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Abstract
For a smooth rigid space X over a perfectoid field extension K of Q𝑝 , we investigate how the v-Picard group
of the associated diamond 𝑋♦ differs from the analytic Picard group of X. To this end, we construct a left-exact
‘Hodge–Tate logarithm’ sequence

0→ Pican (𝑋) → Pic𝑣 (𝑋♦) → 𝐻0 (𝑋,Ω1
𝑋 ){−1}.

We deduce some analyticity criteria which have applications to p-adic modular forms. For algebraically closed K,
we show that the sequence is also right-exact if X is proper or one-dimensional. In contrast, we show that, for the
affine space A𝑛, the image of the Hodge–Tate logarithm consists precisely of the closed differentials. It follows
that, up to a splitting, v-line bundles may be interpreted as Higgs bundles. For proper X, we use this to construct
the p-adic Simpson correspondence of rank one.
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1. Introduction

Let p be a prime, and let K be a perfectoid field extension ofQ𝑝; for example, we could take 𝐾 = C𝑝 . Let
X be a smooth rigid space over K, considered as an adic space. Then there is a hierarchy of topologies
on X

𝑋an ⊆ 𝑋ét ⊆ 𝑋proét, (1.1)

where 𝑋proét is the pro-étale site defined by Scholze in [36, Definition 3.9].
It is a natural question whether the notions of vector bundles agree in these various topologies: To

make this precise, let us denote by VB𝜏 (𝑋) the category of finite locally free modules over the structure
sheaf where 𝜏 is any of the above topologies. Here, for the pro-étale topology, we use the completed
structure sheaf [36, Definition 4.1].

By a rigid version of étale descent (see [18, Proposition 8.2.3]), the natural functor VBan (𝑋)
∼
−→

VBét (𝑋) is an equivalence of categories. One may similarly ask:

Question 1.1. How far is the following functor from being an equivalence of categories:

VBét (𝑋) → VBproét (𝑋).

It is easy to see that an equivalence would be too much to ask for: As has been observed in the
literature [9, before §1.2], descent of analytic vector bundles along pro-étale covers is in general not
effective, giving rise to ‘new’ vector bundles in the pro-étale topology. It is known that pro-étale vector
bundles arise naturally, for example, in the context of p-adic modular forms, as well as in the p-adic
Simpson correspondence [30, §2][41, §3][32, §7]. However, a systematic description of these additional
vector bundles has not yet been given.

1.1. The Hodge–Tate logarithm

The main goal of this article is to answer Question 1.1 for line bundles. Here we can make the question
more precise by passing to the Picard group of isomorphism classes and ask for the cokernel of the
natural homomorphism Pican(𝑋) = Picét(𝑋) → Picproét (𝑋).

Our main result is that this admits a p-adic Hodge-theoretical description in terms of differentials on
X that we regard as a ‘Hodge–Tate sequence for G𝑚’.

Theorem 1.2. Let K be a perfectoid field over Q𝑝 . Let X be a smooth rigid space over K.

1. The p-adic logarithm defines a natural left-exact sequence, functorial in X,

0→ Pican(𝑋) → Picproét (𝑋)
HT log
−−−−−→ 𝐻0(𝑋,Ω1

𝑋 ){−1}. (1.2)

2. If K is algebraically closed, the sequence is right-exact in either of the following cases:
(a) X is proper, or
(b) X is of pure dimension 1 and paracompact.

3. If X is affinoid, the sequence becomes right-exact after inverting p.
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Remark 1.3. The {−1} in Theorem 1.2 is a Breuil–Kisin–Fargues twist (see Definition 2.24) that can
be identified with a Tate twist (−1) if K contains all p-power roots of unity. One can always choose a
distinguished element for K to fix an isomorphism Ω1

𝑋 {−1} � Ω1
𝑋 .

We note that if K is not perfectoid, already Picproét (Spa(𝐾)) is in general very large.

Theorem 1.2 can equivalently be formulated in a slightly different technical setting: Recently, Scholze
constructed the category of diamonds [35, §11], into which seminormal rigid spaces over K embed
fully faithfully by way of a diamondification functor 𝑋 ↦→ 𝑋♦ [39, Proposition 10.2.3]. While étale
cohomology of diamonds has been studied in great detail [35], vector bundles on diamonds are much
less well-understood.

The category of (locally spatial) diamonds can be equipped with three well-behaved topologies: The
étale, quasi-pro-étale and v-topology. If X is a smooth rigid space, then for the étale topology, there is an
equivalence of sites 𝑋ét = 𝑋♦ét [39, Theorem 10.4.2] that identifies the structure sheaves. It is therefore
harmless in this context to identify X with its associated diamond, and we can thus extend the hierarchy
of topologies in equation (1.1) to

𝑋an ⊆ 𝑋ét ⊆ 𝑋proét ⊆ 𝑋qproét ⊆ 𝑋𝑣 .

For affinoid perfectoid spaces, the notions of vector bundles agree for all of these topologies by a
result of Kedlaya–Liu [27, Theorem 3.5.8]. Since the last three of these sites are locally perfectoid,
it follows that VBproét (𝑋) = VBqproét (𝑋) = VB𝑣 (𝑋), so also in this more refined setting, there are
essentially two different classes of vector bundles. In particular,

Picproét (𝑋) = Pic𝑣 (𝑋),

and we can equivalently regard Theorem 1.2 as describing v-line bundles on X. This is the technical
setting which we shall adopt throughout this article.

As our first application of Theorem 1.2, we deduce several useful criteria for telling whether a v-line
bundle is analytic, that is, descends to a line bundle in the analytic topology.

Corollary 1.4. Let L be a v-line bundle on X. Let 𝑉 ⊆ 𝑋 be any Zariski-dense analytic open subspace.
Then L is analytic if and only if 𝐿 |𝑉 is analytic.

Corollary 1.5. Assume that X is connected, and let L be a v-line bundle on X. If we have 𝐻0(𝑋, 𝐿) ≠ 0,
then L is analytic.

For example, these give a new proof that the sheaf of overconvergent modular forms defined by
Chojecki–Hansen–Johansson [9] is analytic (see Example 3.10).

In order to shed some light on how the additional v-topological line bundles arise, let us consider
the case of proper X: We introduce a diamantine universal pro-finite-étale cover 𝑋 → 𝑋 constructed
by taking the limit over all connected finite étale covers in the category of diamonds. This is a pro-
étale torsor under the étale fundamental group 𝜋1 (𝑋), and the Cartan–Leray sequence thus induces a
left-exact sequence

0→ Homcts(𝜋1 (𝑋), 𝐾
×) → Pic𝑣 (𝑋) → Pican(𝑋)

𝜋1 (𝑋 ) . (1.3)

This interprets continuous characters of 𝜋1 (𝑋) as descent data for the trivial line bundle along 𝑋 → 𝑋 .
Using Scholze’s p-adic Hodge theory, one can show that the images of these under HTlog generate
𝐻0 (𝑋,Ω1

𝑋 ){−1}. This is our strategy to prove Theorem 1.2.2a.

1.2. The p-adic Simpson correspondence for line bundles

The proper case of Theorem 1.2 is very closely related to the still mostly conjectural p-adic Simpson
correspondence [17][15]: Namely, the theorem shows that we may interpret v-topological line bundles
on X as Higgs bundles of rank 1 on X, up to a choice of splitting.
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On the other hand, equation (1.3) shows that characters of 𝜋1 (𝑋) give rise to v-line bundles: This
is closely related to the observation by Liu–Zhu [30, Remark 2.6] that pro-étale vector bundles are
essentially the same as Faltings’ generalised representations. As our main application of Theorem 1.2,
we use this to construct the p-adic Simpson correspondence for line bundles.

Theorem 1.6. Let X be a connected smooth proper rigid space over a complete algebraically closed
extension K of Q𝑝 . Fix 𝑥 ∈ 𝑋 (𝐾). Then there is an equivalence of tensor categories

{
1-dim. continuous 𝐾-linear
representations of 𝜋1 (𝑋, 𝑥)

}
∼
−→

{
pro-finite-étale analytic

Higgs bundles on 𝑋 of rank 1

}
,

depending on choices of a Hodge–Tate splitting and of an exponential function.

The construction is entirely global and avoids any localisation steps to affinoid opens. Apart from
Theorem 1.2, our main innovation for the proof is the introduction of the diamantine universal cover
𝑋 → 𝑋 , which is a good replacement for the topological universal cover in complex geometry and its
role in the complex Simpson correspondence [40].

We believe that this new approach to the p-adic Simpson correspondence, via the Leray sequence of
the projection 𝑋𝑣 → 𝑋ét for the sheaf G𝑚, provides new insights also for the general case: In particular,
we expect the perspective provided by the universal cover 𝑋 → 𝑋 to help answer Faltings’ open question
asking for the correct subcategory of Higgs bundles on X for the formulation of the p-adic Simpson
correspondence, which so far has not yet been identified in general. We will explore this further in future
work: In [23] we use this perspective to explain how the right-hand side of the above correspondence can
be interpreted more conceptually in terms of moduli spaces. As a further application, we use Theorem
1.6 in [24] to construct the p-adic Simpson correspondence for abeloid varieties.

1.3. Affine space and affinoid spaces

In order to investigate what answers to Question 1.1 we can expect beyond the proper case, we also
determine the v-Picard group of the rigid affine space A𝑛 over K.

Theorem 1.7. For any 𝑛 ∈ N, the Hodge–Tate logarithm defines an isomorphism

Pic𝑣 (A𝑛) = 𝐻0(A𝑛,Ω1{−1})𝑑=0.

To the best of our knowledge, this is the first case in which the nonexistence of a p-adic Simpson
correspondence outside the proper case can be seen explicitly: In contrast to Theorem 1.2.2, Pic𝑣 (A𝑛)

only sees the closed differentials rather than all of Ω1{−1}. It follows that right-exactness in Theorem
1.2 fails already for a closed disc of radius ≥ 2.

On the other hand, Theorem 1.7 ties in nicely with recent results of Colmez–Nizioł [11] and Le Bras
[28] describing the pro-étale cohomology of A𝑛.

Notation

Throughout, let K be a perfectoid field extension of Q𝑝 . Let O𝐾 be the ring of integers, 𝔪 its maximal
ideal, k the residue field. Let C be the completion of an algebraic closure of K.

We use almost mathematics with respect to (O𝐾 ,𝔪) and write 𝑎
= if a natural map becomes an

isomorphism after passing to the almost category.
By a rigid space over K we shall by definition mean an adic space in the sense of Huber [25] that is

locally of topologically finite type over Spa(𝐾,O𝐾 ).
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Let Perf𝐾 be the category of perfectoid spaces over K. Throughout, we shall consider diamonds over
Spa(𝐾,O𝐾 ) in the sense of [35], which in this relative setting we may consider as v-sheaves on Perf𝐾 .
We recall the diamondification functor [39, §10.1]

{analytic adic spaces over 𝐾} → {diamonds over Spd(𝐾)}, 𝑋 ↦→ 𝑋♦

which is fully faithful on seminormal rigid spaces by [27, Theorem 8.2.3]. For any analytic adic space
X, we write 𝑋♦ for the associated diamond when we would like to emphasize the category we work in.
We often drop this from the notation and identify seminormal rigid spaces and perfectoid spaces with
their associated diamonds when this is clear from the context.

For a smooth rigid space X, we denote by 𝑋proét the pro-étale site in the sense of [36, Definition 3.9],
which is now sometimes referred to as the ‘flattened pro-étale site’.

Let us fix notation for some rigid groups we will use:G𝑎 denotes the rigid analytic affine lineA1 with
its additive structure, G+𝑎 denotes the subgroup defined by the closed ball of radius 1 around the origin.
G𝑚 denotes the rigid analytic affine line punctured at the origin with its multiplicative group structure.
We denote by O,O+,O× the sheaves that these groups represent on the étale, pro-étale, quasi-pro-étale
or v-site. We will indicate the topology by an index, for example, O𝜏 for 𝜏 = ét, qproét, 𝑣, . . . unless this
is clear from the context.

2. Vector bundles on diamonds

In this section, we prove Theorem 1.2.1 using the Leray spectral sequence of 𝜈 : 𝑋𝑣 → 𝑋ét for the sheaf
O×. To avoid any ambiguity, we begin with a definition of v-vector bundles.

2.1. Definition and basic properties

For 𝑛 ∈ N, let GL♦𝑛 be the diamond associated to GL𝑛 considered as a rigid space over K.

Definition 2.1. Let Y be a diamond over Spd(𝐾). A v-vector bundle of rank 𝑛 ∈ N on Y is a GL♦𝑛-torsor
for the v-topology, that is, a v-sheaf 𝑉 → 𝑌 with a GL♦𝑛-action GL♦𝑛 ×𝑉 → 𝑉 over Y for which there is
a v-cover 𝑌 ′ → 𝑌 with a GL♦𝑛-equivariant Cartesian diagram

GL♦𝑛 ×𝑌 ′ 𝑌 ′

𝑉 𝑌.

𝜋2

As usual, one sees that this geometric definition is equivalent to the sheaf-theoretic one where a v-vector
bundle is defined as a locally free O𝑣 -modules of rank n on 𝑌𝑣 .

In the case of perfectoid spaces, the above v-topological notion of vector bundles is equivalent to the
usual notion of vector bundles in the analytic topology:

Theorem 2.2 (Kedlaya–Liu [27, Theorem 3.5.8]). Let X be a perfectoid space over K. Then any v-vector
bundle on X is already trivial locally in the analytic topology on X.

As a consequence, vector bundles are in general trivial in the quasi-pro-étale topology.

Corollary 2.3. Let Y be a diamond, and let V be a v-vector bundle on Y. Then there is a presentation
𝑌 = 𝑋/𝑅 for some perfectoid space X and some pro-étale equivalence relation 𝑅 ⊆ 𝑋 × 𝑋 such that the
pullback of V to X is trivial. In particular, any v-vector bundle on Y is already trivial in the quasi-pro-
étale topology.

Proof. Let 𝑌 = 𝑋/𝑅 be any presentation, then by Theorem 2.2, there is an analytic cover 𝑋 ′ → 𝑋
such that the pullback of V to X becomes trivial over 𝑋 ′. Let 𝑅′ ⊆ 𝑋 ′ × 𝑋 ′ be the base change of
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𝑅 → 𝑋 × 𝑋 , then by [35, Proposition 11.3.3-4], this is again a pro-étale equivalence relation, and we
have 𝑋 ′/𝑅′ = 𝑋/𝑅. �

Corollary 2.4. Let Y be a diamond. Then any v-vector bundle on Y is a diamond.

Proof. Let V be a v-vector bundle on Y. By Corollary 2.3, there is a quasi-pro-étale cover 𝑌 ′ → 𝑌
trivialising V. We thus have a quasi-pro-étale surjective morphism of v-sheaves GL♦𝑛 ×𝑌 ′ → 𝑉 from a
diamond, so by [35, Proposition 11.6] V is itself a diamond. �

In particular, for any v-cover 𝑋 → 𝑌 by a perfectoid X, we can describe v-vector bundles on Y in
terms of analytic vector bundles on X equipped with descent data. More generally.

Definition 2.5. Let 𝑞 : 𝑋 → 𝑌 be a v-cover of diamonds. Write 𝜋1, 𝜋2 : 𝑋 ×𝑌 𝑋 ⇒ 𝑋 for the projection
maps. Let 𝑉 be a v-vector bundle on X. Then a descent datum on V with respect to q is an isomorphism
of v-vector bundles on 𝑋 ×𝑌 𝑋

𝜑 : 𝜋∗1𝑉
∼
−→ 𝜋∗2𝑉

such that the cocycle condition holds. For a v-vector bundle 𝑉0 on 𝑌 = 𝑋/𝑅, the pullback along
𝑞 : 𝑋 → 𝑌 carries a canonical descent datum induced by 𝑞 ◦ 𝜋1 = 𝑞 ◦ 𝜋2. A descent datum 𝜑 is called
effective if it is isomorphic to a descent datum of this form.

Lemma 2.6. Let 𝑞 : 𝑋 → 𝑌 be a v-cover of diamonds. Then any descent datum on a v-vector bundle
on X is effective: The v-vector bundle on Y attached to 𝜑 : 𝜋∗1𝑉

∼
−→ 𝜋∗2𝑉 is

𝑉0 := ker(𝑞∗𝑉
𝜋∗2−𝜑◦𝜋

∗
1

−−−−−−−→ 𝑞∗𝜋2∗𝜋
∗
2𝑉).

In particular, v-vector bundles of rank n on Y up to isomorphism are classified by the set

Pic𝑣 (𝑌 ) := 𝐻1
𝑣 (𝑌,GL♦𝑛).

In the special case that the diamond Y is the quotient of a perfectoid space X by the action of a
profinite group, the descent data defining vector bundles can be described as 1-cocycles in continuous
group cohomology, as we shall now discuss.

2.2. The Cartan–Leray spectral sequence

Definition 2.7. Let 𝑓 : 𝑋 → 𝑌 be a morphism of diamonds over Spd(𝐾). Let G be a locally profinite
group, regarded as a diamond via [35, Example 11.12]. We say that f is Galois with group G if f is
a quasi-pro-étale G-torsor (cf [35, Definition 10.12]): Explicitly, this means that f is a quasi-pro-étale
cover and there is a G-action on X that leaves f invariant such that the action and projection maps induce
an isomorphism

𝐺 × 𝑋
∼
−→ 𝑋 ×𝑌 𝑋.

Let 𝑓 : 𝑋 → 𝑌 be Galois with group G, and let F be a sheaf of topological abelian groups on 𝑌𝑣 .
Generalising from the case of finite G known from étale cohomology, one might hope that there is in this
situation a Cartan–Leray spectral sequence relating the continuous group cohomology of 𝐻 𝑗

𝑣 (𝑋,F) with
𝐻

𝑗
𝑣 (𝑌,F). However, apart from special cases (e.g., if F is a sheaf of discrete abelian groups pulled back

from𝑌ét (see [9, Remark 2.25])), it is not clear how to make this precise: Topological abelian groups do not
form an abelian category, and it is in general not clear what topology 𝐻 𝑗

𝑣 (𝑋,F) should be endowed with.
These issues can be fixed using the formalism of condensed abelian groups of Clausen–Scholze [38].

For our purposes, however, the following ad hoc version in low degrees will be sufficient.
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Proposition 2.8. Let 𝑞 : 𝑋 → 𝑌 be a morphism of diamonds over K that is Galois for the action of
a locally profinite group G on X. Let 𝜏 = 𝑣 or qproét, and let F be a sheaf of not necessarily abelian
topological groups on 𝑌𝜏 with the property that for 𝑖 = 1, 2 we have

F (𝑋 × 𝐺𝑖) = Mapcts(𝐺
𝑖 ,F (𝑋)). (2.1)

For example, for F = O,O×,GL𝑛 (O), . . . , this condition holds for any 𝑖 ≥ 0. Then:

1. There is a left-exact sequence of pointed sets (of abelian groups if F is abelian):

0→ 𝐻1
cts(𝐺,F (𝑋)) → 𝐻1

𝜏 (𝑌,F) → 𝐻1
𝜏 (𝑋,F)𝐺 .

2. Assume that F is abelian, that equation (2.1) also holds for 𝑖 = 3 and that the specialisation map

𝐻1
𝜏 (𝑋 × 𝐺,F) → Map(𝐺, 𝐻1

𝜏 (𝑋,F))

is injective. Then this extends to a ‘Cartan–Leray 5-term exact sequence’

0→ 𝐻1
cts(𝐺,F (𝑋)) → 𝐻1

𝜏 (𝑌,F) → 𝐻1
𝜏 (𝑋,F)𝐺 → 𝐻2

cts(𝐺,F (𝑋)) → 𝐻2
𝜏 (𝑌,F).

3. If moreover 𝐻 𝑗
𝜏 (𝑋,F) carries a topology for all 𝑗 ≥ 1 such that for all 𝑖 ≥ 0 we have

𝐻
𝑗
𝜏 (𝑋 × 𝐺

𝑖 ,F) = Mapcts(𝐺
𝑖 , 𝐻

𝑗
𝜏 (𝑋,F)), (2.2)

then we obtain the full Cartan–Leray spectral sequence

𝐸
𝑖 𝑗
2 = 𝐻𝑖

cts(𝐺, 𝐻
𝑗
𝜏 (𝑋,F)) ⇒ 𝐻

𝑖+ 𝑗
𝜏 (𝑌,F).

The last part is implicit in [36, §5] where it is used in the following form.

Corollary 2.9. If F satisfies equation (2.1) and is 𝜏-acyclic on 𝑋 × 𝐺𝑖 for all 𝑖 ≥ 0, then we have

𝐻𝑖
cts(𝐺,F (𝑋)) = 𝐻𝑖

𝜏 (𝑌,F).

Proof of Proposition 2.8. These all follow from the Čech-to-sheaf spectral sequence of the 𝜏-cover
𝑋 → 𝑌 . The associated Čech-complex is of the form

𝐻
𝑗
𝜏 (𝑋,F) → 𝐻

𝑗
𝜏 (𝑋 × 𝐺,F) → 𝐻

𝑗
𝜏 (𝑋 × 𝐺 × 𝐺,F) . . .

which by equation (2.1) for 𝑖 = 0, 1, 2 and 𝑗 = 0 in part 1, respectively by equation (2.2) in part 3, is
equal to

= 𝐻
𝑗
𝜏 (𝑋,F) → Mapcts(𝐺, 𝐻

𝑗
𝜏 (𝑋,F)) → Mapcts(𝐺 × 𝐺, 𝐻

𝑗
𝜏 (𝑋,F)) → . . . (2.3)

By a standard computation, this is precisely the complex of continuous cochains, which by definition
computes 𝐻𝑖

cts(𝐺, 𝐻
𝑗
𝜏 (𝑋,F)). This shows part 1 and part 3.

For part 2, the first and fourth term of the mentioned 5-term exact sequence are given by the Čech-
cohomology �̌�𝑖 ((𝑋 → 𝑌 ),F) for 𝑖 = 1, 2. By the assumption on equation (2.1), this is computed by
the complex (2.3) and thus agrees with 𝐻𝑖

cts(𝐺,F (𝑋)).
It remains to compute the third term of the sequence, which is the kernel of the map

𝐻1
𝜏 (𝑋,F) → 𝐻1

𝜏 (𝑋 × 𝐺,F).

This is precisely 𝐻1
𝜏 (𝑋,F)𝐺 if the displayed injectivity condition holds.
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It remains to check that equation (2.1) holds in the given examples: It suffices to show this for 𝑖 = 1
and for X in the basis of affinoid perfectoid spaces in 𝑌𝜏 . But here we have

O(𝑋 × 𝐺) = O(𝐺)⊗̂𝐾O(𝑋) = Mapcts(𝐺, 𝐾)⊗̂𝐾O(𝑋) = Mapcts(𝐺,O(𝑋)),

where ⊗̂ is the completed tensor product in Banach K-algebras. Since O(𝑋) is uniform, these can be
computed by considering the respective p-adically complete integral subspaces O+(𝑋) and O+(𝐺),
forming the tensor product over O𝐾 , completing p-adically, and inverting p.

The case of 𝑀𝑛 (O) follows by forming products, the case of GL𝑛 (O) by taking units. �

As an immediate application, this tells us that continuous 1-cocycles are precisely the descent data
for 𝑋 → 𝑌 on the trivial vector bundle O𝑛 on X.

Corollary 2.10. Let 𝑋 → 𝑌 be Galois with group G, then there is a left-exact sequence

0→ 𝐻1
cts(𝐺,GL𝑛 (O(𝑋))) → 𝐻1

𝑣 (𝑌,GL𝑛) → 𝐻1
𝑣 (𝑋,GL𝑛)

𝐺 .

More functorially, this is given by sending any continuous 1-cocycle 𝑐 : 𝐺 → GL𝑛 (O(𝑋)) to the
v-vector bundle V on Y defined on 𝑌 ′ ∈ 𝑌𝑣 by

𝑉 (𝑌 ′) = {𝑥 ∈ O𝑛 (𝑌 ′ ×𝑌 𝑋) | 𝑔∗𝑥 = 𝑐(𝑔)𝑥 for all 𝑔 ∈ 𝐺}.

Proof. The first part follows from Proposition 2.8, the last one from Lemma 2.6 �

2.3. The sheaf of principal units

In this section, let X be either a smooth rigid space over K or a perfectoid space over K. We consider
the (big) site 𝑋𝜏 for 𝜏 one of the following topologies: the étale or pro-étale topology from [25, §2.1]
and [36, Definition 3.9] if X is rigid, or the étale, pro-étale or v-topology from [35, Definition 8.1] if X
is perfectoid. In particular, Perf𝐾,𝜏 = Spa(𝐾)𝜏 .

Definition 2.11. We denote by 𝑈𝜏 := 1 + 𝔪O+𝜏 ⊆ O×𝜏 the subsheaf of O×𝜏 of principal units. This is
represented in diamonds over K by the open disc of radius 1 centred at 1 ∈ G𝑚. It contains the sheaf of
p-power roots of unity 𝜇𝑝∞ ⊆ 𝑈𝜏 but not all roots of unity 𝜇 ⊆ O×𝜏 .

The following sheaf will be very useful to compute Picard groups of diamonds: Roughly, it plays the
same role in determining the cohomology of O×𝜏 as the sheaf O+𝜏/𝑝 has for O+𝜏 .

Definition 2.12. We denote by O×𝜏 the abelian sheaf on 𝑋𝜏 defined as the quotient

O×𝜏 := O×𝜏/𝑈𝜏 = O×𝜏/(1 +𝔪O+𝜏).

We will often simply denote the sheaf O×𝑣 on Perf𝐾,𝑣 by O×.

Definition 2.13. Let G be a topological abelian group, written multiplicatively. Following [34, §3], we
call an element 𝑥 ∈ 𝐺 a topological torsion element if

𝑥𝑛! → 1 for 𝑛→∞.

In all situations that we will encounter, this will be equivalent to the condition that there is 𝑁 ∈ N for
which 𝑥𝑁 𝑝𝑛 → 1 for 𝑛 → ∞. For example, the topological torsion subgroup of 𝐾× is (1 +𝔪𝐾 )𝜇(𝐾),
where 𝜇(𝐾) ⊆ 𝐾× is the subgroup of all roots of unity.

Definition 2.14. We denote by O×,tt ⊆ O× the topologically torsion subsheaf. Explicitly, this is the
subsheaf generated by 𝑈 = 1 +𝔪O+ and the subsheaf 𝜇 of roots of unity.
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Definition 2.15. For multiplicative sheaves likeO×, we writeO×[ 1
𝑝 ] for the sheaf lim

−−→𝑥 ↦→𝑥𝑝
O× obtained

by inverting p on the sheaf of abelian groups. We caution that this involves a sheafification, so we do not
in general have O×[ 1

𝑝 ] (𝑋) = O×(𝑋) [ 1
𝑝 ] (e.g., not for 𝑋 = G𝑚). However, this holds on quasi-compact

objects, like affinoids in any of the sites we consider.

Lemma 2.16.

1. We have O×𝜏 [ 1
𝑝 ] = O×𝜏 , that is, the sheaf O×𝜏 is uniquely p-divisible.

2. We have (O×𝜏/O×,tt𝜏 ) ⊗Z Q = O×𝜏/O×,tt𝜏 , that is, the sheaf O×𝜏/O×,tt𝜏 is uniquely divisible.

Proof. This follows from the commutative diagram of exact sequences in the étale topology

1 𝜇𝑝 O×𝜏 O×𝜏 1

1 𝜇𝑝 𝑈𝜏 𝑈𝜏 1.

𝑝

𝑝

The second part follows from the same argument for the exact sequence

1→ 𝜇𝑁 → O×,tt 𝑁
−→ O×,tt → 1. �

Our interest in O× stems from the following key approximation lemma, which says that, in contrast
to O×proét, the sheaf O×proét arises via pullback from the étale site.

Lemma 2.17. Let X be a smooth rigid space over K. Let 𝑋∞ be an affinoid perfectoid object in 𝑋proét
that can be represented as 𝑋∞ = lim

←−−𝑖∈𝐼
𝑋𝑖 for some affinoids 𝑋𝑖 . Then

O×proét (𝑋∞) = lim
−−→
𝑖∈𝐼

O×ét (𝑋𝑖).

In particular, for the morphism of sites 𝑢 : 𝑋proét → 𝑋ét, we have

O×proét = 𝑢∗O×ét.

Similarly, we have O×proét/O
×,tt
proét = 𝑢∗(O×ét/O

×,tt
ét ).

For the proof, we crucially use that we work in the ‘flattened pro-étale site’ of [36], rather than finer
variants. We also need the p-adic logarithm sequence, which we now recall.

2.4. The p-adic exponential and its higher direct image

In complex geometry, a useful tool to study line bundles is the exponential exact sequence

0→ 2𝜋𝑖Z→ O exp
−−→ O× → 0.

Over Q𝑝 , we have the following analogue of this sequence.

Lemma 2.18. Let 𝑝′ = 𝑝 if 𝑝 > 2 and 𝑝′ = 4 if 𝑝 = 2. The p-adic exponential and logarithm map
define homomorphisms of rigid group varieties

exp : 𝑝′G+𝑎 → 1 + 𝑝′G+𝑎,

log : 1 +𝔪G+𝑎 → G𝑎

such that log(1 + 𝑝′G+𝑎) ⊆ 𝑝′G+𝑎 and exp ◦ log = id on 1 + 𝑝′G+𝑎 and log ◦ exp = id on 𝑝′G+𝑎.
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In particular, the logarithm defines a short exact sequence of sheaves

1→ 𝜇𝑝∞ → 𝑈𝜏
log
−−→ O𝜏 → 1, (2.4)

whereas the exponential defines a short exact sequence

1→ O𝜏
exp
−−→ O×𝜏 [ 1

𝑝 ] → O×𝜏 → 1. (2.5)

Proof. The first sequence is well-known; see, for example, [12, §7]. We sketch the argument:
Clearly log(𝑥) =

∑
(−1)𝑛 (𝑥 − 1)𝑛/𝑛 and exp(𝑥) =

∑
𝑥𝑛/𝑛! define rigid analytic maps over Q𝑝 as

described. By classical non-Archimedean analysis, these have the desired properties on C𝑝-points. It
follows that they also hold on the level of rigid groups.

To get the first exact sequence, one observes that the kernel of log has to be 𝜇𝑝∞ since, for any 𝑥 ∈ 𝑈,
some power 𝑥𝑝𝑛 lies in 1+ 𝑝′O+ where log is injective. The logarithm is surjective in the étale topology
since, for any 𝑥 ∈ O with 𝑝𝑛𝑥 ∈ 𝑝′O+, any 𝑝𝑛-th root y of the unit exp(𝑝𝑛𝑥), which exists étale-locally,
will satisfy log(𝑦) = 1

𝑝𝑛 log(exp(𝑝𝑛𝑥)) = 𝑥.
For the exponential sequence, consider the short exact sequence (we omit 𝜏)

0→ 𝑝′O+ exp
−−→ O× → O×/(1 + 𝑝′O+) → 1.

After inverting p, this becomes the exact sequence (2.5): This is because (1 + 𝔪O+)/(1 + 𝑝′O+) is
𝑝∞-torsion, and thus O×/(1 + 𝑝′O+) [ 1

𝑝 ] = O×[ 1
𝑝 ] = O× by Lemma 2.16.1. �

As an immediate consequence, we get an explicit description of O× on a basis of 𝑋𝜏 .

Lemma 2.19. Let Y be a quasi-compact object of 𝑋𝜏 such that 𝐻1
𝜏 (𝑌,O) = 0. Then

O×𝜏 (𝑌 ) = (O×𝜏 (𝑌 )/𝑈𝜏 (𝑌 )) [
1
𝑝 ] .

Proof. We evaluate equation (2.5) at Y and commute [ 1
𝑝 ] with 𝐻0(𝑌,−) like in Definition 2.15. �

We now use this to prove the key lemma from the last subsection.

Proof of Lemma 2.17. It suffices to prove this locally on an analytic cover of 𝑋∞, so we may assume
that the map

𝜙 : lim
−−→

O(𝑋𝑖) → O(𝑋∞)

has dense image. We claim that in this case the map

𝜙 : lim
−−→

O×(𝑋𝑖) → O×(𝑋∞) (2.6)

has dense image, too. To see this, let 𝑓 ∈ O×(𝑋∞), and let 𝜙( 𝑓𝑖) → 𝑓 with 𝑓𝑖 ∈ O(𝑋𝑖) be any converging
sequence in the image, and similarly 𝜙( 𝑓 ′𝑖 ) → 𝑓 −1, then we have 𝜙( 𝑓𝑖 𝑓 ′𝑖 ) → 1. In particular, for i large
enough, we have 𝜙( 𝑓𝑖 𝑓 ′𝑖 ) ∈ 1 +𝔪O+(𝑋∞) = 𝑈 (𝑋∞).

Claim 2.20. For 𝑖 � 0, we have

O(𝑋𝑖) ∩ 𝜙
−1(1 +𝔪O+(𝑋∞)) = 1 +𝔪O+(𝑋𝑖).

Proof. The inclusion ‘⊇’ is clear. To see the other, recall that 𝑓 ∈ O(𝑋𝑖) is in O+(𝑋𝑖) if and only if
| 𝑓 (𝑥) | ≤ 1 for all 𝑥 ∈ 𝑋𝑖 . Since 𝑋∞ → 𝑋𝑖 is surjective on the underlying topological spaces for 𝑖 � 0,
this can be checked after pullback to 𝑋∞. �
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This implies that

𝑓𝑖 𝑓
′
𝑖 ∈ 1 +𝔪O+(𝑋𝑖) ⊆ O×(𝑋𝑖)

for 𝑖 � 0, and thus 𝑓𝑖 ∈ O×(𝑋𝑖), as desired.
We conclude from combining equation (2.6) and Claim 2.20 that the induced map

lim
−−→

O×(𝑋𝑖)/𝑈 (𝑋𝑖) → O×(𝑋∞)/𝑈 (𝑋∞)

is an isomorphism. Since the 𝑋𝑖 are affinoid and 𝑋∞ is affinoid perfectoid, it follows from Lemma 2.19
applied to the étale site on the left and the pro-étale site on the right that also

lim
−−→

O×ét (𝑋𝑖)
∼
−→ O×proét (𝑋∞)

is an isomorphism. This proves the first part. The second follows from [36, Lemma 3.16].
The case of O×/O×,tt follows since, by Lemma 2.16, we have O×/O×,tt = O× ⊗Z Q. �

We now use this to prove the main result of this section.

Proposition 2.21. Let X be a smooth rigid space over K. Then for the morphism of sites 𝜈 : 𝑋𝑣 → 𝑋ét,
the short exact sequences (2.4) and (2.5) induce natural isomorphisms

log : 𝑅𝑖𝜈∗𝑈
∼
−→ 𝑅𝑖𝜈∗O for any 𝑖 ≥ 1,

exp: 𝑅1𝜈∗O ∼−→ 𝑅1𝜈∗O×.

For the proof, we use Lemma 2.17 as a stepping stone to get to the v-topology.

Lemma 2.22. In the setting of Proposition 2.21, we have

1. 𝜈∗O
×

𝑣 = O×ét,
2. 𝑅1𝜈∗O

×

𝑣 = 0.

Proof. We can split up 𝜈 into the two morphisms of sites

𝜈 : 𝑋𝑣
𝑤
−→ 𝑋proét

𝑢
−→ 𝑋ét.

As O𝑣 and Oproét are both acyclic on affinoid perfectoids, we know that

𝑅𝑤∗O𝑣 = Oproét.

Commuting 𝑤∗ and [ 1
𝑝 ] like in Definition 2.15, we also have

𝑤∗(O×𝑣 [ 1
𝑝 ]) = O×proét [

1
𝑝 ] .

By the long exact sequence of 𝑤∗ for equation (2.5), this together implies that

𝑤∗O
×

𝑣 = O×proét.

Similarly, since any v-topological line bundle on an affinoid perfectoid space is trivial in the analytic
topology by Theorem 2.2 and affinoid perfectoids form a basis of 𝑋proét, we have

𝑅1𝑤∗(O×𝑣 [ 1
𝑝 ]) = 0.

https://doi.org/10.1017/fms.2022.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.72


12 Ben Heuer

It follows from 𝑅2𝑤∗O = 0 that

𝑅1𝑤∗O
×

𝑣 = 0.

We now combine these to get to 𝜈: By the Leray spectral sequence, the above implies

𝑅1𝜈∗O
×

𝑣 = 𝑅1𝑢∗(𝑤∗O
×

𝑣 ) = 𝑅1𝑢∗O
×

proét.

We have thus reduced to considering 𝑢 : 𝑋proét → 𝑋ét. Here we have O×proét = 𝑢∗O×ét by Lemma 2.17,
which by [36, Corollary 3.17. (i)] implies O×ét = 𝑢∗O

×

proét as well as

𝑅1𝑢∗O
×

proét = 0.

Putting everything together, this proves the lemma. �

Lemma 2.23. Let Y be any diamond, then for 𝜈 : 𝑌𝑣 → 𝑌ét we have 𝑅𝜈∗𝜇𝑝∞ = 𝜇𝑝∞ .

Proof. Since 𝜇𝑝∞ is an étale sheaf, this follows from [35, Propositions 14.7, 14.8]. �

We now have everything in place to prove Proposition 2.21.

Proof of Proposition 2.21. The first part follows from Lemma 2.23 and the sequence (2.4).
For the second isomorphism, consider the long exact sequence of the exponential (2.5)

0→ 𝜈∗O→ 𝜈∗(O×[ 1
𝑝 ]) → 𝜈∗O

×
→ 𝑅1𝜈∗O

exp
−−→ 𝑅1𝜈∗(O×[ 1

𝑝 ]) → 𝑅1𝜈∗O
×
[ 1
𝑝 ] .

By Lemma 2.22.1, we have 𝜈∗O
×

= O×ét. As we have a map O×ét [
1
𝑝 ] → 𝜈∗(O×[ 1

𝑝 ]) (in fact an
isomorphism by Remark 2.26 below, but we do not need this here), this shows that the boundary map
vanishes. Thus, exp in the sequence is injective. The last term vanishes by Lemma 2.22.2; hence, exp is
an isomorphism. Finally, the colimit of the Kummer sequence

1→ 𝜇𝑝∞ → O× → O×[ 1
𝑝 ] → 1

combines with Lemma 2.23 to show that we have 𝑅𝑖𝜈∗O× = 𝑅𝑖𝜈∗O×[ 1
𝑝 ] for any 𝑖 ≥ 1. �

With these preparations, we can now deduce the first part of Theorem 1.2, using a variant of a result
of Scholze describing 𝑅1𝜈∗O.

Definition 2.24. Let 𝜃 : 𝑊 (O𝐾 ♭ ) → O𝐾 be Fontaine’s map. For any 𝑖 ∈ Z, we denote by O𝐾 {𝑖} :=
(ker 𝜃)𝑖/(ker 𝜃)𝑖+1 the i-th Breuil–Kisin–Fargues twist. This is noncanonically isomorphic to O𝐾 as an
O𝐾 -module. For any O𝐾 -module M or a sheaf of such, we set

𝑀{𝑖} := 𝑀 ⊗O𝐾 O𝐾 {𝑖}.

As explained in [3, Example 4.24], if K contains all p-power roots of unity, then there is a canonical
isomorphism

𝐾{𝑖} = 𝐾 (𝑖)

where the right-hand side denotes the Tate twist 𝐾 (𝑖) = 𝐾 ⊗Z Z𝑝 (𝑖). In this sense, Breuil–Kisin–Fargues
twists are a generalisation of Tate twists to general perfectoid base fields.

Finally, we set

Ω̃𝑖
𝑋 := Ω𝑖

𝑋 {−𝑖}.
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Proposition 2.25 [37, Proposition 3.23]. Let K be a perfectoid field extension of Q𝑝 , and let X be a
smooth rigid space over K. Let 𝜈 : 𝑋𝑣 → 𝑋ét be the natural morphism of sites. Then there are canonical
isomorphisms on 𝑋ét for all 𝑖 ≥ 0:

𝑅𝑖𝜈∗O = Ω̃𝑖
𝑋 = Ω𝑖

𝑋 {−𝑖}.

Remark 2.26. Already for 𝑖 = 0, this is the nontrivial result that 𝜈∗O = O, proved more generally by
Kedlaya–Liu for seminormal rigid spaces [27, Theorem 8.2.3].

The notation Ω̃𝑖
𝑋 is motivated by [3, §8], where a much finer integral result about O+ is proved for X

that admits a smooth formal model.
Proof. For algebraically closed K, this is shown in [37, Proposition 3.23] for 𝑋proét → 𝑋ét. But for
𝑤 : 𝑋𝑣 → 𝑋proét, we have 𝑅𝑤∗O = Oproét, so the case of 𝜈 follows.

The case of general perfectoid K follows from this by Galois descent by an argument similar to that
of [36, Proposition 6.16.(ii)]. Since we do not know a reference for this in the literature in the desired
generality, we sketch a proof here: Recall that C is the completion of an algebraic closure of K. It suffices
to prove that, for any smooth affinoid rigid space 𝑋 = Spa(𝐴) over K that is standard-étale over a torus
T𝑑 , we have a natural isomorphism

𝐻
𝑗
𝑣 (𝑋,O) = 𝐻0(𝑋, Ω̃ 𝑗

𝑋 ).

To see this, let 𝑋𝐶 = Spa(𝐴𝐶 ) and let 𝑋 = Spa(𝐴) be the pullback along the toric tower T̃𝑑 → T𝑑 . Let
𝑋𝐶 = Spa(𝐴𝐶 ), then we have a Cartesian square of pro-étale covers in 𝑋proét

𝑋 𝑋𝐶

𝑋 𝑋𝐶

in which the horizontal maps are Galois with group 𝐺 := Gal(𝐶 |𝐾) and the map on the right is Galois
with group Z𝑑𝑝 (1). Since 𝑋 and 𝑋𝐶 are each affinoid perfectoid, O is acyclic on them. The Cartan–Leray
sequence of Corollary 2.9 for the right map therefore shows

𝐻
𝑗
cts(Z

𝑑
𝑝 (1), 𝐴𝐶 ) = 𝐻

𝑗
𝑣 (𝑋𝐶 ,O) = 𝐻0 (𝑋𝐶 , Ω̃

𝑗
𝑋 )

by the first part. More generally, for any 𝑛 ≥ 0, the same Cartan–Leray sequence for 𝑋𝐶×𝐺
𝑛 → 𝑋𝐶×𝐺

𝑛

combines with [36, Lemma 5.5] to show that, for 𝑛 ≥ 0, we have

𝐻𝑖
𝑣 (𝑋𝐶 × 𝐺

𝑛,O) = 𝐻𝑖
cts(Z

𝑑
𝑝 (1),O(𝑋𝐶 × 𝐺

𝑛)) = Mapcts(𝐺
𝑛, 𝐻0(𝑋𝐶 , Ω̃

𝑗
𝑋 )).

We thus get the full Cartan–Leray spectral sequence from Proposition 2.8.3:

𝐻𝑖
cts(𝐺, 𝐻

0 (𝑋𝐶 , Ω̃
𝑗
𝑋 )) ⇒ 𝐻

𝑖+ 𝑗
𝑣 (𝑋,O).

The étale map 𝑋 → T𝑑 induces an isomorphism Ω 𝑗
𝑋 � O𝑘

𝑋 , where 𝑘 =
(𝑑
𝑗

)
. Consequently,

𝐻0 (𝑋𝐶 , Ω̃
𝑗
𝑋 ) = 𝐻0(𝑋, Ω̃ 𝑗

𝑋 )⊗̂𝐾𝐶 = 𝐴𝑘 {− 𝑗}⊗̂𝐾𝐶 � 𝐴𝑘 ⊗̂𝐾𝐶 = 𝐴𝑘
𝐶

as topological G-modules. We claim that 𝐻𝑖
cts(𝐺, 𝐴𝐶 ) = 0 for 𝑖 ≥ 1. Indeed, observe that the map

𝐴𝐶 → 𝐴𝐶 is split in topological G-modules: This is because by [36, Lemma 4.5], we can pullback the
canonical module-splitting of T̃𝑑 → T𝑑 . We thus have an injection

𝐻𝑖
cts(𝐺, 𝐴𝐶 ) ↩→ 𝐻𝑖

cts(𝐺, 𝐴𝐶 ) = 𝐻𝑖
𝑣 (𝑋,O) = 0

by Corollary 2.9, this time applied to the top map using that 𝑋 is affinoid perfectoid.
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All in all, this shows that the above spectral sequence collapses and induces isomorphisms

𝐻
𝑗
𝑣 (𝑋,O) = 𝐻0

cts(𝐺, 𝐻
0(𝑋𝐶 , Ω̃

𝑗
𝑋 )) = (Ω̃

𝑗
𝑋 (𝑋)⊗̂𝐾𝐶)

𝐺 = Ω̃ 𝑗
𝑋 (𝑋). �

Definition 2.27. We denote by HT the induced map in the Leray sequence

HT : 𝐻1
𝑣 (𝑋,O) → 𝐻0(𝑋,Ω1

𝑋 {−1}).

Combining Propositions 2.21 and 2.25, we see:

Corollary 2.28. The logarithm induces a canonical and functorial isomorphism

HTlog : 𝑅1𝜈∗O× ∼−→ Ω1
𝑋 {−1}.

This shows the first part of Theorem 1.2: In fact, it implies the following stronger form which also
bounds the cokernel on the right in terms of the Brauer group of X.

Theorem 2.29. Let X be a smooth rigid space over K. Then the 5-term exact sequence of the Leray
spectral sequence of 𝜈 : 𝑋𝑣 → 𝑋ét for the sheaf O× is of the form

0→ Pican(𝑋) → Pic𝑣 (𝑋)
HTlog
−−−−→ 𝐻0 (𝑋, Ω̃1

𝑋 ) → 𝐻2
ét (𝑋,O×) → 𝐻2

𝑣 (𝑋,O×).

This is functorial in 𝑋 → Spa(𝐾), in particular compatible with any base change in K.

Proof. We consider the 5-term exact sequence of the Leray sequence for 𝜈 : 𝑋𝑣 → 𝑋ét. By Remark
2.26, we have 𝜈∗O× = O×ét, so its first term is Picét (𝑋). This is equal to Pican (𝑋) by [18, Proposition
8.2.3]. By Corollary 2.28, the third term is as described. �

Remark 2.30. In [21, Theorem 2.18], it is shown that Lemma 2.22 generalises, and we in fact have
𝑅𝜈∗O

×
= O×. It follows that, for any 𝑖 ≥ 1, the exponential induces isomorphisms 𝑅𝑖𝜈∗O× = 𝑅𝑖𝜈∗O =

Ω𝑖
𝑋 {−𝑖}. This gives a ‘multiplicative Hodge–Tate spectral sequence’ relating, for example, the étale to

the v-topological Brauer group in terms of Hodge cohomology.

3. Analyticity criteria

As a first application, we now deduce from Theorem 1.2.1 some criteria for deciding whether a given
v-line bundle is analytic. We think that these will be useful in practice (for instance, see Example 3.10).
We start with a direct consequence of exactness of the HTlog-sequence.

Corollary 3.1. Let X be a smooth rigid space and L a v-line bundle on X. Let 𝑉 ⊆ 𝑋 be any Zariski-
dense open subspace. Then L is analytic if 𝐿 |𝑉 is. More generally, let 𝑓 : 𝑌 → 𝑋 be a smooth morphism
with Zariski-dense image. Then L is analytic if and only if 𝑓 ∗𝐿 is.

Proof. By Theorem 1.2.1, L is analytic if and only if HTlog(𝐿) = 0. As we can check this locally,
we may assume that X and Y are affinoid. Then since f is smooth with Zariski-dense image, the map
𝐻0 (𝑋,Ω1) ↩→ 𝐻0(𝑌,Ω1) is injective. Now use that HTlog is functorial. �

Second, we can use this to give a characterisation in terms of nontrivial sections.

Proposition 3.2. Let X be a smooth connected rigid space and L a v-line bundle on X. If 𝐻0(𝑉, 𝐿) ≠ 0
for some open 𝑉 ⊆ 𝑋 , then L is analytic.

Proof. The statement is local on X, so we can assume that X is affinoid and étale over a torus. In
particular, there is a toric pro-étale affinoid perfectoid Galois cover

𝑋∞ → · · · → 𝑋1 → 𝑋0 = 𝑋
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with Galois group G. By Corollary 3.1, it suffices to prove that L becomes trivial on some nonempty
open subspace 𝑉 ⊆ 𝑋𝑛 for some n.

Since L is trivial analytic-locally on 𝑋∞ by Theorem 2.2, we can after passing to some affinoid open
𝑉𝑛 ⊆ 𝑋𝑛 assume that it is trivial on 𝑋∞. In this case, we know by Corollary 2.10 that L is associated to
a 1-cocycle 𝑐 : 𝐺 → O×(𝑋∞), that is, we have

𝐻0 (𝑋, 𝐿) = { 𝑓 ∈ O(𝑋∞) | 𝑔∗ 𝑓 = 𝑐(𝑔) 𝑓 for all 𝑔 ∈ 𝐺}.

Assume now that we have a nontrivial element 𝑓 ∈ 𝐻0 (𝑋, 𝐿). We claim that this is invertible on the
pullback of some open 𝑉 ⊆ 𝑋𝑛 for some n. To see this, we use:

Claim 3.3. There is 𝑥 ∈ 𝑋∞(𝐶,O𝐶 ) with 𝑓 (𝑥) ≠ 0.

Proof. Write 𝑋𝑖 = Spa(𝐴𝑖 , 𝐴
+
𝑖 ) for 𝑖 ∈ N, then by [36, Lemma 4.5] we have 𝑋∞ = Spa(𝐴, 𝐴+), where

𝐴 = (lim
−−→

𝐴+𝑖 )
∧[ 1

𝑝 ]. We have compatible maps for each 𝑖 ∈ N and 𝑘 ∈ N

𝐴+𝑖 /𝑝
𝑘 ↩→ Maplc(𝑋𝑖 (𝐶,O𝐶 ),O𝐶/𝑝

𝑘 ), 𝑓 ↦→ (𝑥 ↦→ 𝑓 (𝑥))

which are injective by the maximum modulus principle since 𝐴𝑖 is smooth, so 𝐴𝐼 ,𝐶 is reduced, and C
is algebraically closed. In the colimit over i, we obtain an injection

lim
−−→𝑖∈𝐼

𝐴+𝑖 /𝑝
𝑘 ↩→ lim

−−→𝑖∈𝐼
Maplc(𝑋𝑖 (𝐶),O𝐶/𝑝

𝑘 ) ↩→ Maplc(𝑋∞(𝐶),O𝐶/𝑝
𝑘 ).

Taking the inverse limit over k and inverting p, we get an injection

O(𝑋∞) ↩→ Mapcts(𝑋∞(𝐶), 𝐶).

This gives the desired statement. �

We deduce from the claim that there is 𝑘 ∈ N such that | 𝑓 (𝑥) | ≥ |𝜛𝑘 |. Consequently, the rational
open𝑉∞ of 𝑋∞ defined by | 𝑓 | ≥ |𝜛𝑘 | is nonempty. We can therefore find a nonempty rational open V in
some 𝑋𝑛 whose pullback to 𝑋∞ is contained in 𝑈∞. We replace 𝑉∞ by this pullback, then in particular,
f is invertible on 𝑉∞.

But if 𝑓 ∈ O×(𝑉∞), then multiplication by f defines an isomorphism O |𝑉
∼
−→ 𝐿 |𝑉 . In particular, L

is trivial on V, in particular analytic, and thus it is analytic on X. �

Combining Corollary 3.1 and Proposition 3.2, we deduce a stronger version.

Corollary 3.4. Let X be a smooth connected rigid space. Then a v-line bundle L on X is analytic if and
only if 𝜈∗𝐿 ≠ 0, where 𝜈 : 𝑋𝑣 → 𝑋ét is the natural morphism of sites.

Corollary 3.5. Let X be a smooth connected rigid space. Let V be an analytic vector bundle and L a
v-line bundle on X. If there is a nontrivial map 𝐿 → 𝑉 , then L is analytic.

Proof. The statement is local on X, so we can assume that𝑉 = O𝑛 is trivial. Thus, 𝑓 : 𝐿 → O𝑛 consists
of functions 𝑓𝑖 : 𝐿 → O for 𝑖 = 1, . . . , 𝑛 and f is nontrivial if one of the 𝑓𝑖 is. We are thus reduced
to 𝑉 = O. But then 𝑓 ≠ 0 if and only if its dual 𝑓 ∨ : O → 𝐿∨ is nontrivial. By Proposition 3.2, this
implies that 𝐿∨ is analytic, and thus so is L. �

Third, the property of ‘being analytic’ on products can be checked on fibres.

Corollary 3.6. Let X and Y be a smooth rigid spaces, and let L be a v-line bundle on 𝑋 × 𝑌 . Assume
that there are Zariski-dense sets of points 𝑆 ⊆ 𝑋 (𝐾) and 𝑇 ⊆ 𝑌 (𝐾) such that 𝐿𝑥 on Y for 𝑥 ∈ 𝑆 and 𝐿𝑦

on X for 𝑦 ∈ 𝑇 are all analytic. Then L is analytic.
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Proof. We can without loss of generality assume that X and Y are affinoid. As they are smooth, Ω1
𝑋

and Ω1
𝑌 are vector bundles, and after localising further we may assume that they are free, with bases

𝑣1, . . . 𝑣𝑛 and 𝑤1, . . . 𝑤𝑚, respectively. We then have

Ω1(𝑋 × 𝑌 ) = (O(𝑋 × 𝑌 ) ⊗O (𝑋 ) Ω1
𝑋 (𝑋)) ⊕ (O(𝑋 × 𝑌 ) ⊗O (𝑌 ) Ω1

𝑌 (𝑌 ));

this follows from the corresponding algebraic statement for finitely generated K-algebras.
The corollary now follows from Theorem 1.2.1: According to the above decomposition,

HTlog(𝐿) =
𝑛∑
𝑖=1

𝑓𝑖 ⊗ 𝑣𝑖 +
𝑚∑
𝑗=1

𝑔 𝑗 ⊗ 𝑤 𝑗 .

Then HTlog(𝐿𝑥) =
∑
𝑔 𝑗 (𝑥)𝑤 𝑗 ∈ Ω̃1(𝑌 ). If this vanishes for all 𝑥 ∈ 𝑆, then all 𝑔 𝑗 vanish on 𝑆 × 𝑌 and

thus also on its Zariski-closure 𝑋 × 𝑌 . Thus, 𝑔 𝑗 = 0, similarly for 𝑦 ∈ 𝑇 . �

Fourth, we note that if we add good reduction assumptions, then any v-line bundle trivialised by a
Galois cover of good reduction is already trivial in the Zariski topology.

Definition 3.7. Let 𝔛 be a formal scheme of topologically finite type over O𝐾 . Let G be a profinite
group. We say that a morphism 𝔛∞ → 𝔛 is a pro-étale G-torsor with group G if there is a cofiltered
inverse system (𝔛𝑖)𝑖∈𝐼 of finite étale Galois torsors 𝔛𝑖 → 𝔛 of group 𝐺𝑖 such that 𝔛∞ = lim

←−−
𝔛𝑖 and

𝐺 = lim
←−−

𝐺𝑖 . Then 𝔛 automatically has a G-action.

Proposition 3.8. Let 𝔛 be a formal scheme of topologically finite type over O𝐾 , and let 𝔛∞ → 𝔛 be
a pro-étale G-torsor. Then for any 1-cocycle 𝑐 : 𝐺 → O(𝔛∞)×, the associated v-line bundle on the
generic fibre X is the analytification of a Zariski-line bundle on 𝔛.

Proof. With notation as in Definition 3.7, the statement is local on 𝔛0 := 𝔛, so we can reduce to the
case that 𝔛 is affine and thus so are the 𝔛𝑖 = Spf (𝐴𝑖) as well as 𝔛∞ = Spf (𝐴∞).

Let X𝑖 be the rigid generic fibre of 𝔛𝑖 , and let X∞ = lim
←−−

X𝑖 as a diamond. Since 𝔛𝑖 is affine, we then
have a natural G-equivariant morphism of O𝐾 -algebras

O(𝔛∞) = lim
←−−
𝑛

lim
−−→
𝑖

O(𝔛𝑖)/𝑝
𝑛 → lim

←−−
𝑛

lim
−−→
𝑖

O+/𝑝𝑛 (X𝑖) → lim
←−−
𝑛

O+/𝑝𝑛 (X∞) = O+(X∞).

Using Corollary 2.10, we thus indeed get a v-line bundle L on X associated to c. Furthermore, by
Corollary 2.10, this L is given on any 𝑌 → X in X𝑣 by

𝐿(𝑌 ) = { 𝑓 ∈ O(𝑌 ×X0 X∞)|𝑔∗ 𝑓 = 𝑐(𝑔) 𝑓 for all 𝑔 ∈ 𝐺}.

It thus suffices to prove that Zariski-locally on 𝔛0 there is 𝑓 ∈ O(𝔛∞)× such that 𝑔∗ 𝑓 = 𝑐(𝑔) 𝑓 , since
then 𝐿 |𝑌 = 𝑓O |𝑌 , which shows that L is trivial on Y.

Consider now for each 𝑛 ∈ N the reduction of the cocycle c mod 𝑝𝑛

𝐺
𝑐
−→ 𝐴×∞ → (𝐴∞/𝑝

𝑛)×.

As this factors over a finite quotient of G [33, (1.2.5) Proposition], we can like before associate to this
an étale line bundle 𝐿𝑛 on 𝔛0/𝑝

𝑛. By étale descent, this is associated to a finite locally free 𝐴0/𝑝
𝑛-

module 𝑀𝑛 of rank 1. Then also 𝑀 = lim
←−−

𝑀𝑛 is finite locally free with 𝑀/𝑝𝑛 = 𝑀𝑛 by [13, Tag 0D4B].
Passing from 𝔛0 to any Zariski-cover where M is free, any generator of M induces a compatible system
of 𝑓𝑛 ∈ (𝐴∞/𝑝

𝑛)× such that 𝑔∗ 𝑓𝑛 = 𝑐(𝑔) 𝑓𝑛. Then 𝑓 = ( 𝑓𝑛)𝑛 ∈ lim
←−−𝑛
(𝐴∞/𝑝

𝑛)× = O(𝔛∞)× has the
desired properties. �

Finally, we note, due to the functoriality in Theorem 2.29, the morphism HTlog is Galois-equivariant
if X has a model 𝑋0 → Spa(𝐾0) over a subfield 𝐾0 ⊆ 𝐾 . In particular:
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Corollary 3.9. Suppose that X is the base change to K of a smooth rigid space 𝑋0 defined over a finite
extension E of Q𝑝 . Then any v-line bundle on 𝑋0 becomes analytic on X.

Proof. It suffices to consider the case that 𝐾 = C𝑝 . Let 𝐿0 be a v-line bundle on 𝑋0, and let L be its base
change to X. Then the class of L in Pic(𝑋) is 𝐺𝐸 -invariant. By equivariance of HTlog, this implies that
HTlog(𝐿) ∈ 𝐻0 (𝑋,Ω1

𝑋 ) (−1) = 𝐻0(𝑋0,Ω1
𝑋0
) ⊗𝐸 C𝑝 (−1) is Galois-equivariant. But C𝑝 (−1)𝐺𝐸 = 0, so

HTlog(𝐿) = 0, which means that L is analytic. �

Example 3.10. In order to illustrate how the above criteria can be used in practice, we now sketch various
new proofs that the sheaf 𝜔𝜅 of overconvergent p-adic modular forms defined by Chojecki–Hansen–
Johansson [9, Definition 2.18] is an analytic line bundle, at least when we work over a perfectoid base
field K, like, for example, C𝑝 . The sheaf 𝜔𝜅 is defined on an overconvergent neighbourhood X (𝜖) of the
ordinary locus of the modular curve: By definition, it is given by a v-descent datum for a certain pro-
étale map XΓ(𝑝∞) (𝜖)𝑎 → X (𝜖). It is therefore clear from the definition that it is a v-line bundle. We can
now employ any of the above criteria to see that 𝜔𝜅 is already analytic (see [5, §3.4] for more details):

1. By Corollary 3.1, it suffices to prove that 𝜔𝜅 is analytic on the ordinary locus X (0) ⊆ X (𝜖), which
is a Zariski-dense open subspace. But here the statement is essentially classical and originally due to
Katz [26, §4]: One reduces the definition to the Igusa tower, where one has a pro-étale formal model,
and then invokes Proposition 3.8.

2. By Proposition 3.2, it suffices to show that 𝜔𝜅 has a nontrivial section. Such a section is given by the
Eisenstein series (one first has to check that this matches the definition).

3. The bundle 𝜔𝜅 can be defined for rigid analytic families of weights 𝜅 and naturally extends to a v-
bundle 𝜔 on X (𝜖) ×W , where W parametrises p-adic weights. We can now use Corollary 3.6 and
check analyticity on fibres: It is easy to see that 𝜔 becomes trivial over each point of X (𝜖). It thus
suffices to prove that 𝜔𝜅 is analytic for a Zariski-dense subset of weights in W . Such a set is given
by the classical weights.

4. The family X (𝜖) ×W can already be defined over a finite extension of Q𝑝 , and the definition of the
v-bundle 𝜔𝜅 already makes sense on the model. Then Corollary 3.9 says that its base change to any
perfectoid field is analytic.

4. The image of the Hodge–Tate logarithm

Now that we have constructed the left-exact sequence

0→ Pican(𝑋) → Pic𝑣 (𝑋)
HTlog
−−−−→ 𝐻0(𝑋, Ω̃1

𝑋 ),

we would like to determine the image of HTlog in order to give a complete answer to Question 1.1 for
line bundles. Towards this goal, we consider in this section the one-dimensional, the affinoid and the
proper case, thus completing the proof of Theorem 1.2.

4.1. The case of curves

We start with part 2b of Theorem 1.2: This says that, for a smooth paracompact rigid space of pure
dimension 1 over an algebraically closed field, the above sequence is in fact also right-exact. We note
that paracompactness is quite a weak condition: For example, by the main theorem of [29], any separated
one-dimensional rigid space is paracompact.

The reason why this condition appears is the following lemma.

Lemma 4.1 [14, Corollary 2.5.10]. Let X be a paracompact rigid space of dimension d. Then
𝐻𝑖

an (𝑋, 𝐹) = 0 for any abelian sheaf F on 𝑋an and any 𝑖 > 𝑑.

This is used to prove the following lemma on the Brauer group of curves, which by the 5-term exact
sequence of Theorem 2.29 completes the proof of Theorem 1.2.2b.
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Lemma 4.2. Let K be algebraically closed. Let X be a paracompact rigid space of dimension 1 over K.
Then 𝐻2

ét (𝑋,O×) = 0.

Proof. This is proved by Berkovich for good k-analytic spaces [2, Lemma 6.1.2], which via the com-
parison to rigid spaces [25, §8.3, Theorem 8.3.5] proves the result for taut rigid spaces. More generally,
one can also argue purely in the rigid analytic category.

Let 𝑟 : 𝑋ét → 𝑋an be the natural morphism of sites. Then we have

𝑅𝑟∗O× = O×

by [18, Lemma 8.3.1, Proposition 8.2.3 and Corollary 8.3.2]. Thus, the natural map

𝐻2
an(𝑋,O×) → 𝐻2

ét (𝑋,O×)

is an isomorphism. But the left-hand side vanishes by Lemma 4.1 as X is paracompact. �

The case of curves has a few interesting consequences for the general case, which we will later use
to compute Pic𝑣 (A𝑛). These are based on functoriality of HTlog.

Remark 4.3. A general strategy to describe the image of HTlog is as follows: If 𝑓 : 𝑋 → 𝑌 is a
morphism of smooth rigid spaces, then by functoriality we obtain a commutative diagram

Pic𝑣 (𝑌 ) 𝐻0 (𝑌, Ω̃1
𝑌 )

Pic𝑣 (𝑋) 𝐻0 (𝑋, Ω̃1
𝑋 ).

𝑓 ∗

HT log𝑌

𝑓 ∗

HT log𝑋

(4.1)

In particular, we have 𝑓 ∗(im HT log𝑌 ) ⊆ im HT log𝑋 . For example, one could use this to reduce the
case of projective X in Theorem 1.2.2 to that of abelian varieties via the Albanese variety 𝑋 → 𝐴. But
this no longer works in general for proper X; see [20, Example 5.6].

Corollary 4.4. Let X be any smooth rigid space. Then for any 𝑓 ∈ O(𝑋), the differential 𝑑𝑓 ∈ 𝐻0 (𝑋,Ω1)
is in the image of HTlog{1} : Pic𝑣 (𝑋){1} → 𝐻0(𝑋,Ω1

𝑋 ).

Proof. Associated to f we have a map 𝑓 : 𝑋 → A1 that sends the parameter T on A1 to f. Since A1 is
a paracompact curve, Theorem 1.2.2b shows that Pic𝑣 (A1) = 𝐻0(A1, Ω̃1). The desired statement now
follows from Remark 4.3 since 𝑓 ∗ sends 𝑑𝑇 ↦→ 𝑑𝑓 . �

4.2. The cokernel in the affinoid case

Next, we prove part 3 of Theorem 1.2, which is also an easy consequence of Proposition 2.21: We need
to see that, for X an affinoid smooth rigid space, we get a short exact sequence

0→ Pican(𝑋) [
1
𝑝 ] → Pic𝑣 (𝑋) [ 1

𝑝 ] → 𝐻0
an (𝑋, Ω̃

1
𝑋 ) → 0.

Proof of Theorem 1.2.3. The morphism of Leray 5-term exact sequences associated to the exponential
(2.5) gives a commutative diagram of connecting homomorphisms

𝐻0 (𝑋, 𝑅1𝜈∗O) 𝐻2
ét (𝑋,O)

𝐻0 (𝑋, 𝑅1𝜈∗O×[ 1
𝑝 ]) 𝐻2

ét (𝑋,O×[
1
𝑝 ]),

∼ exp exp
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where the map on the left is an isomorphism by Proposition 2.21. It therefore suffices to see that the top
morphism is zero, as then so is the bottom one. But since X is affinoid,

𝐻2
ét(𝑋,O) = 𝐻2

an(𝑋,O) = 0,

where the first equality holds by [18, Proposition 8.2.3(2)]. �

The remaining part of Theorem 1.2 is the proper case 2a, which is arguably the most interesting one.
For this we need a further ingredient: the universal cover of X.

4.3. The diamantine universal cover

In this subsection, we more generally let X be any connected rigid space over any non-Archimedean field
K. As before, we denote by C the completed algebraic closure of K. Fix a geometric point 𝑥 ∈ 𝑋 (𝐶).
Since X is a locally Noetherian adic space, we have the étale fundamental group 𝜋1 (𝑋, 𝑥), a profinite
group that governs the finite étale covers of X: More precisely, let 𝑋profét = Pro(𝑋fét) be the category
of pro-finite-étale covers of X. Let 𝜋1 (𝑋, 𝑥)−pfSets be the category of profinite sets with a continuous
𝜋1 (𝑋, 𝑥)-action. Then:

Proposition 4.5 [36, Proposition 3.5]. There is an equivalence of categories

𝐹 : 𝑋profét → 𝜋1 (𝑋, 𝑥)-pfSets
(𝑌𝑖)𝑖∈𝐼 ↦→ 𝐹 (𝑋) := lim

←−−
𝑖∈𝐼

Hom𝑋 (𝑥,𝑌𝑖).

In particular, we have a universal object in 𝑋profét, which corresponds to 𝜋1 (𝑋, 𝑥) endowed with the
translation action on itself. Since cofiltered inverse limits exists in the category of diamonds [35, Lemma
11.22], we can associate a diamond to this object.

Definition 4.6. The universal pro-finite-étale cover 𝑋 → 𝑋 is defined as the diamond

𝑋 := lim
←−−

𝑋 ′→𝑋

𝑋 ′,

where the index category consists of all connected finite étale covers (𝑋 ′, 𝑥 ′) → (𝑋, 𝑥) with 𝑥 ′ ∈ 𝑋 ′(𝐶)
a choice of lift of the base point 𝑥 ∈ 𝑋 (𝐶). This is a spatial diamond, and the canonical projection

𝑋 → 𝑋

is a pro-finite-étale 𝜋1 (𝑋, 𝑥)-torsor in a canonical way. Here the additional datum of the lift 𝑥 ′ in the
index category is necessary to make this action canonical and to make the association 𝑋 ↦→ 𝑋 functorial
in a canonical way. It gives a distinguished point �̃� ∈ 𝑋 (𝐶).

Example 4.7.

1. For 𝑋 = Spa(𝐾), we have 𝑋 = Spa(𝐶). In particular, for any X we have 𝑋 = 𝑋𝐶 , that is, the universal
cover is the universal cover of the base change to C.

2. If X is an abelian variety, or more generally an abeloid variety, and 𝐾 = 𝐶 then

𝑋 = lim
←−−[𝑛]

𝑋

is the limit over multiplication by n on X, where n ranges through N. This is represented by a
perfectoid space [6, Corollary 5.9] with the interesting feature that it is ‘p-adic locally constant in X’,
that is, many different X have isomorphic 𝑋 [22].

3. If X is a connected smooth proper curve of genus ≥ 1, then 𝑋 is also represented by a perfectoid
space [6, Corollary 5.7] and has first been considered by Hansen.
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4. In the other extreme, if X is a space over 𝐾 = 𝐶 without any nonsplit finite étale covers, for example,
𝑋 = P𝑛 or X a K3 surface, then we simply have 𝑋 = 𝑋 . In particular, 𝑋 is not always perfectoid. We
do not know if X is always represented by an adic space.

We call 𝑋 the universal pro-finite-étale cover due to the following universal property.

Lemma 4.8. Let𝑌 → 𝑋 be any pro-finite-étale cover, that is, an element of 𝑋profét, and fix a lift 𝑦 ∈ 𝑌 (𝐶)
of x. Then there is a unique morphism (𝑋, �̃�) → (𝑌, 𝑦) over X.

Proof. By the limit property, it suffices to see this for finite étale 𝑌 → 𝑋 . Passing to the connected
component of y, we see (𝑌, 𝑦) appears in the index of the limit defining 𝑋 . �

Let us from now on assume that X is proper. Then, more interestingly, 𝑋 → 𝑋 is also a topological
universal cover in the following sense.

Proposition 4.9. Let X be a connected seminormal proper rigid space over K. Then for any 𝑛 ∈ N and
F any of the v-sheaves Z/𝑛,Z𝑝 , Ẑ,O+𝑎/𝑝𝑛,O+𝑎,O,𝑈,O×,tt, we have

𝐻0(𝑋, 𝐹) = 𝐻0 (Spa(𝐶), 𝐹),

𝐻1
𝑣 (𝑋, 𝐹) = 0.

Remark 4.10. This implies that 𝑋 → 𝑋 is the ‘universal cover for Ẑ-coefficients’, that is, it has a
universal lifting property for morphisms from diamonds Y with 𝐻1

𝑣 (𝑌, Ẑ) = 0 into X [22, Corollary
3.10]. If X is either a curve of genus 𝑔 ≥ 1 or an abeloid variety, we in fact have 𝐻𝑖

𝑣 (𝑋,−) = 0 for all
𝑖 ≥ 1 for all of these coefficients [21, Proposition 4.2]. But for a general smooth proper rigid space X,
this is no longer true as the example of P1 shows.

Proof. We start with Z/𝑛-coefficients: By [35, Proposition 14.9], we have for any 𝑖 ≥ 0:

𝐻𝑖 (𝑋,Z/𝑛) = lim
−−→

𝑋 ′→𝑋

𝐻𝑖 (𝑋 ′,Z/𝑛).

For 𝑖 = 0, since each 𝑋 ′ is connected, this implies 𝐻0(𝑋,Z/𝑛) = Z/𝑛. In the limit over 𝑛 ∈ N, we
get 𝐻0 (𝑋, Ẑ) = Ẑ and similarly for Z𝑝 .

For 𝑖 = 1, the group 𝐻1
ét(𝑋

′,Z/𝑛) = 𝐻1
𝑣 (𝑋

′,Z/𝑛) parametrises the finite étale Z/𝑛-torsors on 𝑋 ′.
Since any Z/𝑛-torsor is trivialised by a connected finite étale cover of X, each cohomology class gets
killed in the inverse system defining 𝑋 . It follows that

𝐻1
𝑣 (𝑋,Z/𝑛) = lim

−−→
𝑋 ′→𝑋

𝐻1
𝑣 (𝑋

′,Z/𝑛) = 0. (4.2)

Since the v-site is replete, we have Rlim
←−−
Z/𝑛 = Ẑ as sheaves on 𝑋𝑣 by [4, Proposition 3.1.10], so the

Grothendieck spectral sequence for RΓ(𝑋,−) ◦ Rlim
←−−

yields an exact sequence

0→ R1 lim
←−−𝑛

𝐻0(𝑋,Z/𝑛) → 𝐻1
𝑣 (𝑋, Ẑ) → lim

←−−𝑛
𝐻1

𝑣 (𝑋,Z/𝑛) → 0.

The first term vanishes by the first part. The last also vanishes, so 𝐻1
𝑣 (𝑋, Ẑ) = 0 as desired.

The case of Z𝑝-cofficients follows as Z𝑝 is a direct factor of Ẑ.
To see the remaining cases, we can by Example 4.7 assume without loss of generality that 𝐾 = 𝐶.

We then have the primitive comparison theorem [37, Theorem 3.17], according to which we have for
any 𝑖 ≥ 0 and 𝑚 ≥ 0 and any finite étale cover 𝑋 ′ → 𝑋

𝐻𝑖
ét (𝑋

′,O+/𝑝𝑚) 𝑎
= 𝐻𝑖

ét (𝑋
′,Z/𝑝𝑚) ⊗Z𝑝 O𝐾 ,
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where we use that X is seminormal to identify O+𝑋ét
and O+

𝑋♦ét
. For 𝑖 = 0, we deduce in the limit that

𝐻0 (𝑋,O+) 𝑎
= O𝐾 . For 𝑖 = 1, we conclude from equation (4.2) applied to 𝑛 = 𝑝𝑚 that

𝐻1
𝑣 (𝑋,O+/𝑝𝑚)

𝑎
= lim
−−→

𝑋 ′→𝑋

𝐻1
𝑣 (𝑋

′,O+/𝑝𝑚) 𝑎
= lim
−−→

𝑋 ′→𝑋

𝐻1
𝑣 (𝑋

′,Z/𝑝𝑚) ⊗Z𝑝 O𝐾 = 0.

It then follows from the same Rlim
←−−

-argument as above that

𝐻1
𝑣 (𝑋,O+)

𝑎
= lim
←−−𝑚

𝐻1
𝑣 (𝑋,O+/𝑝𝑚)

𝑎
= 0.

The case of U follows from the long exact sequence of the logarithm (2.4). The case of O×,tt similarly
follows from a logarithm sequence modified to include all roots of unity 𝜇:

1→ 𝜇→ O×,tt log
−−→ O→ 0. �

Assume now that 𝐾 = 𝐶. Our guiding analogy will be that 𝑋 → 𝑋 behaves like the topological
universal cover in complex geometry. We are going to make this precise in the next section, but as a first
instance, we recover the statement (cmp. [36, Theorem 1.2]):

Corollary 4.11. Let T be the maximal torsionfree abelian pro-p-quotient of 𝜋1 (𝑋, 𝑥). Then T is a finite
free Z𝑝-module, and there is a natural isomorphism

𝑇 = Homcts(𝐻
1
ét (𝑋,Z𝑝),Z𝑝).

Proof. By Proposition 4.9 and Proposition 2.8.1 (Cartan–Leray) for 𝑋 → 𝑋 with F = Z𝑝 , we have
Homcts(𝜋1 (𝑋, 𝑥),Z𝑝) = 𝐻1

ét(𝑋,Z𝑝). The equality follows by applying Hom(−,Z𝑝). It follows that T is
finite free as 𝐻1

ét(𝑋,Z𝑝) is finitely generated [36, Theorem 1.1]. �

The relevance of the universal cover 𝑋 to Theorem 1.2.2a is now the following.

Corollary 4.12. For any 𝑛 ≥ 1, there is a short exact sequence of pointed sets

1→ Homcts(𝜋1 (𝑋, 𝑥), 𝐾
×) → Pic𝑣 (𝑋) → Pic𝑣 (𝑋).

Proof. This follows from Corollary 2.10 (Cartan–Leray) applied to the pro-finite-étale 𝜋1 (𝑋, 𝑥)-torsor
𝑋 → 𝑋 and F = O× and the fact that O(𝑋) = 𝐾 by Proposition 4.9. �

We can thus see characters of 𝜋1 (𝑋, 𝑥) as descent data on the trivial line bundle on 𝑋 . This is part of
a much more general picture that we study in the next section. For now, the crucial point is that it gives
us ‘enough’ v-line bundles in Pic𝑣 (𝑋) to generate 𝐻0(𝑋, Ω̃1

𝑋 ).

4.4. The proper case

We now have everything in place to finish the remaining case of Theorem 1.2.

Proof of Theorem 1.2.2a. By passing to connected components, we may without loss of generality
assume that X is connected. Fix a base point 𝑥 ∈ 𝑋 (𝐾).

Recall from the proof of Theorem 1.2.1 that the term 𝐻0(𝑋,Ω1
𝑋 ){−1} arises from the Leray spectral

sequence as 𝐻0(𝑋, 𝑅1𝜈∗O×). We now compare this to the Leray spectral sequence for O, which we
recall gives the Hodge–Tate spectral sequence. By [3, Theorem 13.3.(ii)], the latter degenerates at the
𝐸2-page since X is proper. Consequently,

HT : 𝐻1
𝑣 (𝑋,O) → 𝐻0(𝑋, Ω̃1

𝑋 )

is surjective.
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We now compare this to the Cartan–Leray sequences of Proposition 2.8.1 for 𝑋 → 𝑋 . By Proposition
4.9, we have 𝐻1

𝑣 (𝑋,O) = 0. Hence, the Cartan–Leray sequence of O is of the form

0→ Homcts(𝜋1 (𝑋, 𝑥), 𝐾) → 𝐻1
𝑣 (𝑋,O) → 𝐻1

𝑣 (𝑋,O) = 0.

Similarly, by Corollary 4.12, there is a contribution of Homcts(𝜋1 (𝑋, 𝑥), 𝐾
×) to Pic𝑣 (𝑋). Passing from

O× to 𝑈 = 1 +𝔪O+ ⊆ O×, we compare these Cartan–Leray sequences via the logarithm log : 𝑈 → O
and get by construction of HTlog a commutative diagram

Homcts(𝜋1 (𝑋, 𝑥), 1 +𝔪) 𝐻1
𝑣 (𝑋,𝑈) 𝐻1

𝑣 (𝑋,O×)

Homcts(𝜋1 (𝑋, 𝑥), 𝐾) 𝐻1
𝑣 (𝑋,O) 𝐻0(𝑋, Ω̃1).

log log HTlog

∼ HT

(4.3)

To prove that HTlog is surjective, it thus remains to see that the left vertical map is surjective. To
see this, we note that any continuous homomorphism 𝜑 : 𝜋1 (𝑋, 𝑥) → 𝐾 factors through the maximal
torsionfree abelian pro-p-quotient, which is a finite free Z𝑝-module by Corollary 4.11. We can thus lift
it to a continuous homomorphism

𝜋1 (𝑋, 𝑥) → 1 +𝔪 ⊆ 𝐾×

since log : 1 +𝔪→ 𝐾 is surjective, K being algebraically closed. �

5. Application to the p-adic Simpson correspondence

Let K be an algebraically closed complete extension of Q𝑝 . Then the proper case of Theorem 1.2.2 is
very closely related to the p-adic Simpson correspondence from the pro-étale/v-topological perspective
of [30, §2][41, §3][32, §7]: In this section, we show that Theorem 1.2 can be used to construct the p-adic
Simpson correspondence in rank 1.

5.1. Overview

In order to provide some context, let us briefly describe a few known results about the p-adic Simpson
correspondence. We refer to [41, §1] for a much more detailed overview.

Let X be a connected proper smooth rigid space over K. Fix a base point 𝑥 ∈ 𝑋 (𝐾). Inspired by
the complex Corlette–Simpson correspondence [40], the p-adic Simpson correspondence pioneered
independently by Deninger–Werner [15] and Faltings [17] is a conjectural equivalence between the
category Rep𝐾 (𝜋1 (𝑋, 𝑥)) of continuous representations

𝜋1 (𝑋, 𝑥) → GL(𝑊)

on finite dimensional K-vector spaces W, and a certain subcategory of the Higgs bundles on X, yet to
be identified. Here by a Higgs bundle we shall mean a pair (𝐸, 𝜃) of an analytic vector bundle E on X
together with a 1-form 𝜃 ∈ 𝐻0(𝑋,End(𝐸) ⊗ Ω̃1

𝑋 ) satisfying 𝜃 ∧ 𝜃 = 0. Such 𝜃 are called Higgs fields.
We recall that Ω̃1

𝑋 := Ω1
𝑋 (−1), where the (−1) is a Tate twist; it is natural to include it in this context

since it appears in the p-adic Hodge–Tate sequence.
In the case that𝐾 = C𝑝 and X is algebraic and defined over a finite extension ofQ𝑝 , Deninger–Werner

have identified a category B𝑠 (𝑋C𝑝 ) of algebraic vector bundles V with ‘numerically flat reduction’ for
which they can construct a functor [16, §9-§10]

B𝑠 (𝑋C𝑝 ) → RepC𝑝 (𝜋1 (𝑋, 𝑥)),

generalising their earlier work in the case of curves [15, Theorem 1.1]. This gives the desired functor in
the case of vanishing Higgs field, that is, 𝜃 = 0.
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Würthen has recently extended this to the setting of proper connected seminormal rigid analytic
varieties over C𝑝 , for which he constructs a fully faithful functor on analytic vector bundles E [41,
Theorem 1.1]. Moreover, he shows that the condition of numerically flat reduction implies that E
is trivialised by a pro-finite-étale cover of X [41, Proposition 4.13]. Passing from the analytic to the
v-topology, Mann–Werner [32, Theorem 0.1] extend this to v-vector bundles and show that the condition
of numerically flat reduction can be checked on proper covers. They then set up an equivalence of
categories of such v-vector bundles to those C𝑝-local systems on X that arise from OC𝑝 -local systems
by inverting p.

In an independent line of research, for algebraic X that have an integral model with toroidal singu-
larities over a complete discrete valuation ring, Faltings constructed an equivalence of categories from
‘small’ Higgs bundles to a category of ‘small generalised representations’ [17, Theorem 5]. Here gener-
alised representations form a category into which representations of 𝜋1 (𝑋, 𝑥) embed fully faithfully. He
then proved that the smallness assumption can be removed for curves [17, Theorem 6]. This construction
was further developed by Abbes–Gros and Tsuji [1]. However, towards a p-adic Simpson correspon-
dence, it is currently not known which Higgs bundles correspond to actual representations of 𝜋1 (𝑋, 𝑥).

Reinterpreting these objects in the setting of Scholze’s p-adic Hodge theory, Liu–Zhu were able to
define a functor from Q𝑝-local systems on any smooth rigid space defined over a finite extension of Q𝑝

to nilpotent Higgs bundles [30, Theorem 2.1, Remark 2.6]. But it is not clear how this can be extended
to a functor on all of Rep𝐾 (𝜋1 (𝑋, 𝑥)).

Despite these many recent advances, a construction of a more general functor either from Higgs
bundles beyond the case of 𝜃 = 0 or from all K-linear representations beyond small orQ𝑝-representations
has not been found yet.

5.2. Pro-finite-étale vector bundles via the universal cover

The aim of this section is to construct the p-adic Simpson correspondence of rank 1 in full generality,
that is, for smooth proper rigid spaces defined over any algebraically closed non-Archimedean extension
K of Q𝑝 . Here we note that in rank 1, a Higgs bundle is simply a pair (𝐿, 𝜃) of an analytic line bundle
L on X and a global differential 𝜃 ∈ 𝐻0 (𝑋, Ω̃1), which is automatically a Higgs field. The basic idea is
that by Theorem 1.2.2a, Higgs bundles of rank 1 are essentially the v-line bundles, at least after certain
choices. Under this correspondence, the condition of vanishing Chern classes in the complex case is
replaced by the following.

Definition 5.1. We say that a v-vector bundle on X is pro-finite-étale if it is trivialised by a pro-finite-
étale cover of X. Equivalently, it is trivialised by the universal cover 𝑋 → 𝑋 from Definition 4.6. We
denote by Picprofét (𝑋) ⊆ Pic𝑣 (𝑋) the subgroup of pro-finite-étale line bundles and by Picprofét,an (𝑋) its
intersection with Pican(𝑋).

We call a Higgs bundle (𝐸, 𝜃) pro-finite-étale if E is pro-finite-étale.

The first step in the complex Simpson correspondence is to associate to any finite-dimensional
complex representation of the fundamental group of a compact Kähler manifold a holomorphic vector
bundle that becomes trivial on the topological universal cover. Using the p-adic universal cover 𝑞 : 𝑋 →
𝑋 of Definition 4.6, we get an analogous construction:

Theorem 5.2. Let X be a connected seminormal proper rigid space over K. Fix 𝑥 ∈ 𝑋 (𝐾). Then the
universal cover 𝑋 → 𝑋 induces an exact equivalence of tensor categories{

finite dim. continuous 𝐾-linear
representations of 𝜋1 (𝑋, 𝑥)

}
∼
−→

{
pro-finite-étale

𝑣-vector bundles on 𝑋

}
𝑉 (𝑋) ← � 𝑉

𝜌 : 𝜋1 (𝑋, 𝑥) → GL(𝑊) ↦→ 𝑉𝜌,
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where the v-vector bundle 𝑉𝜌 on X associated to 𝜌 is defined on 𝑌 ∈ 𝑋𝑣 by

𝑉𝜌 (𝑌 ) = {𝑥 ∈ 𝑊 ⊗𝐾 O(𝑌 ×𝑋 𝑋) | 𝑔∗𝑥 = 𝜌(𝑔)𝑥 for all 𝑔 ∈ 𝜋1 (𝑋, 𝑥)}.

Proof. By Lemma 4.8, the right-hand side are precisely the v-vector bundles trivialised by the v-cover
𝑋 → 𝑋 . By Lemma 2.6, these correspond to descent data on trivial vector bundles on 𝑋 . By Proposition
4.9, trivial vector bundles on 𝑋 are equivalent to finite-dimensional K-vector spaces via the functor
𝑊 ↦→ 𝑊 ⊗𝐾 O𝑋 . The desired equivalence now follows from Corollary 2.10 which implies that descent
data on 𝑊 ⊗𝐾 O𝑋 are equivalent to continuous representations 𝜌 : 𝜋1 (𝑋, 𝑥) → GL(𝑊) by sending 𝜌
to 𝑉𝜌.

To see that 𝑉 ↦→ 𝑉 (𝑋) defines a quasi-inverse, observe that via 𝑋 ×𝑋 𝑋 = 𝜋1 (𝑋, 𝑥) × 𝑋 ,

𝑉𝜌 (𝑋) = {𝑥 ∈ Mapcts(𝜋1 (𝑋, 𝑥),𝑊) | 𝑥(𝑔−) = 𝜌(𝑔)𝑥 for all 𝑔 ∈ 𝜋1 (𝑋, 𝑥)}.

Via the evaluation at 0, this is in natural bijection with W, as we wanted to see.
It is clear that both functors are exact and preserve tensors: Indeed, whether a sequence on X is exact

can be checked on 𝑋 , where it is exact if and only if it is on global sections. �

Remark 5.3. Restricting to pro-finite-étale analytic vector bundles on the right-hand side recovers the
fully faithful functor of Würthen [41, Theorems 3.10 and 3.14]. In this sense, Theorem 5.2 explains
how this functor can be extended to an equivalence of categories.

Remark 5.4. The same argument for GL𝑛 (O) replaced by GL𝑛 (O+) shows that v-locally free O+-
modules can be interpreted as the ‘generalised representations’ of rank n in the sense of [17, §2]; This
has also been observed by Liu–Zhu [30, Remark 2.6].

We now apply this to formulate a p-adic Simpson correspondence in rank one. For this it is desirable
to characterise pro-finite-étale line bundles on X in a more explicit way.

Definition 5.5. A v-line bundle L on X is topologically torsion if L is in the image of

𝐻1
𝑣 (𝑋,O×,tt) → 𝐻1

𝑣 (𝑋,O×),

where O×,tt ⊆ O× is the topological torsion subsheaf of Definition 2.14. We denote the image of this
map by Pictt

𝑣 (𝑋) and by Pictt
an(𝑋) the intersection of Pictt

𝑣 (𝑋) with Pican (𝑋).

Example 5.6. We will show in [23, §3] that Pictt
an(𝑋) is precisely the topological torsion subgroup of

Pican(𝑋) endowed with its natural topology as K-points of the rigid analytic Picard variety. If X is
projective with torsionfree Néron–Severi group and 𝐾 = C𝑝 , this happens to equal Pic0

an(𝑋), but this is
no longer true for any nontrivial extension of K.

For example, if X is an abelian variety with good reduction 𝑋 over k, let 𝑋∨ be the dual abelian
variety with its reduction 𝑋

∨. Then Pictt
an(𝑋) is precisely the preimage of the torsion subgroup of 𝑋∨(𝑘)

under the specialisation map Pic0(𝑋) = 𝑋∨(𝐾) → 𝑋
∨
(𝑘).

5.3. The p-adic Simpson correspondence for line bundles

We can now give our second main application of Theorem 1.2.

Theorem 5.7 (p-adic Simpson correspondence of rank one). Let X be a connected smooth proper rigid
space over K. Fix a base point 𝑥 ∈ 𝑋 (𝐾).

1. There is a short exact sequence, functorial in X,

0→ Picprofét,an (𝑋) → Homcts(𝜋1 (𝑋, 𝑥), 𝐾
×) → 𝐻0 (𝑋, Ω̃1

𝑋 ) → 0.
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2. Any choice of a splitting of log : 1 +𝔪→ 𝐾 as well as a splitting of the Hodge–Tate sequence define
an equivalence of tensor categories{

1-dim. continuous 𝐾-linear
representations of 𝜋1 (𝑋, 𝑥)

}
∼
−→

{
pro-finite-étale analytic

Higgs bundles on 𝑋 of rank 1

}
.

3. We have Picprofét,an(𝑋) = Pictt
an (𝑋), so the right-hand side can equivalently be described as the

topological torsion Higgs bundles.

In particular, this singles out pro-finite-étale Higgs line bundles as the desired subcategory for the
Simpson correspondence in rank 1. Before we discuss the proof, we make some remarks on how this
relates to the works discussed in the last subsection.

Remark 5.8. The choices made in Theorem 5.7.2 are essentially the same as the ones made by Faltings
in his construction of a p-adic Simpson correspondence for small generalised representations: The only
difference is that, in the generality we work in, one needs to choose a splitting of the Hodge–Tate
sequence. There is a canonical such splitting if X is defined over a discretely valued non-Archimedean
extension of Q𝑝 [36, Corollary 1.8], which is part of the assumption of Faltings’ setup. In our setup,
since X is quasi-compact, a choice of splitting is induced by a choice of lifting of X to 𝐵+dR(𝐾)/𝜉

2,
which also appears in Faltings’ work. This lift is arguably a ‘better’ choice than that of a splitting of the
map HT, as the equivalence then becomes functorial in rigid spaces with a choice of lift.

Remark 5.9. We note that the ‘topological torsion’ condition is strictly weaker than the ‘smallness’
condition imposed by Faltings in [17, §2].

Remark 5.10. For an analytic line bundle L on X, the condition 𝐿 ∈ Picprofét,an (𝑋) means precisely that
L is in the category Bpét (O𝑋 ) of ‘trivialisable’ analytic vector bundles in the sense of [41, Theorem
3.10]. But we explicitly also include the case of general 𝜃.

Remark 5.11. If X is algebraic, L is analytic and 𝐾 = C𝑝 , then one can show that the condition from
part 3 is equivalent to L having numerically flat reduction in the sense of Deninger–Werner, using [41,
Proposition 4.13]. In this light, Theorem 5.7 confirms at least in rank 1 that this is the correct replacement
for the complex condition of being ‘semistable with vanishing Chern classes’, also beyond the case of
vanishing Higgs fields.

Remark 5.12. More generally, Theorem 5.2 suggests that pro-finite-étale Higgs bundles are a promising
step towards the correct subcategory for the p-adic Simpson correspondence. In particular, this would
mean that the functor constructed in [32] is already the correct functor from Higgs bundles to local
systems. We will pursue this further in future work.

Proof of Theorem 5.7. The first part follows from Theorem 1.2.2a and Corollary 4.12: We only need to
see that the composition

Homcts(𝜋1 (𝑋, 𝑥), 𝐾
×)
∼
−→ Picprofét (𝑋) ⊆ Pic𝑣 (𝑋) → 𝐻0(𝑋, Ω̃1)

is surjective. But this follows from diagram (4.3) in the proof of Theorem 1.2.2a.
To deduce the second part, we first note that the choices made induce a splitting s of

Homcts(𝜋1 (𝑋, 𝑥), 1 +𝔪)
log
−−→ Homcts(𝜋1 (𝑋, 𝑥), 𝐾) = 𝐻1

𝑣 (𝑋,O)
HT
−−→ 𝐻0 (𝑋, Ω̃1).
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In particular, they define a splitting of the sequence in part 1. This gives a bijection between isomorphism
classes. In order to upgrade this to an equivalence of categories, we use the equivalence of Theorem
5.2: This shows that it suffices to construct a tensor equivalence{

pro-finite-étale analytic
Higgs bundles on 𝑋 of rank 1

}
∼
−→

{
pro-finite-étale

𝑣-line bundles on 𝑋

}
.

To define this, we first observe that to any Higgs bundle (𝐸, 𝜃), the splitting s associates a character
𝑠(𝜃) : 𝜋1 (𝑋, 𝑥) → 𝐾× to which Theorem 5.2 attaches a v-line bundle 𝐿 𝜃 . We now define the functor by
sending

(𝐸, 𝜃) ↦→ 𝐸 ⊗ 𝐿 𝜃 .

This is indeed functorial as any morphism of Higgs line bundles (𝐸1, 𝜃1) → (𝐸2, 𝜃2) is trivial unless
𝜃1 = 𝜃2, in which case it is simply the datum of a morphism 𝐸1 → 𝐸2.

A quasi-inverse can be defined as follows: Let E be any pro-finite-étale v-line bundle on X, and let
𝜃 (𝐸) ∈ 𝐻0(𝑋, Ω̃1

𝑋 ) be the image of the isomorphism class of E under HTlog. Then we define a functor by

𝐸 ↦→ (𝐸 ⊗ 𝐿−1
𝜃 (𝐸) , 𝜃 (𝐸)),

where the line bundle is analytic by left-exactness of the sequence in Theorem 1.2.
This is also functorial, for trivial reasons: For any two pro-finite-étale line bundles 𝐿, 𝐿 ′, the line

bundle of endomorphisms 𝐿 ′ ⊗ 𝐿−1 pulls back to the trivial bundle along 𝑋 → 𝑋 because 𝐿 ′ and L do.
Since O(𝑋) = 𝐾 , it follows that

𝐻0 (𝑋, 𝐿 ′ ⊗ 𝐿−1) = 𝐻0 (𝑋, 𝐿 ′ ⊗ 𝐿−1) 𝜋1 (𝑋,𝑥) �

{
𝐾 if 𝐿 ′ � 𝐿,

0 otherwise.

We have thus constructed the desired equivalence of categories. That this is a tensor equivalence follows
from the linearity of the section s, which implies that

𝐿 𝜃1+𝜃2 = 𝐿 𝜃1 ⊗ 𝐿 𝜃2 .

It remains to prove part 3. This is achieved by the following lemma. �

Lemma 5.13. Inside Pic𝑣 (𝑋), we have Pictt
𝑣 (𝑋) = Picprofét (𝑋).

Proof. For the inclusion ⊇, we use that any continuous homomorphism 𝜋1 (𝑋, 𝑥) → 𝐾× factors through
O×,tt (𝐾). Comparing Cartan–Leray sequences, we get a commutative diagram

0 Homcts(𝜋1 (𝑋, 𝑥),O×,tt (𝐾)) 𝐻1
𝑣 (𝑋,O×,tt) 𝐻1

𝑣 (𝑋,O×,tt)

0 Homcts(𝜋1 (𝑋, 𝑥), 𝐾
×) 𝐻1

𝑣 (𝑋,O×) 𝐻1
𝑣 (𝑋,O×).

By Corollary 4.12, the image of the bottom-left map is precisely Picprofét (𝑋). The diagram shows that
this is included in the image of the map in the middle, which is precisely Pictt

𝑣 (𝑋).
By the same diagram, the inclusion ⊆ holds as 𝐻1

𝑣 (𝑋,O×,tt) = 1 by Proposition 4.9. �

6. The v-Picard group of affine space A𝑛

By the Theorem of Quillen–Suslin, every vector bundle on Spec(𝐾 [𝑋1, . . . , 𝑋𝑛]) is trivial. Similarly,
every analytic vector bundle on the rigid affine space A𝑛 is trivial [19, §V.3 Proposition 2.(ii)]. This is
no longer true in the v-topology. In this final section, we prove:
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Theorem 6.1. For any 𝑛 ∈ N, the Hodge–Tate logarithm induces an isomorphism

Pic𝑣 (A𝑛) = 𝐻0(A𝑛, Ω̃1)𝑑=0.

More generally, for 𝑘 ≥ 0 and 𝑛 ≥ 1, we have Pic𝑣 (G𝑘
𝑚 × A

𝑛) = 𝐻0 (G𝑘
𝑚 × A

𝑛, Ω̃1)𝑑=0.

Remark 6.2. We are interested in the case of G𝑚 × A since its de Rham complex is no longer exact on
global sections. This shows that we should really think of line bundles as living in (Ω̃1)𝑑=0 rather than
𝑑 (O).

Definition 6.3. We denote by 𝐵𝑛 = Spa(𝐾 〈𝑇1, . . . , 𝑇𝑛〉) ⊆ A
𝑛 the closed unit ball. For any 𝑠 ∈ |𝐾 |,

denote by 𝐵𝑛
𝑠 ⊆ A

𝑛 the closed ball defined by |𝑇𝑖 | ≤ 𝑠 for all 𝑖 = 1, . . . , 𝑛.

We often use that 𝐵𝑛
𝑠 � 𝐵𝑛 by rescaling. In particular, Pican(𝐵

𝑛
𝑠 ) = 1 by [31, Satz 1].

Corollary 6.4. In contrast to Theorem 1.2.2, the map HTlog : Pic𝑣 (𝐵𝑛) → 𝐻0 (𝐵𝑛, Ω̃1) is no longer
surjective for 𝑛 ≥ 2.

Proof. If it was, it would be an isomorphism. Covering A𝑛 by the 𝐵𝑛
𝑠 , this shows

Pic𝑣 (A𝑛) = lim
←−−𝑠

Pic𝑣 (𝐵𝑛
𝑠 ) = lim
←−−𝑠

𝐻0(𝐵𝑛
𝑠 , Ω̃

1) = 𝐻0(A𝑛, Ω̃1),

where the first isomorphism uses Pican(A
𝑛) = 1. This is a contradiction to Theorem 6.1. �

Remark 6.5. This is interesting in the context of the p-adic Simpson correspondence since it gives a
concrete example in which we cannot have an equivalence between v-line bundles and Higgs bundles
like in the proper case: Faltings ‘local p-adic Simpson correspondence’ shows that one can always
obtain an equivalence between small v-bundles and small Higgs bundles, where ‘small’ is a technical
term that roughly means ‘p-adically close to 0’. Since any such correspondence should be compatible
with localisation, in particular with HTlog, the Corollary shows that, for 𝐵𝑛, the equivalence does not
extend beyond the small case.

We will give two different proofs of the first part of Theorem 6.1: The first relies on a comparison
to Le Bras’s result about RΓproét (A

𝑛,Q𝑝) using the Poincaré lemma in 𝑋proét. We note that, in general,
this restricts the setup to K being the completion of an algebraic closure of a discretely valued field.
The second proof is self-contained and uses rigid analytic computations. It is slightly more general as
it does not require the Poincaré lemma.

6.1. Preparations

Lemma 6.6. Let 𝑛 ≥ 1. Let Y be any diamond over Spa(𝐾). Then

𝐻0(𝑌 × 𝐵𝑛,O×) = 𝐻0(𝑌,O×) and 𝐻1
𝑣 (𝐵

𝑛,O×) = 1.

Proof. For the first identity, we can by induction assume 𝑛 = 1. Since O× is a v-sheaf, it suffices to prove
the statement for 𝑌 = Spa(𝑅, 𝑅+) an affinoid perfectoid space. Then O(𝑌 × 𝐵) = 𝑅〈𝑇〉 and we need to
prove that, for any 𝑓 ∈ 𝑅〈𝑇〉× of the form 𝑓 = 1 + 𝑎1𝑇 + 𝑎2𝑇

2 + . . . , we have 𝑎𝑖 ∈ 𝔪𝑅+ = 𝑅◦◦ for all
𝑖 ≥ 1. We can check this on points of Y, which reduces us to the case of (𝑅, 𝑅+) = (𝐶,𝐶+) a field. Since
𝔪𝐶+ = 𝔪O𝐶 , we can reduce to𝐶+ = O𝐶 , where the statement is classical; see [7, §5.3.1 Proposition 1].

For the second part, Lemma 2.22.2 reduces to showing 𝐻1
ét (𝐵

𝑛,O×) = 1. This follows from the
exponential sequence (2.5) as Picét (𝐵

𝑛) = 1 and 𝐻2
ét (𝐵

𝑛,O) = 0. �

Lemma 6.7. For any 𝑛 ≥ 1, we have 𝐻1
𝑣 (A

𝑛,𝑈) = 𝐻1
𝑣 (A

𝑛,O×).
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Proof. It suffices to prove that the second and fourth map in the long exact sequence

𝐻0 (A𝑛,O×) → 𝐻0 (A𝑛,O×) → 𝐻1
𝑣 (A

𝑛,𝑈) → 𝐻1
𝑣 (A

𝑛,O×) → 𝐻1
𝑣 (A

𝑛,O×)

are trivial. This follows from Lemma 6.6 by the Čech-to-sheaf sequence of A𝑛 = ∪𝑠∈N𝐵𝑛
𝑠 . �

6.2. Proof via comparison to pro-étale cohomology

In this section, let us assume that 𝐾 = C𝑝 . Then Theorem 6.1 is closely related to a result of Colmez–
Nizioł [11], and independently of Le Bras [28], who both show:

Theorem 6.8 [11, Theorem 1], [28, Théorème 3.2]. Over C𝑝 , we have for all 𝑖 ≥ 1:

𝐻𝑖
proét (A

𝑛,Q𝑝) = 𝐻0(A𝑛, Ω̃𝑖)𝑑=0. (6.1)

In this subsection, we explain how Le Bras’s proof of this result can be used to prove Theorem 6.1
over C𝑝 . For this, we first note that 𝐻𝑖

proét (A
𝑛,Z/𝑝𝑛) = 𝐻𝑖

ét (A
𝑛,Z/𝑝𝑛) = 0 for 𝑖 ≥ 1, and thus

RΓproét (A
𝑛,Z𝑝) = Rlim

←−−
RΓproét (A

𝑛,Z/𝑝𝑛) = Z𝑝 ,

which shows

𝐻𝑖
proét (A

𝑛,Q𝑝 (1)) = 𝐻𝑖
proét(A

𝑛, 𝜇𝑝∞). (6.2)

Proposition 6.9. The long exact sequence of the logarithm (2.4) induces a sequence

0→ 𝐻1
proét (A

𝑛,O×) log
−−→ 𝐻1

proét (A
𝑛,O) → 𝐻2

proét (A
𝑛, 𝜇𝑝∞) → 0

which is short exact and isomorphic to the (−1)-twist of the sequence

0→ 𝐻0 (A𝑛,Ω1)𝑑=0 → 𝐻0 (A𝑛,Ω1)
𝑑
−→ 𝐻0 (A𝑛,Ω2)𝑑=0 → 0.

Proof. Let 𝑋 = A𝑛
Q𝑝

be the rigid affine space overQ𝑝 so thatA𝑛 = A𝑛
C𝑝

= 𝑋C𝑝 . Choose an isomorphism
Z𝑝 � Z𝑝 (1), that is, a compatible system of 𝑝𝑛-th roots of unity 𝜖 ∈ C♭𝑝 = lim

←−−𝑥 ↦→𝑥𝑝
C𝑝 .

In order to prove Theorem 6.8, Le Bras considers Colmez’s fundamental exact sequence [10, Propo-
sition 8.25.3] in its incarnation in terms of period sheaves on 𝑋proét:

0→ Q𝑝 → B[
1
𝑡 ]

𝜑=1 → BdR/B
+
dR → 0, (6.3)

where 𝑡 = log([𝜀]) (see [28, §8] for the definition of these sheaves). For 𝑖 > 0, he shows
𝐻𝑖

proét (A
𝑛,B[ 1𝑡 ]

𝜑=1) = 0 and 𝐻𝑖
proét (A

𝑛,BdR) = 0. This gives an isomorphism for 𝑖 > 1:

𝐻𝑖
proét (A

𝑛,Q𝑝)
∼
−→ 𝐻𝑖

proét (A
𝑛,B+dR).
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As pointed out to us by Le Bras, this isomorphism is related to our setting in §2 by way of the
following commutative diagram of sheaves on 𝑋proét with short exact rows:

0 𝜇𝑝∞ 𝑈 O 0

0 Q𝑝 (1) B[ 1𝑡 ]
𝜑=𝑝 B+dR/𝑡B

+
dR 0

0 Q𝑝 B[ 1𝑡 ]
𝜑=1 BdR/B

+
dR 0.

log

∼ ·𝑡−1

∼𝜃

·𝑡−1

Using equation (6.2), the 5-lemma and Lemma 6.7, the top two lines induce an isomorphism

Pic𝑣 (A𝑛) = 𝐻1
proét (A

𝑛,𝑈)
∼
−→ 𝐻1

proét(A
𝑛,B[ 1𝑡 ]

𝜑=𝑝).

From the bottom two rows, we thus get a morphism of long exact sequences

. . . Pic𝑣 (A𝑛) 𝐻1
proét (A

𝑛,B+dR/𝑡B
+
dR) 𝐻2

proét (A
𝑛,Q𝑝 (1)) . . .

. . . 0 𝐻1
proét (A

𝑛,BdR/B
+
dR) 𝐻2

proét (A
𝑛,Q𝑝) . . .

log

·𝑡−1 ∼
∼

The map on the top left is injective: This follows from Theorem 1.2.1 using Picét (A
𝑛) = 1. Consequently,

using that the bottom map is an isomorphism, Pic𝑣 (A𝑛) gets identified with the kernel of the middle
vertical map. Using 𝐻1

proét (A
𝑛,BdR) = 0 and the diagram

0 𝑡B+dR B+dR B+dR/𝑡B
+
dR 0

0 B+dR BdR BdR/B
+
dR 0,

∼ ·𝑡−1 ·𝑡−1 ·𝑡−1

this can in turn be identified with the kernel of the boundary map

𝐻1
proét (A

𝑛,B+dR/𝑡B
+
dR) → 𝐻2

proét (A
𝑛, 𝑡B+dR). (6.4)

This can now be understood via Scholze’s Poincaré lemma [36, Corollary 6.13] and its corollaries [28,
Remarque 3.18][8, Corollary 3.2.4]: For 𝜈 : A𝑛

proét → A
𝑛
ét, we have

𝑅𝜈∗B
+
dR =

(
O𝑋 ⊗̂Q𝑝𝐵

+
dR

𝑑
−→ Ω1

𝑋 ⊗̂Q𝑝 𝑡
−1𝐵+dR → . . .

)
.

Here following [28, before Proposition 3.16], for any vector bundle F on 𝑋ét, the sheaf 𝐹⊗̂Q𝑝𝐵+dR is
defined, via the equivalence 𝑋C𝑝 ,ét = lim

←−−𝐿 |Q𝑝
𝑋𝐿,ét, where 𝐿 |Q𝑝 ranges over all finite extensions, as the

compatible system of sheaves 𝐹𝑋𝐿 ⊗̂𝐿𝐵+dR.
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It follows from this that we get a distinguished triangle in 𝐷 (A𝑛
ét), written vertically

𝑅𝜈∗𝑡B
+
dR

(
O𝑋 ⊗̂Q𝑝 𝑡𝐵

+
dR Ω1

𝑋 ⊗̂Q𝑝𝐵
+
dR . . .

)
𝑅𝜈∗B

+
dR

(
O𝑋 ⊗̂Q𝑝𝐵

+
dR Ω1

𝑋 ⊗̂Q𝑝 𝑡
−1𝐵+dR . . .

)
𝑅𝜈∗B

+
dR/𝑡B

+
dR

(
O𝑋 Ω̃1 . . .

)
,

∼ 𝑑 𝑑

∼ 𝑑 𝑑

∼ 0 0

where the right-hand side is in fact a short exact sequence of complexes. Chasing the diagram, this
shows that the kernel of equation (6.4) gets identified with that of the (−1)-twist of

𝑑 : 𝐻0(A𝑛,Ω1) → 𝐻0 (A𝑛,Ω2)𝑑=0. �

Remark 6.10. Bosco [8] has generalised Le Bras’s method to show that, more generally, for any smooth
Stein space X defined over a discretely valued field extension 𝐿 |Q𝑝 , there is over the completion K of
the algebraic closure of L an exact sequence

0→ 𝐻𝑖
dR(𝑋𝐾 )⊗̂𝐾 𝑡

−𝑖+1𝐵+dR → 𝐻𝑖 (𝑋𝐾 ,B
+
dR) → Ω̃𝑖 (𝑋𝐾 )

𝑑=0 → 0.

Elaborating on the above proof, one might therefore be able to show in this generality that the sequence
from Theorem 1.2.1 is a short exact sequence

0→ Pican(𝑋𝐾 ) → Pic𝑣 (𝑋𝐾 ) → Ω̃1(𝑋𝐾 )
𝑑=0 → 0.

6.3. The intermediate space 𝐵 × A

While being conceptually satisfying, the approach of the last section only works for K a completed
algebraic closure of a discretely valued field. In the rest of this section, we shall give an alternative proof
of Theorem 6.1 that avoids the input of the Poincaré lemma and works over general algebraically closed
complete K. It uses more classical methods and arguably gives a more concrete reason why A𝑛 has a
‘minimal amount’ of v-line bundles (‘minimal’ as we know Pic𝑣 (A𝑛) must include 𝐻0(A𝑛, Ω̃1)𝑑=0 by
Corollary 4.4).

The basic idea behind the proof is that for any rigid space X, the space 𝑋 ×A has no more invertible
global sections than X and therefore has few descent data for line bundles from pro-étale covers. We
would like to apply this to 𝑋 = 𝐵 := 𝐵1, which has an explicit perfectoid Z𝑝-Galois cover 𝐵 that is
easy to work with. Since O×(𝐵 ×A) = O×(𝐵), the Cartan–Leray exact sequence Corollary 2.10 for the
Galois cover 𝐵 × A→ 𝐵 × A is then of the form

0→ Pic𝑣 (𝐵) → Pic𝑣 (𝐵 × A) → Pic𝑣 (𝐵 × A)Z𝑝 .

Using Theorem 1.2.2b, we would like to see that the map HTlog identifies this with

0→ 𝐻0 (𝐵, Ω̃1) → 𝐻0 (𝐵 × A, Ω̃1)𝑑=0 → O(𝐵)⊗̂𝐾𝐻0(A, Ω̃1) → 0,

where if 𝑇1 is the coordinate on B and 𝑇2 that on A, the last map sends 𝑓 𝑑𝑇1 + 𝑔𝑑𝑇2 ↦→ 𝑔𝑑𝑇2. However,
this fails to be exact because the de Rham complex of B is not exact on global sections. As usual, this
can be fixed by replacing B by the ‘overconvergent unit ball’. Covering A by overconvergent unit balls
of increasing radii, we get the desired result.
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To simplify notation, let us fix a trivialisation Z𝑝 (1) � Z𝑝 We start by constructing the explicit
perfectoid Galois cover 𝐵→ 𝐵. For this we use the pro-étale perfectoid Z𝑝-torsor

G̃𝑚 = lim
←−−[𝑝]

G𝑚 → G𝑚.

Lemma 6.11. Embed 𝐵 ↩→ G𝑚 via 𝑇 ↦→ 1 + 𝑝𝑇 . Then the pullback 𝐵 := 𝐵 ×G𝑚 G̃𝑚 of B along
G̃𝑚 → G𝑚 is isomorphic over K to the perfectoid unit disc Spa𝐾 〈𝑋1/𝑝∞〉.

Here T and X are different formal variables, and the map is not given by sending 𝑇 ↦→ 𝑋 .

Proof. We have 𝐵 = Spa(𝑅, 𝑅◦), where 𝑅 := 𝐾 〈𝑌±1/𝑝∞〉〈𝑌−1
𝑝 〉; thus, 𝐵 is affinoid perfectoid. Let

𝑝♭ ∈ 𝐾♭ be such that |𝑝♭ | = |𝑝 |. Write 𝑌 ′ for the parameter of G𝑚,𝐾 ♭ . Then

|𝑌 (𝑥) − 1| ≤ |𝑝 | ⇔ |𝑌 ′(𝑥♭) − 1| ≤ |𝑝♭ | for any 𝑥 ∈ G̃𝑚.

This shows 𝐵♭ = Spa(𝑅♭, 𝑅♭◦), where 𝑅♭ = 𝐾♭〈𝑌 ′±1/𝑝∞〉〈𝑌
′−1
𝑝♭
〉. But 𝑅♭ is isomorphic to 𝐾♭〈𝑋1/𝑝∞〉

via the map that sends 𝑋1/𝑝𝑛 ↦→ (𝑌
′−1
𝑝♭
)1/𝑝

𝑛 . �

Lemma 6.12. For any affinoid perfectoid space X over K, there is a natural isomorphism

𝐻1
𝑣 (𝑋 × 𝐵,O) = O(𝑋)⊗̂𝐾𝐻0 (𝐵, Ω̃1).

In particular, for any profinite set S, we have 𝐻1
𝑣 (𝑆 × 𝑋 × 𝐵,O) = Mapcts(𝑆, 𝐻

1
𝑣 (𝑋 × 𝐵,O)).

Proof. By Corollary 2.9, the Z𝑝-Galois cover 𝑋 × 𝐵→ 𝑋 × 𝐵 induces isomorphisms

𝐻1
𝑣 (𝑋 × 𝐵,O) = 𝐻1

cts(Z𝑝 ,O(𝑋 × 𝐵)) = O(𝑋)⊗̂𝐻1
cts(Z𝑝 ,O(𝐵)),

where the last isomorphism is from [36, Lemma 5.5]. Then we use that for 𝑋 = Spa(𝐾) we already
know that 𝐻1

cts(Z𝑝 ,O(𝐵)) = 𝐻1
𝑣 (𝐵,O) = 𝐻0 (𝐵, Ω̃1). �

Lemma 6.13. For any profinite set S, the logarithm defines an injection

log : 𝐻1
𝑣 (𝐵 × 𝐵 × 𝑆,𝑈) ↩→ 𝐻1

𝑣 (𝐵 × 𝐵 × 𝑆,O).

In particular, the specialisation 𝐻1
𝑣 (𝐵 × 𝐵 × 𝑆,𝑈) → Map(𝑆, 𝐻1

𝑣 (𝐵 × 𝐵,𝑈)) is injective.

Proof. Choose a profinite presentation 𝑆 = lim
←−−𝑖∈𝐼

𝑆𝑖 . We need to show that the map

𝐻1
ét(𝐵 × 𝐵 × 𝑆, 𝜇𝑝∞) → 𝐻1

𝑣 (𝐵 × 𝐵 × 𝑆,𝑈)

vanishes. For this, we use that by Lemma 6.11 there is an isomorphism of diamonds

𝐵 × 𝐵 × 𝑆 = lim
←−−𝑛∈N,𝑖∈𝐼

𝐵 (𝑛) × 𝐵 × 𝑆𝑖 ,

where 𝐵 (𝑛) is B in the variable 𝑋1/𝑝𝑛 . By [35, Proposition 14.9], we have

𝐻1
ét (𝐵 × 𝐵 × 𝑆, 𝜇𝑝∞) = lim

−−→𝑛,𝑖
𝐻1

ét (𝐵
(𝑛) × 𝐵 × 𝑆𝑖 , 𝜇𝑝∞).

The result now follows as by Lemma 6.6, we have 𝐻1
ét (𝐵

2 × 𝑆𝑖 ,𝑈) ↩→ Picét (𝐵
2 × 𝑆𝑖) = 1. �

Lemma 6.14. Let Y be either of B or 𝐵. Then

Pic𝑣 (𝑌 × A) = 𝐻1
𝑣 (𝑌 × A,𝑈) = lim

←−−𝑠∈N
𝐻1

𝑣 (𝑌 × 𝐵𝑠 ,𝑈).
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Proof. Arguing like in Lemma 6.7, for the first equality it suffices to prove that O×(𝑌 ×A) = 𝐾×/(1+𝔪)
and 𝐻1

𝑣 (𝑌 × A,O
×
) = 1. For 𝐵 × A, this can be seen exactly like in Lemma 6.7. To deduce the case of

𝐵 × A, write 𝐵 ∼ lim
←−−𝑛

𝐵 (𝑛) as a tilde-limit, where 𝐵 (𝑛) is the unit disc in the parameter 𝑋1/𝑝𝑛 , then by
Lemma 2.22,

𝐻𝑖
𝑣 (𝐵 × A,O

×
) = lim
−−→𝑛∈N

𝐻𝑖
𝑣 (𝐵

(𝑛) × A,O×) for 𝑖 = 0, 1.

The second equality follows from the Čech-to-sheaf sequence by the following lemma. �

Lemma 6.15. Let Y be any affinoid rigid or perfectoid space. Then for the cover 𝔘 = (𝑌 × 𝐵𝑠)𝑠∈N of
𝑌 × A, we have �̌�𝑖 (𝔘,𝑈) = �̌�𝑖 (𝔘,O×) = 1 for 𝑖 ≥ 1.

Proof. The vanishing for 𝑖 ≥ 2 follows from 𝔘 being an increasing cover indexed over N. For 𝑖 = 1, it
suffices by Lemma 6.6 to see that, for 𝑅 = O(𝑌 ), the following map is surjective:∏

𝑠≥1(1 +𝔪𝑅◦〈𝑝𝑠𝑇〉) →
∏

𝑠≥1 (1 +𝔪𝑅◦〈𝑝𝑠𝑇〉), ( 𝑓𝑠)𝑠∈N ↦→ ( 𝑓𝑠 𝑓
−1
𝑠+1)𝑠∈N.

This can be seen like in [18, Lemma 6.3.1]: Let 𝑔 = (𝑔𝑠)𝑠∈N be an element on the right. After rescaling
by an element of (1 +𝔪𝑅◦)𝑠∈N, we can assume that 𝑔𝑠 = 1 + 𝑝𝑠𝑇 (. . . ). Then for any 𝑟 ∈ N, the product
𝑓𝑟 :=

∏
𝑠≥𝑟 𝑔𝑠 converges and defines a preimage ( 𝑓𝑟 )𝑟 ∈N. �

6.4. The overconvergent Picard group of the cylinder 𝐵 × A

In the rigid setting, the de Rham complex of the closed unit disc B is not exact on global sections, the
issue being convergence of primitive functions at the boundary. It is well-known that this can be resolved
by considering overconvergent functions. For 𝐵 × A, this means:

Lemma 6.16. Recall that 𝐵𝑠 is the disc of radius 𝑠 ∈ |𝐾 |. The de Rham complex of 𝐵𝑠 × A

0→ 𝐾 → O(𝐵𝑠 × A)
𝑑
−→ Ω1(𝐵𝑠 × A)

𝑑
−→ Ω2(𝐵𝑠 × A) → . . .

becomes exact after applying lim
−−→𝑠>1

.

The key calculation is now that of the ‘overconvergent Picard group’ of 𝐵 × A.

Proposition 6.17. The Hodge–Tate logarithm from Theorem 1.2.1 defines an isomorphism

HTlog : lim
−−→𝑠>1

Pic𝑣 (𝐵𝑠 × A)
∼
−→ lim
−−→𝑠>1

𝐻0(𝐵𝑠 × A, Ω̃1)𝑑=0.

Proof. By Lemma 6.15, we have Picét (𝐵𝑠 × A) = lim
←−−𝑟 ∈N

Picét (𝐵𝑠 × 𝐵𝑟 ) = 1. It therefore follows from
Theorem 1.2.1 that the Hodge–Tate logarithm is an injective map

HTlog : Pic𝑣 (𝐵𝑠 × A) ↩→ 𝐻1
𝑣 (𝐵𝑠 × A,O) = 𝐻0(𝐵𝑠 × A, Ω̃

1).

We already know that the image contains all closed differentials: By Lemma 6.16,

lim
−−→𝑠>1

𝐻0 (𝐵𝑠 × A,Ω1)𝑑=0 = lim
−−→𝑠>1

𝑑 (O(𝐵𝑠 × A)),

which we know is in the image by Corollary 4.4.
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To prove the converse, we start by considering the Cartan–Leray sequences for U and O associated to
𝐵 × 𝐵→ 𝐵 × 𝐵. Lemmas 6.12 and 6.13 guarantee that the conditions of Proposition 2.8.2 are satisfied,
so the logarithm induces a morphism of short exact sequences

0 𝐻1
cts(Z𝑝 ,𝑈 (𝐵 × 𝐵)) 𝐻1

𝑣 (𝐵 × 𝐵,𝑈) 𝐻1
𝑣 (𝐵 × 𝐵,𝑈)

Z𝑝 0

0 𝐻1
cts(Z𝑝 ,O(𝐵 × 𝐵)) 𝐻1

𝑣 (𝐵 × 𝐵,O) 𝐻1
𝑣 (𝐵 × 𝐵,O)

Z𝑝 0.

The right vertical map is injective by Lemma 6.13. The bottom row can be identified with

0→ 𝐻0(𝐵,Ω1)⊗̂𝐾O(𝐵) → 𝐻0(𝐵 × 𝐵,Ω1) → O(𝐵)⊗̂𝐾𝐻0 (𝐵,Ω1) → 0 (6.5)

by Lemma 6.12. This expresses that any differential decomposes as 𝑔(𝑇1, 𝑇2)𝑑𝑇1 + 𝑓 (𝑇1, 𝑇2)𝑑𝑇2, where
𝑇1 is the differential on the first factor of 𝐵 × 𝐵 and 𝑇2 is that on the second.

We now replace B by 𝐵𝑠 , then by Lemma 6.14 we get for 𝑠→∞ a commutative diagram

0 𝐻1
cts(Z𝑝 ,O×(𝐵 × A)) Pic𝑣 (𝐵 × A) Pic𝑣 (𝐵 × A)Z𝑝

0 𝐻0 (𝐵,Ω1)⊗̂O(A) 𝐻0(𝐵 × A,Ω1) O(𝐵)⊗̂𝐻0(A,Ω1) 0,

(6.6)

here the top-left entry is as described by the Cartan–Leray sequence of 𝐵 × A→ 𝐵 × A.
We now have a closer look at the left vertical map: Here O×(𝐵 × A) = O×(𝐵), for which

HTlog : 𝐻1
cts(Z𝑝 ,O×(𝐵)) → Pic𝑣 (𝐵) −→ 𝐻0 (𝐵,Ω1)

is an isomorphism by Theorem 1.2.2b. We conclude that the image of the leftmost vertical map in
diagram (6.6) consists precisely of the submodule 𝐻0(𝐵,Ω1).

Next, we replace the first factor B by 𝐵𝑠 which in the colimit 𝑠→ 1 results in a diagram

0 lim
−−→𝑠>1

𝐻0(𝐵𝑠 ,Ω1) lim
−−→𝑠>1

Pic𝑣 (𝐵𝑠 × A) coker 0

0 lim
−−→𝑠>1

𝐻0(𝐵𝑠 ,Ω1)⊗̂O(A) lim
−−→𝑠>1

𝐻0 (𝐵𝑠 × A,Ω1) lim
−−→𝑠>1

O(𝐵𝑠)⊗̂𝐻
0(A,Ω1) 0

with exact rows. We claim that the bottom sequence restricts to an exact sequence

0→ lim
−−→𝑠>1

𝐻0(𝐵𝑠 ,Ω1) → lim
−−→𝑠>1

𝐻0 (𝐵𝑠 × A,Ω1)𝑑=0 → lim
−−→𝑠>1

O(𝐵𝑠)⊗̂𝐻
0 (A,Ω1) → 0.

Left-exactness is clear. For any differential 𝜔2 = 𝑓 (𝑇1, 𝑇2)𝑑𝑇2 in O(𝐵𝑠)⊗̂𝐻
0 (A,Ω1), we can find

ℎ(𝑇1, 𝑇2) ∈ O(𝐵𝑠 × A) such that 𝜕ℎ/𝜕𝑇2 = −𝜕 𝑓 /𝜕𝑇1. For any such function, 𝜔 := ℎ𝑑𝑇1 + 𝑓 𝑑𝑇2 is a
closed differential on 𝐵𝑠 × A which the last map sends to 𝜔2.

By Lemma 6.16, we can even find 𝑔 ∈ lim
−−→𝑠>1

O(𝐵𝑠 × A) such that 𝜔 = 𝑑𝑔. Thus, the dashed
map is surjective, hence the right vertical map is an isomorphism. Comparing the image of the top
row in the bottom row with the last exact sequence, using that the image of Pic𝑣 (𝐵𝑠 × A) contains
𝐻0 (𝐵𝑠 × A,Ω1)𝑑=0, this shows that, inside 𝐻0(𝐵𝑠 × A,Ω1), we have

lim
−−→𝑠>1

Pic𝑣 (𝐵𝑠 × A) = lim
−−→𝑠>1

𝐻0(𝐵𝑠 × A,Ω1)𝑑=0. �
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6.5. The Picard group of A𝑛

Proof of Theorem 6.1. Since Pican(A
𝑛) = 1, we have by Theorem 1.2 an injective map

HTlog : Pic𝑣 (A𝑛) ↩→ 𝐻0(A𝑛, Ω̃1).

It is clear from Corollary 4.4 and exactness of the de Rham complex of A𝑛 that

𝐻0 (A𝑛, Ω̃1)𝑑=0 = 𝑑 (O(A𝑛)) ⊆ im(HTlog).

To prove the other containment, we first consider the case of 𝑛 = 2: In this case, the restriction from
A × A to 𝐵𝑠 × A for any 𝑠 > 1 defines a commutative diagram

Pic𝑣 (A × A) 𝐻0 (A × A, Ω̃1)

lim
−−→𝑠>1

Pic𝑣 (𝐵𝑠 × A) lim
−−→𝑠>1

𝐻0(𝐵𝑠 × A, Ω̃1).

By Proposition 6.17, the image of the bottom map lands in the closed differentials. As the map on the
right is injective, this also holds for the top map. This proves the case of 𝑛 = 2.

The general case follows from the one of 𝑛 = 2: Let 𝑓 ∈ 𝐻0 (A𝑛, Ω̃1) be in the image of HTlog, and
suppose that 𝑑𝑓 ≠ 0. We can write this as

𝑑𝑓 =
∑

𝑖< 𝑗 𝑔𝑖 𝑗𝑑𝑋𝑖 ∧ 𝑑𝑋 𝑗 .

Then 𝑑𝑓 ≠ 0 if and only if there is some 0 ≠ 𝑔𝑖 𝑗 ∈ O(A𝑛), and after reordering we can assume
0 ≠ 𝑔12 : A𝑛 (𝐾) → 𝐾 is nontrivial. We may thus find 𝑧 ∈ A𝑛−2 such that, under

𝜑 : A2 (id,𝑧)−−−−→ A2 × A𝑛−2,

f pulls back to 𝜑∗ 𝑓 which still satisfies 𝑑 (𝜑∗ 𝑓 ) = 𝜑∗𝑑𝑓 ≠ 0. But the commutative diagram

Pic𝑣 (A𝑛) Pic𝑣 (A2)

𝐻0 (A𝑛, Ω̃1) 𝐻0(A2, Ω̃1)

𝜑∗

𝜑∗

shows that 𝜑∗ 𝑓 is in the image of Pic𝑣 (A2), which implies 𝑑 (𝜑∗ 𝑓 ) = 0, a contradiction.
The case of Pic𝑣 (G𝑘

𝑚×A
𝑛) is analogous: Here we first note that 𝐻0 (G𝑘

𝑚×A
𝑛, Ω̃1)𝑑=0 is generated as

a group by 𝑑 (O(G𝑘
𝑚×A

𝑛)) plus the differentials 𝑎 ·𝑑𝑌𝑖/𝑌𝑖 for 𝑎 ∈ 𝐾 and for each of theG𝑚-factors. The
latter are in the image of Pic𝑣 (G𝑘

𝑚 × A
𝑛) as we see via pullback along the projection G𝑘

𝑚 × A
𝑛 → G𝑚

since Pic𝑣 (G𝑚) = 𝐻0(G𝑚, Ω̃1) by Theorem 1.2.2b. The rest of the proof goes through analogously by
considering any embedding 𝐵𝑠 ↩→ G𝑚. �
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