(1 ® pG/N(sN))v(sN, .)ac(sN) ® ! o [ / o c{rN){](tN)

= AG/N(sN)1/2[v(sN, -)ac{sN) ®io[/oc(rN)i](tsN)

= AG/N(sN)l/2u(sN, s-lrlN)*

= AG/N{sN)1/2u(sN, s-'r'Nf

= AG/N(sN)l/2u(t~lN, rN)u(sN, s

= AG/N(sN)1/2u(r1N, rN)[v(sN, •

pG/N(sN))v(sN

pG/N(sN))v{sN, -

Finally, for W we have

pG/N(sN))v{sN, •)) °

= <KtsN)Z{tN) =

Immediately after Proposition 3.3 we could have appealed to [4, Corollary
2.12] to show that

but it would not have been as easy to obtain the double dual action. Also,
Corollary 3.4 essentially shows that the dual crossed products of both the
full and the reduced twisted crossed products are the same. Therefore, we
could have deduced the full twisted crossed product duality from the reduced
twisted crossed product duality of [11]. However, this would have necessi-
tated a discussion of the relation between the twisted crossed products of
Green and of Busby and Smith [1]. Specifically, in the presence of a mea-
surable cross section every Green twisted crossed product is a Busby-Smith
twisted crossed product, as is shown in the separable case in [9]. Again this
would have been less efficient than the approach we took. However, if we had
an imprimitivity theorem for induced representations of Busby-Smith twisted
crossed products, we would have the corresponding full twisted crossed prod-
uct duality; as we have no application in mind involving these more general
twisted crossed products, we did not attempt to prove such an imprimitivity
theorem.

We return to the discussion begun at the end of Section 2 regarding the
failure of full crossed product duality for coactions. First we show that full
duality does hold for dual coactions on full crossed products. What follows
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can in fact be done for twisted crossed products with no more difficulty, but
for ease of writing we eschew the twist since we merely wish to make a point
concerning duality.

THEOREM 3.7. If A is a full crossed product by G, equipped with the dual
coaction, then

AxGx G = A®3£.

PROOF. Let A be the crossed product of a C* -algebra B by an action a
of G. Then by Theorem 3.6 the double dual action on A x G is conjugate
to the action a on B®X. Further, as Packer and Raeburn observe [9], this
latter action is outer conjugate to a ® / , so we have

xa

We present a contrasting result for reduced crossed products. First note
that by Corollary 3.5 the dual coaction on a full crossed product by an action
factors through a coaction, which we continue to refer to as "dual", on the
reduced crossed product.

THEOREM 3.8. If A is a reduced crossed product by G, equipped with the
dual coaction, then

PROOF. By Corollary 3.4, A is faithfully represented in the multiplier
algebra of A x G. Hence, by Proposition 2.8(ii), the proposition to be proven
is just Katayama's duality theorem [5, Theorem 8].

The preceding two results show that one can sometimes get A ® 3? from
AxG using the full dual crossed product, and sometimes using the reduced
dual crossed product. We wish to present an example, involving a direct sum
of these two situations, where neither the full nor the reduced dual crossed
product oi AxG will yield A ® ^ . First we must discuss direct sums of
coactions. The following result is well-known.

LEMMA 3.9. Let Ax, A2, and B be C*-algebras. Then there is an iso-
morphism <S>g' 'Al of (Ax <8> B) © (A2 ® B) onto (A{ © A2) <g> B determined
by

^•A2(al®b,al®b') = (al,0)®b + (0,a2)®b>.

Moreover,

£ A
X ®B)@ M{A2 ® B)) C M((Al © A2) ® B).
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DEFINITION 3.10. Let 5' be a coaction of G on At (/ = 1, 2). Then the
associated direct sum coaction is the map

where 8X ®82 is the usual direct sum of 8X and S2 as linear maps.

PROPOSITION 3.11. If S' is a coaction of G on At (i = 1 ,2 ) , then Sl®S2

is a coaction of G on Al®Al. Moreover, Sl® S2 is nondegenerate if both

S1 and d2 are.

PROOF. 8l®82 is clearly a strict monomorphism of AX@A2 into M({Ay®
A2) ® C*(G)). By symmetry, it suffices to check the coaction identity on an
element of the form {a, 0) with a e A{. We have

(dl® S2)®i°(d1® 32)(a, 0) = (dl® 32)®io9^.-(^(S\a), 0 ) .

We claim that

(d1® 82)®io * £ ' . $ = O j . ' ( ^ c . ( G ) o ((dl ® i) © (S2 ® 0)

on {Ay ® C*(G)) ® (A2 ® C*(G)), and again by symmetry it suffices to check
it on an element of the form (b ® c, 0) with b e Ax, c e C*{G). On the
one hand

J ^ , 0) = ( ^ \ i ]
while on the other hand

% l 0 © ( ^ ® '))(* ® c, 0) = <t&^c.{G)i6\b) ® c, 0),

so we can conclude the verification of the claim by noting that for b' 6 Ax,
C'GC*(G) we have

$ c(G)«C(G)(6' ® C ® C , 0).
Hence,

(<J!© «J2) ® i o (rf^ <52)(a, 0)

= * ' ° ((<jl ® 0 © (^2 ® 0 ) (* \ a ) , 0)

= *c-'(c)«c-(o ° ((' ® S°) ® (J ® ^G))(«jl(fl) • 0).
Therefore, we can conclude the verification of the coaction identity by show-
ing that

i®8Go O j . ' ( ^ = O J . ^ C . ( G ) o ((, ® SG) ®{i® 8G))
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on (A{ ® C*(G)) © (A2 ® C*((?)), and as before it suffices to check it on
(b®c,0) with b&Ax, ceC*(G):

i®SG° *c*(S(* ® c' °) = ' ® < J < ?(^, 0) ® c) = (*, 0) ® <JG(c)

> ° (( ' ® ^ © (' ® ^ X * ® C > 0).

Finally, nondegeneracy is clear.

PROPOSITION 3.12. If S' is a coaction of G on Ai (i = 1, 2), then

(i) (Al 8 ^2) x^.g ^ G = (Al xsi G) © (A2 xS2 G);

(ii) (Al @A2) x s i ~ S2ifG = (A{ x 3 l >r (?) © (A2 x32tr G).

PROOF, (i) Let (n, W) be a covariant representation of {A{ @A2, G, 8l

© S2) on %?. Then without loss of generality we may assume that for
/ = 1, 2 there is a representation ni of Ai on a Hilbert space ^ such that

and

We show that ^ © {0} reduces W, whence for / = 1, 2 there is a repre-
sentation Wi of C0(G) on ^ such that

JT(^) = ^ (0 )©FF 2 (^ ) , 4>eCo(G).

Let /? denote the projection of %? onto ^ © {0} , and let 0 e 5(G). We
have

W{<j>)p = W{<t>)n{\, 0) = S£W)n{\, 0) = S+{W{n{l, 0) ® 1))

= ^(TT ® i o ((J1© 52)(1 ,0)W)= S^n ® i o <PA
ci'{p}(S\l), 0)W).

We claim that

n ® i o <&£>.$ = O ^ ' i ^ J ' ^ ^ ^ o{{n{®i)®{n2®i))

on (̂ 4j ® C*(G)) ffi (A2 ® C*(G)), and as before it suffices to check this on
an element of the form (a ® c, 0) with a e A{, c € C*(G):

n®io<&Jp.\p](a®c, 0) = n®i((a,0)®c) = (nl(a)> 0)®c

= <S>f.A{^
A>\nl{a)®c,0)

= Q^fy**1^ o ((TT, ® i) © (n2 ® i))(fl ® c, 0),
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establishing the claim. Therefore,

((*, ® i) © (n2®

^ ^ ® 1, 0)W) = S , ,

showing that %[ © {0} indeed reduces W, so that we have representations
Wx and W2 as described above.

We next show that (ni, Wt) is a covariant representation of {At, G, 5l)
(i = 1, 2). By symmetry it suffices to show it for i = 1. Let

v ~ VC*(G)

For a e^4, we have

*(K, ®lo^'(fl)»',, 0)

= 4>o
l(a) ,0)W = ((TC, © TT2) ̂  i o <D(<5'(a), 0))W

= ((«, © /r2) ® i o (51© 82){a,0))W= W((n1 © «2)(a, 0) 0 1)

F15 ^2)((W l( f l ) , 0)® 1)

, , W2){nx{a) ® 1, 0)) = ^ ( ^ ( ^ ( f l ) ® 1), 0),

and therefore
Wx eHom(7Tj ® 1,7t, ®io8l),

since 0 is injective.
It is now clear that

C*(n, W) = C*(«,, Wt)e C\n2, W2).

Conversely, every pair of covariant representations of [Al,G,di) and

(A2, G,82) arises in this manner, so part (i) is proven.

For part (ii), it is not difficult to check that if (n, W) is the regular covari-

ant representation of {Ax © A2, G, d1® S2), then, for i = 1 , 2 , [ni, Wt)

will be the regular covariant representation of (At, G,8l).
Now we have

'(G) © C*(G)) *GxG = {{C*{G) xG)® {C*{G) xG))xG

= (C*(G) xGxG)® (C*r(G) xGxG) = (C*(G) ® JT) © (C*(G) ® JT)

while similarly

© C*(G)) xGxrG^ (C*(G) © C*
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Hence, neither dual crossed product yields

However, it is easy in this example to construct a representation of (C*(G)@
C*{G)) xGxG whose image is (C*(G) © C*(G)) ®5f. We do not know
whether it is always possible to construct a representation of A x Gx G whose
image is A <
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