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ON FINITE CODING FACTORS OF A CLASS 
OF RANDOM MARKOV CHAINS 

M. RAHE 

ABSTRACT. For &-step Markov chains, factors generated by finite length codes split 
off with Bernoulli complement when maximal in entropy. Those not maximal are rela­
tively finite in another factor which generates or splits off. 

These results extend to random Markov chains with finite expected step size, im­
plying that random Markov chains with finite expected step size can have only finitely 
many ergodic components, each of which is isomorphic to a finite rotation, a Bernoulli 
shift, or a direct product of a Bernoulli shift with a finite rotation. This result limits the 
type of zero entropy factors which occur in random Markov chains with finite expected 
step size, providing a counterpoint to the work of Kalikow, Katznelson, and Weiss, who 
have shown that each zero entropy process can be embedded in some random Markov 
chain. 

Extending Rudolph and Schwarz, random Markov chains with finite expected step 
size are limits in d of their canonical Markov approximants. The ^-closure of the class 
is the Bernoulli cross Generalized Von Neuman processes. 

Finitary isomorphism of aperiodic ergodic random Markov chains with finite ex­
pected step size is considered. 

Applications are made to a class of generalized baker's transformations. 

1. Introduction. In the following, we shall be concerned with an invertible measure 
preserving transformation T, acting on a probability space (X, % /z), which we take to be 
isomorphic to the unit interval with Lebesgue sets and Lebesgue measure. P and H are 
two measurable finite partitions of X, while (7, P) and (Y, H) are the associated stationary 
processes. We shall assume that PV// generates,/.*?., that y^TiPWH) = ( P V / / ) ^ = 
& 

By the the factor 9{ = / P ^ generated by //, we mean the smallest T-in variant sub-a-
algebra of S containing H and all subsets of measure zero. A fiber h in H is the collection 
of all points in X which share the same doubly-infinite //-name. For a fixed version of 
probability conditioned on H and a fixed fiber h of 9(, we study the behavior of the 
sequence {TP}, i = . . . , — 1,0,1,... on h, viewed as a non-stationary process that the 
partition P and the transformation T induce on it. 

We say that a partition P is an N-step Markov generator if $ = P ^ and 
/x(P | PZIQ) = IJ>(P | P-l). For a non-negative integer /, by a finite coding of length 
I we mean a partition H C PQ-1 . When / is one, we shall refer to the code as a clumping 
of P. 
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DEFINITION. We say that a factor !H generated by H splits off if there exists a finite 
partition B of X such that the sequence {TB}, i = . . . , — 1,0,1, . . . , is independent, 
BP^ JL ffi^, and (BVH)^ = £ 

DEFINITION. Let F be a finite partition and denote the entropy of the process (7, F) 
by h(T, F). We say that a factor H^ is maximal in entropy if whenever H^ C F ? ^ 
and h(T, H) = h(T, F), then ffif^ = F ^ . 

DEFINITION. We say that T is /^-mixing conditioned on 9{ if for any measurable set 
A, we have l i m , ^ l i m ^ l i m , ^ | jz(A | V-* TH) - jx(A | Vl'-m TP \j\ VH)\ = 0 
a.e. 

DEFINITION. For j # and Q two a-algebras with H C £7, we say that i # is relatively 
finite in Q if there exists a finite integer / so that each fiber h in fH consists of exactly / 
fibers of Q. 

It is known [8, Theorem 2] that 

THEOREM 1. If(T, P) is n-step Markov and 9f is a maximal entropy factor generated 
by a finite code, then ïH splits off. Moreover, if 9f does not split off, then it must be 
relatively finite in a larger factor Qwhich either generates or itself splits off. 

In particular, [8, Theorem 3]. 

THEOREM 2. Every clumping factor in a Markov chain with strictly positive transi­
tion probabilities will split off. 

The purpose of this note is to extend these known results on n-step Markov chains to 
a class of uniformly convergent martingales, the random Markov processes with finite 
expected step size. These processes were defined by Kalikow [5]. 

DEFINITION. Let F be a finite set. Let {a,-,N,-} be a stationary process, where each 
at € F, each Ni € N, No is independent of {at, N;},<o and for eachy 

fjL(a0 = k\a-ia-2-' a-j AN0= j) = p,(a0 = k \ {a;};<o AN0= j). 

Then {a,, Ni}iez is a complete random Markov chain. 

DEFINITION. A random Markov chain is the projection on the first coordinate of a 
complete random Markov chain, i.e., if {tf;,A^} is a complete random Markov chain, 
then {a/} is a random Markov chain. 

It is easy to see that if the values of the random variable N are bounded by some fixed 
integer n, then a random Markov chain is actually an rc-step Markov chain. 

Kalikow also defined the concept of a uniform martingale [5]. 

DEFINITION. Let F be a finite set, and let {tf;};ez be a stationary process, with all 
at E F. If, for all e > 0, there exists Nt E N such that for all M > Ni and all {F/}g0 with 
all Fi e F, 

|/z(flo = F0 | a-\ = Fu a-2 = F 2 , . . . , a_m = Fm)-/x(a0 = F0 | a-i = Ft for all /)| < e, 
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then {<2;} is a uniform martingale. 

REMARK. Note that probabilists would use the term "Markov chain" for what we 
have referred to as a 1-step Markov chain. Also, what they would call a martingale is not 
{a,}, but rather the random sequence 

{p,(a0 = F0 | a-\, tf_2,..., a-m)}. 

Kalikow then established the following fact [5, Theorem 4]. 

THEOREM 3. A process is a uniform martingale iff it is a random Markov process. 

The class of all uniform martingales turns out to be somewhat large and ungainly. For 
instance, it is not closed under the taking of inverses [5, Example 19] and lacks other 
desirable properties. For this reason we restrict our discussion to those random Markov 
chains for which the random variable TV in the associated complete random Markov chain 
has finite expectation. We will describe these objects as random Markov chains with finite 
expected step size. 

As an application of these results, we will consider a subclass of the generalized bak­
er's transformations. These transformations were defined by Bose [2]. 

Let À be Lebesgue measure on the Lebesgue subsets B of [0,1). Let p, = À x A be 2-
dimensional Lebesgue measure on the Lebesgue subsets G of the unit squared = {(x,y) \ 
x € [0,1), y E [0,1)}, and let/: [0,1) i—• [0,1] be a Z?-measurable function. Define two 
mappings 1/;, (j>\ [0,1) »—• [0,1] by the formulae 

<t>f{x)=\- j\-f(t)dt. 

For each (x, y) € S, we set 

T<x*-I <*&).]&)' ifO<y</(x) 
lf(x'y) 1 (<£/(*), 1 - i ^ j ) , i f /W<y<l . 

It is easy to show, that Tf.S \—+ Sis measurable, invertible, and preserves /x. 

DEFINITION. Let Pf be the partition of S into two sets 

Po = {(x9y)\xe[0,l),f(pc)<y<l} 

and Pi = S\Po. We may consider the process (7}, Pf). This is said to be a generalized 
baker's transformation. 

By a well known theorem of Krieger, if (7\ P) is ergodic with entropy at most log 2, 
one can construct a two-set generating partition. As shown in [2], one can then find a 
representation of (7, P) as a generalized baker's transformation. 

Bose also defined an analogous baker's transformation with generating partition P 
indexed by any positive integer. In this case, instead of a single function/, there is an 
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integer n and several functions/: [0,1) —• [0,1], I < i < n, with Y,ifi = 1- The 
corresponding partition is P = {P;, 1 < i < n}, where Pi = {(x,y) € S : T,j<ifj(x) < 
y < T,j<ifj(x)}. The transformation T is defined in terms of the obvious sequence of 
functions i/>;, 1 < i< n. 

It was shown in [9, Section 5] that when the functions/; are uniformly continuous, 
then the generalized baker's transformation is a random Markov chain. Moreover, if the 
fi are sufficiently well behaved, say for instance Holder continuous and bounded away 
from zero, then the random Markov chain will have finite expected step size. It then 
follows from results in this article that under such hypotheses, clumping factors of the 
generating partition P will always split off. 

2. The product decomposition. The product decomposition follows from the rel­
ativized isomorphism theorem of J.-P. Thouvenot. To apply this machinery, we need 
certain definitions. 

DEFINITION. We say that two partitions fP and Q are e-independent conditioned on 

M i f ^Ae^Bed |M# (A H P ) - tix(A)nx(B)\ < e. (Notation: T ±^e Q.) 

DEFINITION. We say that (7, P) is weakly Bernoulli conditioned on J{ if given e > 0 
there exists a positive integer n and a set G with /x(G) > 1 — e of ^/-fibers h on which 
(F*Lm _ L ^ c PJJ+m) for all positive integers m. 

DEFINITION. Given finite sequences of partitions {P/, / = l ,2 , . . . ,w}ona probabil­
ity space (Z, p) and {/?/, / = 1,2,..., n\ on a probability space (Y, a), we define 

rfn({P/K, {*/}?) = inf /T1 ê P[(^ \ rt ) U ( r t \ />«)], 
</>€lM i 

where $/[ is the class of all measure preserving transformations from Z to Y, and where 
we sum over corresponding sets in partitions. 

DEFINITION. We say that (7, P) is very weakly Bernoulli conditioned on 9i if given 
€ > 0 there exists a positive integer n and a set G with fi(G) > 1 — 6 of ^-fibers /z for 
which dn({VP | C}f, {7'P}?) < e on a set Ch of atoms C <E P^mrih with / i # ( Q > 1 - e . 
(The 5n is measured using /x<#.) 

It is easy to show [8, Lemma 2] that 

LEMMA 1. If(T, P) is weakly Bernoulli conditioned on J{, then (7, P) is very weakly 
Bernoulli conditioned on 9i. 

The proof of the following lemma may be found in [7, Section 3] and [12] 

LEMMA 2. The process (7, P) is very weakly Bernoulli conditioned on 0-i iff(T, P) 
is finitely determined conditioned on 9~i. 

From Thouvenot's relativized isomorphism theorem [12], if (7,P) is finitely deter­
mined relative to !H, then 9i splits off with an orthogonal Bernoulli complement. 
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It is well known that if a finite state Markov chain is mixing, then its generator is 
weakly Bernoulli. In the next section we show that if H is a finite coding factor of a 
random Markov chain (T, P), then (T, P) is nearly Markovian along fibers of H. If !H is 
maximal in entropy, then (T, P) is ^-mixing along fibers, hence one can show that (T, P) 
is weakly Bernoulli along fibers. 

3. The main result. 

THEOREM 4. Let (T, P) be a random Markov chain with finite expected step size. 
Let H E PQ~1 generate a finite coding factor 9~i which is maximal in entropy. Then (T, P) 
is weakly Bernoulli conditioned on 9{. 

PROOF. Given e, we can find a positive integer R such that for all except a set of 
measure e of fibers h of Jl, for all except a set of conditional measure e of atoms P^_m, 
the ^-conditional distributions of P%* on any two atoms A, B of PfLm are e-close in d. To 
see this, consider the above distributions as lying in the complete random Markov chain. 
Let N(jjj) denote the step size, which is a random variable. Use the finite expectation 
of N(uJ) to find a set C with fi(C) > 1 — e and a positive integer N sufficiently large 
that we have N(u) < N, N(Tcv) < N + 1, . . . , i.e., the random Markov process never 
looks back farther than a certain fixed past of length N. Note that C is independent of 
P^OQ' Then form a joining of the (nonstationary) distributions in h, conditioned on A 
and B, as follows. The fact that H is maximal in entropy, implies ^-mixing on fibers. 
Hence, given N, there exists a positive integer L such that P ^ _!_#• c P^+N. Join the 
two distributions arbitrarily in the first L places, so that the P^+N+l overlap within e. Now 
apply the independence of the past beyond N which holds on C to get the ^-matching 
for arbitrarily large intervals. Thus, the d distance between future distributions in a fiber 
conditioned on past atoms can be made arbitrarily small, as desired. 

It is shown in [12] that if the process (7, P) is ^-conditionally very weakly Bernoulli, 
then 9i must be maximal in entropy. Hence, splitting occurs in the Markov chain context 
iff a finite coding factor J{ is maximal in entropy. 

On the other hand, if 9{ is not maximal in entropy, then by Zorn's Lemma it is con­
tained in another factor which has the same entropy and which is either maximal in 
entropy or itself generates. (An example of such a situation is given in [8].) 

The following lemma shows that such a factor, while not necessarily a finite coding 
factor, must still split off. (Note, however, that not all factors will split off.) 

LEMMA 3. Let (T,P) be a random Markov chain with finite expected step size, 
and 9~i a finite coding factor generated by H £ PQ~1. Suppose H is not maximal in 
entropy, and denote by Q the (unique) maximal factor which contains 9i and has the 
same entropy. Then Q either splits off with Bernoulli complement or generates. 

PROOF. The essence of the proof is the observation that (7, P) is nearly Markovian 
on fibers of Ç, i.e., for A E Pf* and B 6 P^OQ, then almost everywhere 

lim \ng(A | P°_„+1B) - iig{A | P°_„+1)| = 0. 
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Thus the argument in the proof of the preceding theorem goes through as before. 
Indeed, denote by TT(T \ <H) = a>o(VZSo FP V # ) = a*>(V~ FP V H) the 

Pinsker algebra of T relative to 9l. Then given e > 0 there exists a positive integer N such 
that V - £ TP KM VO° FP* g i v e n t h e partition P*. Hence n(T \ 9f) LtM n(T \ <H) 
given P°_ft. Thus, the partition n(T \ H) is e-contained in P°_^. Since 9i € Q and the 
entropies are equal, we see that Q is €-contained in Oi V P°~. 

The next theorem indicates the manner in which a finite coding factor Ol which is not 
maximal in entropy must sit in its extension Q. 

THEOREM 5. For P a finite partition, let (7, P) be a random Markov chain with finite 
expected step size, and J-( a finite coding factor generated by H E PQ~1. Suppose !H is 
not maximal in entropy, and denote by Ç the (unique) maximal factor which contains Of 
and has the same entropy. Then Of is relatively finite in Q. 

PROOF. The (7, P) process is embedded in a complete random Markov chain. Hence 
Q also sits in the complete random Markov chain. Denote by Q = {Qnyo pp} m e c o u n t -
able partition in the complete chain, where n = n(u) = sup{N(Toj) — i, i = 1,2,...}. 
Since Ç -L#vQ Q, it follows that Ç is relatively countable for each fiber h'mOi. In­
deed, on the fibers of tt, the atoms of Q are countable unions {U A : A € V-w, TlP}. 
The Markov property and the fact that P is finite guarantee that there can be only finitely 
many ergodic components. For a given ergodic component, on each fiber h, the action of 
T on Q is ergodic, hence we have a finite rotation. Indeed, one can further conclude that 
there is a positive integer no and a finite partition Q$ C V-no ^ ^ s o m a t Q~Q^^-

4. A bouquet of corollaries. First, we consider the general form of a random 
Markov chain with finite expected step size. 

For (71, P) any random Markov chain with finite expected step size, there is a natural 
clumping in which all states of P coalesce to one single set. This clumping factor has 
entropy zero. The Pinsker algebra contains this trivial factor and has entropy zero. It 
follows that the Pinsker algebra must split off. It also follows that the trivial clumping 
factor is relatively finite in the Pinsker algebra. Hence the action of T on the Pinsker 
algebra is a finite rotation. 

We summarize this in the following: 

COROLLARY 1. Each of the finitely many ergodic component of a random Markov 
chain with finite expected step size is isomorphic to a finite rotation, or a Bernoulli shift, 
or the direct product of a Bernoulli shift and a finite rotation. 

Moreover, 

COROLLARY 2. If an ergodic component of a random Markov chain with finite ex­
pected step size has period p, then each finite step Markov chain in the skew product that 
constitutes the associated complete random Markov chain with finite expected step size 
will also have a rotation factor with period p. 
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Moreover, we can extend the results of Rudolph and Schwartz [11], who showed that 
the closure in the d metric of &-step Markov chains is the set of BGVN (Bernoulli cross 
generalized von Neumann) processes. 

COROLLARY 3. A random Markov process with finite expected step size is the limit 
in d of its canonical Markov approximants. 

PROOF. By the above corollary, a positive entropy random Markov chain with finite 
expected step size is the product of a Bernoulli with a finite rotation, hence a BGVN 
process. Moreover, the rotation factor is measurable with respect to a finite block of 
variables. Hence, by [11, Theorem II], it must be the limit in d of its canonical Markov 
approximants. 

Furthermore, 

COROLLARY 4. The closure in the d-metric of the random Markov chains with finite 
expected step size is the BGVN processes. 

PROOF. Let (7\ P) be the 5-limit of a sequence (7\,Pfc) of random Markov chains 
with finite expected step size. By the previous corollary, we can select canonical n^-step 
Markov approximations to the (Tk, Pk) which are within 2~k in d of (Tk, Pk). The result 
follows from [10, Theorem I], since the sequence (Tnk,Pnk) also converges to (T, P) in d. 

One can also comment on the isomorphism class of ergodic random Markov chains 
with finite expected step size. 

COROLLARY 5. Two ergodic random Markov chains with finite expected step size 
are isomorphic iff they have the same entropy and period. 

Indeed, using the criterion of Rudolph [10], we can even show the following result. 

THEOREM 6. Two aperiodic ergodic random Markov chains with finite expected 
step size are finitarily isomorphic iff they have the same entropy. 

PROOF. We utilize Rudolph's finitarily Bernoulli criterion [ 10, p. 3]. One can choose 
A|(c), Â(e), A(e), C(e,n), and markers S(e) as in the proof [10, p. 6] that a finite state 
mixing Markov chain is finitarily Bernoulli. 

One does not have the strict independence of the Markov property; but one does have 
e-independence conditioned on long strings, and the e-independence is uniform over 
strings of the same length, since the random step size has the property that N™ is in­
dependent of A ^ and P ^ . Thus, CBI, properties 4 and 5, and USM all follow. 

Next we apply these results to generalized baker's transformations. It follows from 
the above that if (7, P) is a random Markov chain with finite expected step size, and 9f 
is a clumping factor in which each atom leads to every other atom, then 9i is maximal 
in entropy and hence splits off. Thus, 
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COROLLARY 6. Let (Y, P) be a generalized baker's transformation with generator 
P = {P(} determined by functions {/},/ = 1,. . . ,n}. Suppose that the functions {ft} are 
such that the Lebesgue measure \{x : f '• = 0} = Ofor i = 1 , . . . , n; and suppose that 
(7, P) is a random Markov chain with finite expected step size. Then a clumping factor ïH 
is maximal in entropy, hence on each ergodic component either splits off or generates. 

Moreover, 

COROLLARY 7. Suppose (T, P) is a generalized baker s transformation with gener­
ator P = {Pi} determined by Holder continuous functions {//, / = 1,2,..., n} uniformly 
bounded away from zero by some constant c.IfJi is a finite coding factor, then on each 
ergodic component either tt splits off, or it is relatively finite in a factor Ç which gen­
erates or splits off. 

PROOF. By the results in [9, Section 6], (T, P) is random Markov with finite expected 
step size. 

Finally, we note that these results allow us to weaken the requirement in [9, Section 7] 
on the Lebesgue measure of the sets where the / are zero in a generalized baker's trans­
formation, in return for a slightly weaker result. 

COROLLARY 8. Let (T, P) be a generalized baker's transformation with generator 
P = {Pi} determined by functions {/}, / = 1, . . . , n}. Suppose that (T, P) is a random 
Markov chain with finite expected step size. Then there are only finitely many ergodic 
components; and restricted to any component, (T, P) is either Bernoulli or the direct 
product of a Bernoulli with a finite rotation. 

Moreover, 

COROLLARY 9. Suppose (Y, P) and (T, P) are generalized baker's transformations 
with generators P = {Pi} and P = {Pi} determined by Holder continuous functions 
{fi, i = 1,2,..., n} and {ft, i = 1,2,..., ft}, respectively, which are uniformly bounded 
away from zero by some constant c. Then (T,P) and (Y, P) are finitarily isomorphic iff 
they have the same entropy. 
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