WHITTAKER’S CONTRIBUTIONS TO THE
THEORY OF RELATIVITY

by J. L. SYNGE

TEN papers deal with the theory of relativity, and all are concerned in some
way with electromagnetism. Those who know Whittaker through his Modern
Analysis and Analytical Dynamics will recognise in these papers the same
mastery over complicated situations which enabled him to disdain the support
of notational refinements, that same elegance, brevity and persuasive charm
which make difficult arguments seem easier than they really are. The new
element which emerges is the strongly geometrical approach ; but he remains
true to the Lagrange tradition and draws no diagrams of space-time, although
these must surely have been before his mind’s eye and would have helped
his readers.

There are certain affiliations between these ten papers, and they might
be arranged in groups; but it is simpler to deal with them in chronological
order. In this report, the summation convention is understood, the permutation
symbol ¢,,,,, is used, partial differentiation is indicated by a comma (X,;)
and covariant differentiation by a vertical stroke (X,,). These notational
devices, now in common use, were not employed by Whittaker.

(@) “On tubes of electromagnetic force,” Proc. Roy. Soc. Edin., 42 (1921),
1-23.

““ The object of the present paper is to introduce certain surfaces, which
will be shown to play the same part in the general electromagnetic field as
Faraday’s tubes of force do in electrostatic and magnetostatic fields.”

The fabric of this paper is woven out of Maxwell’'s equations in vacuo,
and one other thing—the condition

Aoty A, =0, oo (1)

expressing the orthogonality of the electric and magnetic vectors (d, k). This
condition is Lorentz-invariant. In the last pages of the paper this restriction
is lifted and the generalization indicated, but the results are then more com-
plicated and less interesting, and throughout this account of the paper (1)
will be assumed as a restriction on the field under consideration.
To express the essentials of the work compactly, let us use Minkowskian
coordinates with x; =1ict and the electromagnetic tensor ¥, where
dp=iFy, dy=iFy, d,=iFy, 2)
hy=Fo3, hy=Fy, h,=Fy,.

We need also the dual F*  =%ie,,naFm.. Then Maxwell’s equations may be

written
Frog=0, Fi\,=0. coovverrrreirriennrcnnrecennas 3)
The condition (1) is equivalent to '
det F7-8=0 or F23F14+F31F24+F12F34=0. ........................ (4:)
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Consider now the total differential equations
F o dr,=0, .cooviiiiiiiiiiiiiiiiiiiii, (5)

which are in general inconsistent, but which, in view of (4), are equivalent to
only two equations. These equations, and the fact that they are integrable,
form the core of the paper. They are integrable, in the sense that they possess
integrals ¢ =rconst., = const., by virtue of Maxwell’s equations (3) and the
condition (4), ¢ and i being solutions of the following partial differential
equations adjoint to the total differential equations (5) :

Fof =0, oo (6)

Thus from (5) we get oo?® 2-spaces, which Whittaker called electropotential
surfaces. They have the property that the curves of intersection of these
surfaces with {=const. are the magnetic lines of force, and in an electrostatic
field these surfaces are the ordinary equipotential surfaces.

The total differential equations

Frdz =0 oo (7)

likewise give c0? 2-spaces—these are Whittaker’s magnetopotential surfaces.

At each event the electropotential surface is absolutely orthogonal to the
magnetopotential surface, absolute orthogonality being Whittaker’s expression
to indicate that every vector in one 2-space is orthogonal (in the Minkowskian
sense) to every vector in the other.

The tubes of force, or calamoids (from xdAapos, a reed-pipe), are defined
in terms of electropotential and magnetopotential surfaces. We pick out
3-spaces (¢ and H, G being formed from oo! electropotential surfaces and H
from oo! magnetopotential surfaces. The intersection 2 of G and H is a
calamoid ; a calamoid is a 2-space, and there are co? of them altogether. In
a purely electrostatic field, or in a purely magnetostatic field, the calamoids
become the ordinary Faraday tubes of force.

Whittaker gives explicitly the partial differential equations of the calamoids.
In tensor notation, they read

F X =0, FFX =0, ciciiieiiiiiiiiieiiiiiiiiananns (8)
s rs r8 rs
where
S ® T e, 9
Xrs= o, v) ®)

He uses these partial differential equations to express Maxwell’s equations
in integral form : If S be any closed 2-space to which we can fit an open
3-space not containing electrons, then

J' f F,X,dudv=0, f f FLX dudo=0, oo (10)

the integrals being taken over S.
(b) ““ On Hilbert’s world-function,” Proc. Roy. Soc. A, 113 (1927), 496-511.

https://doi.org/10.1017/50013091500014371 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500014371

WHITTAKER’S CONTRIBUTIONS TO RELATIVITY 41

This is a difficult paper, physically and mathematically. Whittaker did
not take kindly to the ideas of quantum theory, and thought that light quanta
should be explained within Maxwellian theory, enlarged by the inclusion of
magnetic currents. The character of these currents is not made clear by the
statement that if ** we give the name ‘ magnetism ’ to a non-circuital character
of the magnetic lines of force, then we may say that magnetic currents consist
in the motion of ‘ magnetism ’ but we should not attribute to ‘ magnetism’
a substantiality like that of matter.”

It is, of course, easy to include magnetic currents in the Maxwellian scheme.
All we have to do is to replace the zeros on the right-hand sides of four of the
Maxwellian equations with the components of magnetic 4-current. When
this modification has been made, then, Whittaker wrote, “ we can prove the
existence of finite light-pulses or light-quanta, i.e., we can construct solutions
of the equations which at every instant are null everywhere outside certain
finite regions, and which are propagated, without change of size or shape,
with the velocity of light. We can moreover reconcile the classical theory,
thus extended, with the theorem which Einstein inferred some years ago
from thermodynamic considerations, that a pulse of light which is emitted
by one atom is ultimately all gathered together again on another single
atom.”

This is a surprising statement, as to the validity of which one may entertain
some scepticism. Although this idea lay behind the paper under consideration,
it is not enlarged on sufficiently for one to form a more definite idea of the
electromagnetic field which Whittaker had in mind, and it is a pity that he
did not explain it further within the simpler framework of special relativity.

Mathematically, the paper is of considerable complexity, and I have not
been able to get to the heart of the matter. We have before us a certain
physical system ; it consists of material particles in incoherent motion, carrying
electric and magnetic charges (in spite of what has been quoted above). These
particles move in a combined gravitational and electromagnetic field.

We seek a set of differential equations which will describe this situation.
If we leave out the magnetic charges, the situation is a familiar one, and we
know the equations which seem appropriate. They consist of the Einstein
field equations, having on the right-hand side an energy tensor made up of a
contribution from the matter and a contribution from the electromagnetic
field, both well known in form. We should also write down the form of
Maxwell’s equations suited to general relativity. From these field equations
we can derive (through the vanishing of the divergence of the Einstein tensor)
the equations of motion of matter—they are equivalent to the Lorentz law of
ponderomotive force. If we now put in the magnetic charges, the only modifica-
tion required is in Maxwell’s equations (to allow for magnetic 4-current).

Thus, if our object is merely to obtain a reasonable set of equations governing
the situation described above, that object is easily attained, and indeed the
equations outlined above are those which Whittaker finally obtains.
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But the whole point of the paper is the deduction of these equations from
a variational principle of the form

5 f HA/(— )0 da?da® =0, vvnrereerereeererereeenn. (1)

and the problem is to choose a suitable function H and prescribe a suitable
way of carrying out the variation. Here the inclusion of the magnetic current
does make a significant difference. If magnetic currents are absent, those four
Maxwellian equations which have zero on the right-hand side imply the existence
of a 4-potential, and that 4-potential (multiplied by the 4-current) appears
in H. But when magnetic currents are present, this procedure breaks down,
and Whittaker’s problem was to introduce a 4-potential in some indirect way.
This he succeeded in doing, but the argument is not at all clear to me, and
I cannot attempt to describe it in brief compass.

(¢) “ On electric phenomena in a gravitational field,” Proc. Roy. Soc. A,
116 (1927), 720.735.

Although an electromagnetic field influences a gravitational field through
its energy tensor, this effect is in general small, and in this paper Whittaker
studies electromagnetic fields superimposed on a space-time which has an
assigned geometry consistent with Einstein’s field equations in vacuo.

One half of Maxwell’s equations (there is no question of a magnetic current
here) ensure the existence of the electromagnetic potential-vector ¢,, and
when the condition

9P%Bp1a=0 e (1)
is imposed on ¢, the other half of Maxwell’s equations require that ¢, should
satisfy

G Dprrat KpPe=Jps oeveerereermmiiiineeniiiiieeaes (2)

where K, is the mixed form of the contracted Riemann tensor and j, is the
4.-current. Since the field equations of empty space-time are to be used, we
put K3 =0, and so we have to deal with the set of linear partial differential
equations comprised in (1) and

VDo ra=Jp  cerrrerreiiiii e (3)

After these general preliminaries, Whittaker confines himself to two
gravitational fields, namely, the Schwarzschild spherically symmetric field
with

a 1 dr? .
ds?= (1— ;) ag— = e +7%d6%+ 2 sin? 6dp® \ ... (4)
r

and a field with

9 1 dz? 2 2
ds? = (1+ :’Ziv) dt2— Eé 2955 +dy +dz 3 eestsceracecaan (5)
(4 14+ _Ez.._

where g is a constant. This last field he calls quasi-uniform and remarks that
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it is the simplest of all types of gravitational field ; it is obtained from (4)
by a limiting process in which the gravitating centre is removed to infinity
and its mass increased appropriately. But unfortunately he overlooked the
fact (recently pointed out to me by Dr F. A. E. Pirani) that (5) is actually a
flat line-element ; it reduces to

ds?=dr?—df2—dn?—d?,

_?1 z
_c;_

if we put

Thus formul® based on (5) are not formulse for a gravitational field but for
curvilinear coordinates (z, ¥, 2, ) in a flat space-time ; as such, they have a
certain interest, although it is not the interest they were supposed to have.

Dealing first with this quasi-uniform field, Whittaker writes out the
equations (1) and (3) explicitly, and notes that for electrostatic problems the
essential equation is

292\ Phy | Py Ppo
(l+ )6x2+8y +ﬁ-—’ ........................... (6)

which generalizes Laplace’s equation and reduces to it when g=0. Several
analogues of harmonic functions are obtained. First, the analogue of

cos
e~k J  (kp) sin me
is

3 e 3 cos
$o= (1+ 299‘) Ty {ﬂ“&(p, 2_9_:) }Jm (kp) > m. o (7
g ¢
Secondly, the analogue of a constant is the rational function
2+ 2gx

$o= {ct+2c%gz+ g2 (y2 +22) 12"
Thirdly, the analogue of 1/r is
9 9° o 2
1+ %= + 25 (2 +2%)
¢ ' 2¢ A
do= - L et (9)
1x2+y2+z2+ c%x(y2+z2)+ 4% (y2+z2)2}

representing the potential of a unit point-charge at the origin. This is
generalized to yield the potential due to unit point-charge situated at an
arbitrary point, and hence he obtains an integral representing the most general
electrostatic potential in space-time with metric as in (5).

Turning to the Schwarzschild field (4), he obtains the analogue of Laplace’s
equation, separates the variables, and gets the solution

(n—1)!n! dP(2) m
$o= 2—%%—;')@ amYr—a) ——E";(z—) P™(cos 0) ;’3: MPy v, (10)
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where z is defined by r=3a(z+1). This is the analogue of the harmonic function

1P (cos 6) :fj me,

and, like it, may be used to construct solutions of electrostatic problems in
the field of a single gravitating centre. In fact, he uses it to construct, in
the form of a double integral, the electrostatic field of a point-charge placed
in such a gravitational field.

The paper concludes with a study of electromagnetic waves in the
Schwarzschild gravitational field. With no 4-current, and with ¢g=¢, =$,=0,
there is just one equation to satisfy—a second-order linear partial differential
equation for ¢;. The variables are separated, and a solution obtained in the

form
. dP,(cos )
— ptpt 2
Py =€ f(r) sin 0————d(cos Gy s (11)
where f(r) satisfies
r—ad?f odf |[p an+ 1)} B
dr T Rdr {r—_;— T [ [=0 (12)

which is a linear differential equation of the second order with three singular
points, namely, 0, a and oo. The exponents at =0 are 0 and 2, and the
exponents at r=a are ipajc and —ipa/c, while r= 00 is an irregular singular
point at which f behaves like

exipric p £iaple,

Whittaker notes that this equation is akin to Mathieu’s equation, but not
identical with it. For high frequencies, he gives the approximate solution

f(r)= Aetric(y — q)pole 4 Be=iprie(y —q)~ipole, | ..., (13)

and, for arbitrary frequencies, he shows how to develop f in negative powers
of p.

(d) “ Note on the law that light-rays are the null geodesics in a gravitational
field,” Proc. Cambridge Phil. Soc., 24 (1928), 32-34.

Whittaker seeks to rationalize, on the basis of Maxwell’s equations,
Einstein’s assumption that the tracks of light-rays are null geodesics in a
gravitational field. He regards the metric tensor g,, as given, and notes that
the electromagnetic potential-vector satisfies partial differential equations of
the type

&%, _
g7 ol e =0, (1)
the term written explicitly being the only one which involves second derivatives
of the ¢.’s. A characteristic being defined as a manifold on which the existence
theorem of P.D.E.’s breaks down, a characteristic of (1) is a hypersurface
such that a solution is not uniquely defined by the values on it of the ¢,’s
and their first derivatives. From the known theory of characteristics it follows
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that the characteristic hypersurfaces f(z9, 21, 2%, 23) =0 of the partial differential
equations (1) are the solutions of the partial differential equation

of of _ .
P8 = Denrianssie s )

It follows further from the known theory of characteristics that the character-
istics of (2) are curves, and that these characteristic curves are the null geodesics
for the metric ds?=g, dz?dz?.

If, then, an electromagnetic disturbance is originally confined to a limited
region of space, and the history of the bounding surface of the disturbance is
represented by the equation f(z?, z!, 22, 2*)=0, the function f satisfies (2), and
the hypersurface with this equation is an aggregate of null geodesics.

The paper concludes as follows :

“ But when we speak of a ‘ray of light’, we mean a disturbance which
is filiform in space-time (or, in three-dimensional space, a disturbance which
is localised at any instant in an infinitely small region, varying from instant
to instant). Clearly if this filiform region is to be composed of the above-
mentioned characteristic curves, it can consist of only one of them : that is
to say, a ray of light in a gravitational field is a null geodesic of space-time, which
is the theorem to be proved.”

1t is, T think, a pity that Whittaker confused the mathematical issue by
this statement. But it was no afterthought, for the Introduction makes it
clear that this was his goal and that he thought he had attained it. But I
don’t think that he did, or that anyone else could, because the goal does not
exist. As I see the situation, it seems that we are faced with two irreconcilable
ways of looking at electromagnetic phenomena : on the one hand we have
the light-quantum or photon, and, on the other hand, Maxwellian field theory.
But at first we are reluctant to accept their irreconcilability. We try to obtain
a Maxwellian field corresponding to a concentration of electromagnetic disturb-
ance travelling with the speed of light. According to a previous paper, (b)
above, Whittaker seems to have thought that the inclusion of magnetic currents
would overcome the difficulty of constructing such electromagnetic concen-
trations, but he gave no indication how it was to be done. In the paper under
consideration there is no question of magnetic currents, and indeed Whittaker
points out in the Introduction that any * ray  does in fact spread out. Thus
the filiform disturbance is a pure dream-child, a non-existent dream-child,
and any statements made about it have no meaningful content.

This paper is of fundamental importance in connection with the mathematical
structure of Maxwellian fields, but it does not remove the mystery surrounding
the physical role played by the null geodesic in the propagation of light.

We may pause for a moment, with this short paper before us, to ask a
question which might (and should) be asked about any man who has made
a deep impression on the age in which he lived. What passion drove him
on ¢ I mean the real passion, sought beyond the conventional answers suited
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to the naive, but tremendously active, period of science in which he matured.
I don’t think that Whittaker was impelled by a passion to find out how nature
really works. That is, I know, a frightfully heterodox thing to say of a great
scientist, but I think it is true, and explains in some measure his denigration
(to use a word which is a little too strong) of Einstein in relation to the
foundation of the theory of relativity. For Einstein, who had only a small
fraction of Whittaker’s mathematical skill, was in his early days impassioned
to know the real nature of things, with a success which everyone knows.

I see Whittaker as a consummate artist in the formal symbolism of mathe-
matics, his passion being to make the symbols dance to his tune and to take
their place in persuasive arguments of great economy, inessential details being
suppressed. But this passion alone did not suffice, for he yearned on the
one hand towards that precision of mathematical thought which was lacking
among the British mathematicians of his age (a situation which he did much
to remedy), and on the other hand he yearned for contact with the realities
of the physical universe—realities which, in their broader aspects, he could
treat with philosophical depth, but which he was not adapted to uncover for
himself. He could narrate in a most lucid way the history of electromagnetism,
both mathematically and physically, but the passion for narration and the
passion for creation are very different. He had, it seems, no consuming passion
for physical reality, no more than Lagrange or Hamilton had ; he was more
akin to them intellectually, than to Newton or Maxwell or Kelvin or Rayleigh.

(e) * The influence of gravitation on electromagnetic phenomena,” Journ.
Lond. Math. Soc., 3 (1928), 137-144.

This was a lecture, and in it Whittaker refers to some of the results given
in (c¢) above, now comparing electromagnetic theory in a gravitational field
to Maxwellian theory in a medium whose specific inductive capacity and
magnetic permeability vary from point to point, but noting that the resemblance
is not quite perfect. He also discusses null geodesics in the Schwarzschild
field with metric as in (4) of §(c), noting that the null geodesics in the plane
0+7/2 satisfy the differential equation

2
(%) =aUS— U4 k2, oo (1)

where U=1/r and k is a constant, and hence are given in terms of the Weier-

strass elliptic function by

1 1

4
;=3—‘a+;@(§6+0). ................................. (2)

If & has the particular value 2/(3%%), we get solutions in terms of hyperbolic
funections, namely,

a 2 1

; = § + Si—_—— ]2( g H_C) --------------------------------- (3)
and

a 2 1

; = g p— W E-{-C’)' .............................. (4)
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“ These rays are spirally asymptotic to the circle r=3a ; the second equation
represents light which, coming from infinity towards the mass, is * captured ’
by it, and never gets away again, but circles round it for ever; the first
equation, on the other hand, represents luminous energy which is, and always
has been, imprisoned in the immediate neighbourhood of the mass, since
is less than £a for all values of ¢.”

 The capture and imprisonment of radiation by the intense gravitational
field surrounding a point-mass is a remarkable theoretical possibility, markedly
different from anything in pre-relativity physics.”

(f) “On the potential of electromagnetic phenomena in a gravitational
field,”” Proc. Roy. Soc. A, 120 (1928), 1-13.

This paper follows the same general pattern as (¢) and {¢)—the exploration
of the changes in electromagnetic theory consequent on the curvature of space-
time. The starting-point is the well-known Liénard-Wiechert retarded potential,
which Whittaker writes in the form

(Bo> Prs Py P3y=1(efs, —ev,[s, —ev,[s, —ev,[s), . ccoooeviiiiiinn. (1)
where
s=F+{(& —xWw,+ (' —y)v,+(E —2)v,}e. .ooiiiiiiinninnns (2)

So far space-time is flat ; E(x, y, z, t) is the event where the observation of the
field is made ; E(&', §’, 2, f) is the event where the world-line of the electron
cuts the null-cone drawn into the past from F; 7 is the distance between
(, ¥, 2) and (', ¥, 2') ; and (v,, v,, v,) is the velocity of the electron at E.
Still supposing space-time to be flat, Whittaker seeks an expression for
¢, valid, not only for Galilean coordinates as in (1), but for all curvilinear

coordinates in space-time. To this end, he writes down the formula
e
b= 599 %iar T =T 0 ™ T ime crvneerrnieiiniiiininnns (3)

Here 7 is the proper time of the electron at the event £ considered above.
Obviously, this formula is covariant, and therefore valid in general if valid
for Galilean coordinates. By direct calculation, he shows that (3) reduces
to (1) for Galilean coordinates, and so (before accosting the curvature of
space-time) he has in (3) an elegant covariant expression for the retarded
4-potential.

What happens when space-time is curved ? Is (3) still valid ? Whittaker
points out that ¢, must be given by some covariant formula involving nothing
but the fundamental tensor g,, and the covariant derivatives of the proper
time 7 ; however, the combination may not be as in (3). To test a particular
case, he applies (3) to the ““ quasi-uniform field ’ (5) of (c), and verifies that
it yields ¢, as in (9) of (c) for a charge at rest at the origin. Actually, this
is no test of the validity of (3) in curved space-time, since, as we have seen,
(5) of (c) is flat.
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At the end of the paper, he seeks to establish a result which would be
remarkable, if true. The invariant proper time r is determined by the world-
line of the electron and the coordinates z? of the event £ at which the observa-
tion is made. When we calculate the first order partial derivatives of r, we
find that they depend, not only on the values of z?, but also on the tangent
to the world-line at £, or, in other words, on the velocity of the electron.
Similarly, the covariant derivatives of the second order, 7,;,,, involve both
the velocity and acceleration of the electron. The result which Whittaker
states is this : the combination o, of (3) involves neither the velocity nor the
acceleration of the electron.

The argument begins by assigning coordinates y? to £ and writing

Q0 X)=0 irvvviiiiiiii . (4)
for the null-cone belonging to x?. Then £ satisfies
052 082
l — e 2T €.
™ T 0. i (5)

Whittaker differentiates with respect to x", obtaining

oR 0
lm T e s = Uy srreeereirsssesnsnsesssssenserannnns
o Tamay (6)
an equation which is essential to the argument, but which is incorrect, as we
may see as follows. Take flat space-time with g,, constant. Then the equation

of the null-cone is

Q(x, ) =3gpe(@P — xPHxT—x9) =0, ccovverrirnniiiiinnn, (7
and we get
o o202 o2 o2
’gx_m = gmp(xp'—xp)’ axTaX"= —Tmrs glma_xl axmaxr = "'grp(xp—xp)- (8)

These last four expressions do not vanish unless 2% = y?, which of course is not the
case. The fact that space-time is actually curved could not validate (6),
which we have just seen to be false for flat space-time. The error came from
overlooking the fact that (5) is not true for all values of the eight arguments
in 2, but only for those values which satisfy 2=0.

(g) “On the definition of distance in curved space, and the displacement
of the spectral lines of distant sources,” Proc. Roy. Soc. A, 133 (1931), 93-105.

Newtonian concepts die hard, and astronomers often speak of the distances
and velocities of recession of nebule as though the concepts of distance and
velocity required no redefinition in terms suited to the general theory of
relativity. Into this philosophical obscurity, Whittaker shoots a deft ray of
light.

“ When the astronomer asserts that ‘the distance of the Andromeda
nebula is a million light-years,” he is stating a relation between the world-
point occupied by ourselves at the present instant and the world-point occupied
by the Andromeda nebula at the instant when the light left it which arrives
here now ; that is, he is asserting a relation between two world-points such
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that a light-pulse, emitted by one, arrives at the other; or in geometrical
language, between two world-points which lie on the same null geodesic. The
spatial distance of two material particles in a general Riemannian space-time
may, then, be thought of as a relation between two world-points which are on
the same null geodesic.”

His definition of spatial distance is not only mathematically elegant ; it
is practical because it is connected with the way in which astronomers actually
compute the distance of a very remote object, namely, by comparing its
observed apparent brightness with its assumed absolute brightness. Consider
a thin pencil of null geodesics (rays of light) issuing from a star at an event 4,
and passing through and close to an event B in the history of an observer.
Then the distance from 4 to B is defined to be proportional to the square
root of the two-dimensional area in which this thin null pencil cuts the observer’s
instantaneous space (the 3-space orthogonal to his world-line). This definition
makes the distance from 4 to B depend on the direction of the observer’s
world-line at B (i.e., on the motion of the observer), and Whittaker remarks
that it is quite proper that it should so depend.

This simple definition of spatial distance is illustrated by applying it to
the de Sitter world. The Doppler effect is also discussed, the argument being
based on the fact that if 7, denotes the proper-time of the observer at the
ingtant when he receives a light-signal which left the star at the star’s proper-
time 7, then the Doppler effect 6A/A (where A denotes wave-length) is given by
the simple equation

N ST L (1)

Letting the radius of the de Sitter world tend to infinity, he shows that his
general formula for the Doppler effect reduces to the well-known formula of
special relativity.

(k) (with W. O. Kermack and W. H. McCrea). ‘ On properties of null
geodesics, and their application to the theory of radiation,” Proc. Roy. Soc.
Edin., 53 (1933), 31-47.

As in (g), questions connected with spatial distance and the Doppler effect
are treated in terms of null geodesics, but the work proceeds on more general
and rather different lines. The basic ideas were in the. air, and acknowledg-
ments are made of overlaps with other writers.

First, in a ¥, with indefinite metric, the properties of null geodesics are
discussed. An ordinary geodesic has an intrinsic parameter (the separation s) ;
a null geodesic I" has no such unique parameter, but something nearly as
good—an intrinsic parameter A in terms of which the equations of I" read

d%? dz™ dxn
o +{,fn} TS =0, (1)
and which can be submitted only to a linear transformation without destroying

this property. This group of parameters can also be reached by assigning a
E.M.8.—D
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tangent vector 7? at some point C of I', subjecting »? to parallel transport on
I, and defining A by n?=dz?/dA at C. Such a null vector %? is called a transport
vector. This special parameter A (with a normalising condition at some one
point) is used to define spatial distance on a null geodesic.

The scene now shifts from a single null geodesic I'" to a set of null geodesics
containing I" as a member. There are two noteworthy facts. First, if #? is
tangent to I and undergoes parallel transport along-it, and if 8? is an infini-
tesimal displacement from I” to a neighbouring null geodesie, then dJ/dA=0,
where ,

J =17,,8z". ................................ ceens (2)

From the null character of %?, it follows that the correlation between the
points on I' and on its neighbour is immaterial. The second fact is more
complicated. C is a point on I" and we take an co"-! family of null geodesics
passing near C and parallel to'T" near €. Out of this co* family we pick the
oo™~2 family for which J has some assigned (infinitesimal) value. Let §,_;
be a local flat subspace at C, and let S,_, be the local flat intersection of S,_,
with the co®-2 family of null geodesics aforesaid. The fact is this: 8, , is
perpendicular to the projection of I'on S, _;.

With these geometrical preliminaries disposed of, we turn to space-time
and consider a star 4 and an observer B whose two world-lines intersect a
null geodesic I" at C; and C, respectively. From the group of special para-
meters on I" we pick out that one (an additive constant is immaterial) which
makes dA agree with the usual definition of spatial distance for objects in B’s
infinitesimally small, instantaneous, three-dimensional space. Then (this is
the definition, and it is not compared w1th the definition in (g)), the spatial
distance from 4 to B is '

A=jc"da. .................................... ..(3)
¢

This is expressed more explicitly as follows. Let w? be the unit tangent vector
to B’s world-line at C,. Regarding T as known, but the normalisation of /\
as unknown, we may write

dx®
ax

where k is an unknown constant and Y a known function. Then the formula
for spatial distance is

_ B Y, 2, of, 503) ..................... ()

w de Co dz® ) 5
dz 8 c, Y(zo’ 71, 22, xs), ...... SETTIPRRRIRS (5)

A=Y (2}, 3, xo, x3)

where daj refer to I' at C,,.

This formula is applied to the de Sitter world.

Having thus disposed of the question of spatial distance, the argument
moves on to the discussion of wave-fronts. But it gets a little muddy, 'and
does not reveal clearly just what a wave-front is. Undoubtedly, the history
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of a wave-front is a family of geodesics, but what sort of family ? The clear
and simple answer was intrinsic in the paper (d), written five years earlier; .
surely the history of a wave-front is nothing but a characteristic 3-space, a
solution of (2) of (d) above, a 3-space formed of null geodesics and tangent
at each of its points to the elementary null-cone ? Doubtless the discussion
given in the paper leads to the same conclusion, but a point is missed that
might have been made.

To treat the Doppler effect in terms of wave-fronts, we go back to the
star 4 and the observer B, mentioned above, and consider two adjacent
wave-fronts travelling from 4 to B. Each contains a null geodesic joining the
world-lines of the star and the observer. Let %P be a transport vector, with
values ;n? at 4 and y? at B, and let p, and =, be unit covariant vectors along
the world-lines of 4 and B respectively. The two wave-fronts determine wave
lengths, A, at 4 and Ajat B. By means of the invariant J of (2), the following
formula is obtained for the Doppler effect :

14
;l" =ELPr (6)
1 o7 Tp
This formula is applied to flat space-time and to the de Sitter world.

Finally, the transport vector »® is identified with the momentum-energy
vector of a photon traversing the null geodesic, and the theory is linked to
quantum ideas by the formula E=hv, which effectively assigns a wave-length
to the photon. Hence it is shown that Doppler effects in general relativity
are the same, whether calculated from the wave theory of light or from the
energy of the associated light-quanta. Applications are made to the statical
universe and to the expanding universe.

{¢) “ On Gauss’ theorem and the concept of mass in general relativity,”
Proc. Roy. Soc. A, 149 (1935), 384-395.
The classical theorem of Gauss is expressed by the formula

Jfﬂ/d8=4wM, .................................... (1)
v

where V denotes the gravitational potential, S a simple closed surface of which
dS is the element of area, dv the element of inward-drawn normal to dS, and
M the total gravitating mass contained within the surface §. This theorem
is to be generalized from Newtonian physics to general relativity. The argument
is, however, restricted to those universes with metric of the form

E drt = Udt? — ¢ 20, d2Pdx%, oo (2)

where a,, depend only on the coordinates 21, 22, «® (Latin suffixes run 1, 2, 3).
< The" gravitational force- on"a particle (or observer) pursuing a world-line
with equations-ze=z°(+) (Greek suffixes run 0, 1, 2, 3) is defined as the four-

vector
gae | T e }'dx_f’ @'] (3)
v gli= — -‘—zﬁ + B‘}’ ar d‘r e dssesessssressresssicetansasns
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When calculated for a particle at rest, so that da*/d7=0, this gives
ik
gi=—1c T 5 FO9=0. i, (4)

Whittaker considers, as the appropriate generalization of the left-hand side
of (1), the integral

o, &) |, 9, &) Az, x?)
ff{ o(u, v) +t9 o(u, v) +g a(u, v) }\/ g dudy, ...... (5)

taken over any simple closed surface § in the space of (z!, 2%, 23), on which
u and v are parameters ; g is the determinant of the coefficients in (2), so that

V—g=c3Ulat, a=detayy ..cooorreirirerrnenne (6)

The constant factor —c® in (5) is suggested by calculating I over a sphere
r=const. in the Schwarzschild field (4) of (¢) ; with a=28M/c?, where B is the
Newtonian constant of gravitation, the result is I=4nBM, so that the right-
hand side of (1) is essentially reproduced.

The next step is to change I to a volume-integral, and use the field equations
to express the integrand in terms of the energy-tensor of matter. The volume-
integral is

=02f f fAzU*. ada da?da®, ...oovieiiiiiiiieeeen (7
where the operator A, is Beltrami’s differential parameter of the second order,
such that

0 4
= o I L i NN 8
AV =a 6x"(a'a 8z’°) (8)
Now the Ricci tensor for the metric (2) has the mixed component
K= —RUALURY, oot (9)
and so, making use of the field equations of gravitation, we get
8 —
I clf f f f (TS = 3T)\/ =g d2Ada?d®, rvovereererenns (10)

where T'; is the energy-tensor. This formula, which equates the surface-
integral I of (5) to a volume-integral involving the energy-tensor of matter,
is the generalization of Gauss’ theorem in Newtonian potential theory.

But of course the energy-tensor may not be due to matter—it may be due
to an electrostatic field. Whittaker considers a condenser with an electrostatic
field in it with energy-tensor E3. But mechanical stresses are required to
hold the surface-elements of the condenser in equilibrium, and so he adds a
stress-system R}, with the result that only the component T§ survives in the
total energy-tensor T3=Es+Rj. Then T =T}, and (10) gives I=4nfM,

where
2= J f f TN/ =g datda?dad, «oooveeeeieeseninnnan (11)
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the total energy of the system. I confess I cannot follow this argument, for
I cannot see any energy-tensor but that of the field in the space between
the walls of the condenser, and not including them.

The field (2) is now specialized by making U independent of ¢, and Whittaker
is led to define the potential mass of a moving particle as

w2\

where w is the speed the particle would have if it got to infinity, where U=1.
The quantity w? may be negative—it is negative if the particle has not sufficient
energy to carry it out of the gravitational field into the Galilean field at infinity.
This idea of potential mass is used to state another theorem involving the
integral I of (5) to the effect that when the statical gravitational field is due
solely to material particles, then I=478M, the integral being taken over any
simple closed surface in the space of (2!, 22, 2®) and M being the sum of the
potential masses of those particles that are inside this surface.

This is a striking result, but not quite as good as it seems at first sight,
for (to get a statical field) the particles must be at rest, and, in order that they
may remain at rest, they must be situated at places for which U has maximum
or minimum values, as is remarked in a footnote.

The paper ends with the extension to general relativity of Gauss’ theorem
in its electrostatic form. Let S be a simple closed surface (2-space) which
is the frontier of a three-dimensional domain (or multipoint) M. Then the
total quantity of electricity belonging to those world-lines of electric charge
which interesect M is expressible as a triple integral over M, the integrand
involving the 4-current. This integral can be transformed into a double
integral over S, use being made of Maxwell’s equations, and the result is that
the total charge in question is equal to the following integral over S, in which
X¢# is the electromagnetic tensor, or six-vector :

(20, xt) (0, 2?) Oz, %)
J f {X% 2w T Bmo T o)

(2, z?) (B, V) o(x2, =)
X T B Y B

() “ On the relations of the tensor-calculus to the spinor-calculus,” Proc.
Roy. Soc. 4, 1568 (1937), 38-46.

Although there is a rather vague indication of its use in general relativity,
the argument deals essentially with flat space-time with Galilean coordinates
z" (r=0, 1, 2, 3), so that the metric tensor is the diagonal matrix g¢,,,=(1, —1,
—1, —1). Against this background we see, on the one hand, tensors which
transform under Lorentz transformations according to the well-known rules,
and, on the other hand, spinors consisting each of a pair of complex numbers
(¢1, $o) transforming according to the unimodular transformation

Bi=adi+Bba BL=yBitSa rererereriniireneenes (1)

} v —g dudp. ...... (12)

E.M.8.—D2

https://doi.org/10.1017/50013091500014371 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500014371

54 J. L. SYNGE

where a8 —By=1. The link between tensors and spinors rests on the fact
that any spin-transformation (1) corresponds to a Lorentz transformation,
but Whittaker’s purpose is to make the linkage more concrete by constructing
what might be called a tensorial model of a spinor. This model is a pair of
complex numbers constructed out of the components of a complex self-dual
skew-symmetric tensor with vanishing invariant.

The treatment of dual tensors is made much clearer if we insert the permuta-
tion symbol ¢,,,,, into Whittaker’s work. Under proper Lorentz transformations
it is a covariant tensor. If we raise the suffixes by means of g™», we get the
contravariant tensor €??® (= —¢,,,,). The relationship between a (complex)
skew-symmetric tensor X,, and its dual Y,, can be expressed in several
equivalent forms, such as

Y i=%i€p0r X, XPI=3ePTY 0. i (2)
A tensor R,, is seif-dual if it satisfies the (Lorentz-invariant) condition
. Rpg=30€0qr B2, voviiiii, (3)
or equivalently .
Ry =tRg, Rye=1Ry, Rig=tRjp. .eeoviviinniiiinniinninnn, 4)

Any skew-symmetric tensor possesses two invariants, of which one is
R, R?9, and we may say that it is null if both these invariants vanish. However,
if the tensor is self-dual, one condition suffices to make it null, and that
condition is

R A R A RE =0, oo, (5)
We are concerned with tensors which satisfy (4) and (5). Remembering that
the tensor has complex components, we recognize that it has four real degrees
of freedom, the same number as for a spinor.

The spin-transformation (1) corresponds to a Lorentz transformation with
coefficients formed quadratically from a, B, y, 8 according to a certain well.
known plan. Thus we can write down tensorial formule of transformation
for B,,. We might expect the coefficients in the transformation of this second-
order tensor to be of the fourth degree in a, 8, y, 8, but (on account of the
unimodular condition) they turn out to be quadratic. Combining these
formulee of transformation suitably, we find that

RGy +1Rop=0*(Roy +1Ry3) + B2(—~ Ry +iRs) —2aBRys,
— Ry +iRgz=y*(Roy+1Ryg) + 82( — Ryy+1Rgs) —2y8Rg3. «oevvvvvennenn. (6)
Here comes the dramatic touch : these equations are the squares of the equations
(Ro1+iRoz) = a(Roy + i Ryp)t + B(— By +iBoo)t,
(—Roi+iRo2)t =y(Roy +iRp) +8(— By +iRg), vooeeveeneen. (7)

and these last equations are precisely the equations of the spin-transformation
(1) corresponding to the Lorentz transformation we have been using.

Introducing a convenient factor 4/2, Whittaker is able to state that, if
R, is self-dual and null, then

A/ 2¢ = (R +iRos)t, v/ 2ps=(—Boy+iRog)t «evvveereennanne. (8)
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are the components of a spinor ; expressing the tensor in terms of the spinor

he writes
R01—¢1 2: Bop=—1 ¢2+¢2) Roa— — 2415,
Ry = —i(¢2—¢2), Ry = — (3 +2), B1o=20 1y oeeevvrnrnnn. 9)

This is the central point. The desired connection has been set up between a
spinor and a tensor. The rest of the paper is devoted to applications of this
idea.

If (¢, ¢;) and (Y, ¢,) are two spinors, it is known from spinor-calculus
that we can form a vector D? out of them by writing (the star indicates the

complex conjugate)
DO=¢ 7 +éo3, D=3 +yi',,
=i ¥ — i, D3 = ¥ —b k. oo (10)

How is D? connected with the two self-dual null tensors, say R,, and §,,,
which correspond to the two spinors ? The answer is as follows :

Rp: S¥tk= —2DPD1. i (11)
Another application : if H, is the vector
oy _ 4 0
H,=¢, -2 300 —é, ax; ................................. (12)

defined by the single spinor (¢,, ¢,), and R, is the tensor corresponding to this
spinor, then

Ry Db =2DH ,, v (13)
where D? is the vector as in (10), formed by introducing a second arbitrary
* catalytic ” spinor (ify, ¥,).

Finally, Whittaker translates Dirac’s equations for the electron into a vector
equation. Starting from Weyl’s form of Dirac’s equations, in which the two
spinors are (¥, JF) and (f,, —is3), the steps are as follows.

First, self-dual null tensors M;q and R,, are formed out of the two spinors,
as in (9). Next, vectors A?, B? and C? are defined by

M, M*%*=—-24_ 49, R, R*%*=—~2B B, M, R%*=—-2C, 0. ...... (14)
Next, vectors P, and ¢, are defined by
M A =24.P,, REB=2BQ,. «oooeveeinieeaiennnn (15)
Finally, vectors S, and 7', are defined by
Sp=(MD 1 Tp=(BED1q0 wooviriiriiin, (16)
Then Dirac’s equations are equivalent to £2,=0, where
Q,=38,+3T,+P,+Q, +m‘”(o FOB). e, 17
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