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We consider suspensions of finite-size neutrally buoyant rigid spherical particles in
channel flow and investigate the relevance of different momentum transfer mechanisms
and the relation between the local particle dynamics and the bulk flow properties in
the highly inertial regime. Interface-resolved simulations are performed in the range of
Reynolds numbers 3000 ≤ Re ≤ 15 000 and solid volume fractions 0 ≤ φ ≤ 0.3. The
Lagrangian particle statistics show that pair interactions are highly inhomogeneous and
dependent on the distance from the wall: in their vicinity, the underlying mean shear drives
the pair interactions, while a high degree of isotropy, dictated by more frequent collisions,
characterizes the core region. Analysis of the momentum balance reveals that while the
particle-induced stresses govern the dynamics in dense conditions, φ = 0.3, and moderate
Reynolds numbers, Re < 10 000, the turbulent stresses take over at higher Reynolds
numbers. This behaviour is associated with a reduced particle migration toward the
channel core, which decreases the importance of the particle-induced stress and increases
the turbulent activity. Our results indicate that Reynolds stresses and the associated
velocity fluctuations, characteristics of near-wall turbulence, prevail at high inertia over
the resistance to deformation presented by the particles for volume fractions lower than
30 %.

Key words: suspensions, particle/fluid flow

† Email address for correspondence: ayousefi@mech.kth.se

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 955 A30-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:ayousefi@mech.kth.se
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.1078&domain=pdf
https://doi.org/10.1017/jfm.2022.1078


A. Yousefi, P. Costa, F. Picano and L. Brandt

1. Introduction

Particle-laden suspensions are abundant in biological, industrial and geophysical flows
such as blood flow in the human body, the food industry and pyroclastic flows from
volcanoes, with most of these applications concerning turbulent flows. The presence of
solid particles introduces additional momentum interactions between the particles and the
fluid, which results in modulation of the flow structures and of the overall drag; see e.g.
Brandt & Coletti (2022) for a recent review of the topic. Considering the typical Reynolds
numbers encountered in the mentioned applications, inertia plays a significant role at the
particle scale. Here, we therefore examine in detail how flow and the particle dynamics
change when increasing the Reynolds number to values higher than those typically adopted
in previous fully resolved simulations. The flow of particle suspensions has been the object
of several previous studies, and here we present a brief review of the main findings, starting
from viscous flows and increasing the significance of inertial effects.

The rheological properties of suspensions, i.e. the relation between the applied rate of
strain and the resulting stress, have been often studied in the viscous Stokesian regime,
where the inertial effects are negligible. The presence of particles affects the deformation
of the surrounding fluid and the effective viscosity μe of the particle–fluid mixture depends
on the dynamics of the dispersed phase as well as the imposed shear rate. The first attempts
can be traced back to Einstein (1905, 1911), who derived an analytical linear relation for the
effective viscosity of a dilute suspension (assuming negligible inter-particle interactions):
μe = μ(1 + 2.5φ), with μ the viscosity of the fluid phase and φ the volume fraction of
the dispersed phase. A quadratic correction, accounting for mutual particle interactions,
was later proposed for slightly higher volume fractions (Batchelor 1970; Batchelor &
Green 1972). Only semi-empirical formulas, like those from von Eilers (1941) and Krieger
& Dougherty (1959), are, however, available for characterizing the rheology at higher
concentrations.

Inertial effects, yet in the laminar regime, induce significant modifications to the
suspension microstructure and create a local anisotropy responsible for shear thickening,
and thus a change of the macroscopic suspension dynamics; see e.g. Kulkarni & Morris
(2008), Brown & Jaeger (2009) and Yeo & Maxey (2011). This shear-thickening behaviour
can be quantitatively estimated by calculating the increase in effective volume fraction due
to a region downstream of a reference particle which is devoid of any particle flux (Picano
et al. 2013). The highly inertial regime was considered in the pioneering work of Bagnold
(1954), who experimented with neutrally buoyant particles in a Taylor–Couette set-up at
varying shear rates. At small shear rates, he observed a viscous Newtonian-like regime –
shear stress varied linearly with the applied shear rate – with a viscosity corrected for the
bulk particle concentration. Even at these small shear rates, a non-Newtonian behaviour
was observed in the form of normal or dispersive stresses. On the other hand, at higher
shear rates, Bagnold observed a particle-inertia dominated regime, where the shear stress
varies quadratically with the applied shear rate (see also Hunt et al. 2002).

Increasing the Reynolds number, the macroscopic flow behaviour changes rapidly
from the laminar regime to the chaotic dynamics of transitional and turbulent flows.
Matas, Morris & Guazzelli (2003) explored the influence of neutrally buoyant spherical
particles on the transition to turbulence in pipe flows. For the range of particle size
tested by the authors, they observed that relatively smaller particles lead to a monotonic
concentration-dependent and size-independent increase in the critical Reynolds number
when transition happens; the delay in transition was explained by the increase of the
effective viscosity of the suspension. However, a non-monotonic behaviour was observed
for relatively larger particles: an initial decrease of the critical Reynolds number with the
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Inertia in channel flows of neutrally buoyant particles

solid volume fraction, with a minimum which is lower for larger particles, followed by
an increase when further increasing the particle concentration; see also Yu et al. (2013).
These results were confirmed by the simulations of Loisel et al. (2013), who showed that
modulation of the velocity fluctuations plays a major role for larger particles.

Lashgari et al. (2014, 2016) confirmed the existence of three different regimes for
suspension of finite-sized particulate flows when changing the volume fraction and
the Reynolds number: a laminar-like regime where the viscous stress is dominant, a
turbulent-like regime where the turbulent Reynolds stress plays the main role in the
momentum transfer across the channel and a third regime, denoted as inertial shear
thickening, characterized by a significant enhancement of the wall shear stress due to the
noticeable contribution of the particle stress. The authors showed that different momentum
transfer mechanisms were at play at the microscopic scale: a uniform particle distribution
was observed in flows dominated by the turbulent stress and accumulation of particles in
the core region for the flows dominated by the particle-induced stress. Picano, Breugem
& Brandt (2015) studied dense suspensions in turbulent channel flow up to volume
fraction φ = 0.2. They showed that the velocity fluctuation intensities and the Reynolds
shear stress gently increase with volume fraction and then sharply decrease after a local
maximum, even though the overall drag still increases. They attributed the drag increase
to the enhancement of turbulence activity up to a certain volume fraction and then to the
particle-induced stresses, which govern the dynamics at dense conditions. Costa et al.
(2016) explained that the turbulent drag of suspensions is always higher than what is
predicted by only accounting for the effective viscosity of the suspension. They attributed
this increase to the formation of a particle wall layer, a layer of particles forming near
the wall in turbulent suspensions. Based on the thickness of the particle wall layer, they
proposed a relation able to predict the friction Reynolds number as a function of the bulk
Reynolds number. Note, however, that this particle wall layer almost completely disappears
in the case of oblate particles, leading to a drag lower than that of the single-phase turbulent
flow (Ardekani et al. 2017).

Building on the previous studies of Lashgari et al. (2016) and Picano et al. (2015), the
main aim of the present work is to investigate the interactions between the phases of a
suspension with the emphasis on the highly inertial and dense conditions – aiming to
approach the so-called Bagnoldian regime with fully resolved simulations by extending
the range of volume fractions and Reynolds numbers investigated in previous studies. In
particular, we will show that in dense conditions, the Reynolds shear stresses become
more important than the particle-induced stresses when increasing the inertial effects,
that the particles’ dynamics is highly inhomogeneous and that different mechanisms
dictate the particle interactions at different distances from the walls. In other words, the
simulations presented here, corroborated by recent experiments, seem to disprove the
conjecture left by Bagnold (1954); i.e. ‘it seems that the residual fluid shear stress due to
turbulence progressively gives place to grain shear stress’ when increasing volume fraction
and Reynolds number. Our results indicate that Reynolds stresses and the associated
correlated motions, characteristics of near-wall turbulence, would eventually prevail over
the resistance to deformation presented by the rigid finite-size particles for volume
fractions lower than 30 %.

2. Methods and computational set-up

2.1. Governing equations
We study the motion of suspended rigid neutrally buoyant particles in a Newtonian carrier
fluid. The evolution of the fluid phase is described by the incompressible Navier–Stokes
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equations

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇) u = −∇( p + pe)

ρ
+ ν∇2u + f , (2.2)

where ρ is the fluid density, ν the fluid kinematic viscosity, p the fluid pressure with respect
to an arbitrary constant reference value and ∇pe the external pressure gradient that serves
as the driving force for the flow. Also, u = (u, v, w) is the flow velocity, with u, v and w
being its x (streamwise), y (wall-normal) and z (spanwise) components. The source term
on the right-hand side of (2.2), f , accounts for the coupling between finite-size particles
and the carrier fluid.

The Newton–Euler equations govern the motion of each spherical particle with mass
mp, and moment of inertia Ip

mp
dup

dt
=
∮

∂Ωp

τ · n dA + F col, (2.3)

Ip
dωp

dt
=
∮

∂Ωp

r × (τ · n) dA + T col, (2.4)

where here, up and ωp denote the particle linear and angular velocity vectors, r the
position vector with respect to the particle centre and n the outward-pointing unit normal
to the particle surface ∂Ωp. The fluid stress tensor is given by τ = −( p + pe)I +
ρν(∇u + ∇uT), and F col and T col denote the force and torque resulting from short-range
particle–particle or particle–wall interactions, such as lubrication and solid contact.

Equations ((2.1)–(2.4)) are coupled through the no-slip and no-penetration conditions at
the particle surface

u|∂Ωp = up + ωp × r. (2.5)

2.2. Numerical method
The governing equations are solved by a Navier–Stokes solver coupled with an immersed
boundary method (IBM) for interphase coupling. The direct forcing IBM used here is the
one initially proposed by Uhlmann (2005) and extended by Breugem (2012) to fully resolve
fluid–solid interactions with second-order convergence for several integral observables.
The method has been used extensively with several validations; see e.g. Picano et al.
(2015), Lashgari et al. (2016), de Motta et al. (2019), Yousefi, Ardekani & Brandt (2020)
and Yousefi et al. (2021). The method and implementation details have been carefully
presented in these references. Below, we only present a brief description of the method,
for the sake of completeness.

The Navier–Stokes equations are solved on a fixed Eulerian mesh, while the
spherical particles are discretized by a set of moving Lagrangian points, uniformly
distributed on their surface. The coupling between these two phases is achieved by the
IBM forcing in three steps: (i) the fluid prediction velocity is interpolated from the
Eulerian to the Lagrangian grid, (ii) the IBM force is calculated from the difference
between the interpolated local fluid velocity and the local particle velocity on each
Lagrangian grid point and (iii) the resulting IBM force is spread from the Lagrangian
to the Eulerian grid points. The method uses the regularized Dirac delta function of
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Roma, Peskin & Berger (1999) to perform interpolation and spreading operations, with
the support of three grid cells along each direction.

When the distance between particles or with a wall becomes smaller than the grid
spacing, an additional lubrication correction, which also accounts for surface roughness
effects at very close proximity, is added to capture the correct particle dynamics.
Finally, when the particles are in contact, the lubrication force is switched off and a
soft-sphere collision model is activated to model collisions/contacts from the relative
velocity and (slight) overlap of colliding particles. Here, the particles have been considered
to be frictionless, with a normal dry coefficient of restitution of 0.97, which is typical
value for hard materials such as glass or steel spheres; see Foerster et al. (1994).
These collision parameters may become dynamically significant for denser cases, where
sustained solid–solid contacts are frequent and the mediation of the collisional dynamics
by short-range hydrodynamic interactions becomes less important. Nevertheless, we
decided to use frictionless, nearly perfectly elastic spheres to keep the number of governing
parameters small. More details on the short-range models and corresponding validations
can be found in Costa et al. (2015).

The numerical method was implemented in a parallel framework for simulations on
many CPUs, using a pencil domain decomposition for the flow, and a leader-workers
strategy for the particles, as described in Costa (2017).

2.3. Computational set-up
In the present work, we investigate the channel flow between two parallel walls, laden
with rigid spherical particles. The size of the computational domain is Lx = 6h, Ly = 2h
and Lz = 3h in the streamwise, wall-normal and spanwise directions, where h is half the
distance between the channel walls. The flow is periodic in the streamwise and spanwise
directions, with no-slip and no-penetration boundary conditions imposed at the bottom
and top walls. The flow is forced by a uniform pressure gradient which ensures a constant
bulk velocity, Ub. The flow dynamics is governed by three parameters: the Reynolds
number Re ≡ Ub(2h)/ν, the particle size ratio Dp/h and the bulk volume fraction of
solid neutrally buoyant particles φ = NpVp/Vt, where Ub is the flow bulk velocity, Dp
the particle diameter, Np the total number of particles and Vp and Vt the volumes of a
particle and of the computational domain. The particle size ratio is Dp/h = 1/7.5 for all
cases, while the Reynolds number varies in the range 3000 ≤ Re ≤ 15 000 (by changing
the viscosity), and the particle volume fraction 0 ≤ φ ≤ 0.3. The number of particles for
the highest volume fraction, φ = 0.3, is 8702.

Since the Reynolds number spans over a large range, we use three different grid
resolutions to secure the resolution for all cases. The parameters pertaining to the grid
resolution are summarized in table 1.

3. Results

We start by reporting the mean wall shear stress, τw, expressed in terms of a friction factor,
f = 2τw/(ρU2

b), for the different cases. Figure 1(a) shows f as a function of the Reynolds
number for different particle volume fractions. For most cases, consistently with previous
observations, the friction factor increases with increasing volume fraction. Interestingly,
this trend is not observed at lower Reynolds numbers, with the case with φ = 0.2 showing
a lower value of f than for φ = 0.1. Adding the suspended phase alters the rheological
properties of the suspension, which can be quantified using the relative viscosity νr, i.e.
the ratio between the effective viscosity of the suspension and the viscosity of the fluid
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Re Dp/Δx Nx × Ny × Nz NL Δx+

3000 16 720 × 240 × 360 746 0.85
6000, 9000 32 1440 × 480 × 720 3099 0.79, 1.12
12 000, 15 000 64 2880 × 960 × 1440 12 629 0.72, 0.88

Table 1. Computational parameters for different values of the Reynolds number. Here, Δx denotes the Eulerian
grid spacing, Nx, Ny and Nz the number of Eulerian grid points in the x, y and z coordinate directions, NL
number of Lagrangian grid points on the surface of each particle and Δx+ ≡ uτ Δx/ν the Eulerian grid spacing
in inner-scale units.
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Figure 1. Friction factor, f = τw/(0.5ρU2
b), vs (a) the Reynolds number and (b) the Reynolds number based

on effective viscosity, Ree = Re/νr; the star symbols represent experimental data of Zade (2019) in pipe flow
with the size ratio between the pipe to particle diameter equal to 16. (c) Friction Reynolds number Reτ = uτ h/ν

and turbulent friction Reynolds number ReT
τ = uT

τ h/ν vs the bulk volume fraction φ. (d) Effective viscosity,
νe, vs Bagnold number for different values of φ; the inset reports the Bagnold number as a function of the
Reynolds number.

phase νr = νe/ν. Figure 1(b) shows therefore the same data vs the Reynolds number based
on effective viscosity, Ree = Re/νr. The increased effective viscosity νe is obtained by the
semi-empirical fit from von Eilers (1941)

νr = νe

ν
=
(

1 + 5φ

4(1 − φ/φmax)

)2

, (3.1)
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with φmax = 0.65, corresponding to the volume fraction at random close packing.
Comparing the laden cases with the single-phase ones, we observe that for the range
of parameters considered here, the friction factor collapses relatively well to values
larger than the single-phase ones when displayed vs the normalized Reynolds number,
Ree = Re/νr. In the figure, we also report the experimental data of Zade (2019), indicated
by stars, for pipe flow with similar relative particle size (the pipe to particle diameter ratio
is equal to 16) and even larger values of the Reynolds number. The data show that, at
higher Re, the friction factor of the multiphase cases approaches the single-phase one and
goes even below it for the largest Reynolds numbers considered. This behaviour, consistent
with the trend from the present simulations, suggests that, although an effective-viscosity
description is not sufficient to estimate the drag in the suspension at intermediate values
of the Reynolds number, it becomes relevant again at higher inertia. Similar results are
obtained from the experiments in Agrawal (2021), where the pressure drops in particle
suspensions are also investigated in high Reynolds number pipe flow.

Figure 1(c) reports the friction Reynolds number Reτ ≡ uτ h/ν as an indication of
the total drag, together with the turbulent friction Reynolds number ReT

τ ≡ uT
τ h/ν to

quantify the level of turbulence activity, where uτ ≡ √
τw/ρ is the friction velocity and

uT
τ ≡ √

d〈u′v′〉/dy|y=h (i.e. the square root of the wall-normal derivative of the Reynolds
stress profile at the channel centreline; see e.g. Pope 2000). The values of the two Reynolds
numbers are close in the unladen cases, φ = 0, as expected. Increasing the volume fraction,
Reτ increases monotonically, while ReT

τ has a non-monotonic behaviour: increasing with
φ (at a slower rate compared with Reτ ) up to a certain point and then decreasing, further
increasing the volume fraction. All the investigated cases show a significant decrease of
ReT

τ at φ = 0.3; in § 3.1, we will assess the predictions of the turbulent activity from
ReT

τ by considering the contribution of the Reynolds shear stresses to the streamwise
momentum budget and showing how this measure may mask the complete dynamics in
multiphase flows where addition of a dispersed phase differently modulates the near-wall
and centreline dynamics.

To study inertial suspensions, Bagnold (1954) introduced the parameter known as
the Bagnold number, Ba = 4Rep

√
λ, where λ = 1/((0.74/φ)1/3 − 1) denotes the ratio

between the particle diameter and the average radial separation distance, and Rep =
γ̇ D2

p/4ν, the particle Reynolds number with γ̇ = Ub/h the average shear rate across the
channel. This non-dimensional number can be interpreted as the ratio between collisional
and viscous stresses. Values Ba < 40 define a macro-viscous regime, where the relation
between the stress and shear rate is linear while Ba > 450 the Bagnoldian regime, which is
characterized by a quadratic dependence of the stress on the shear rate. Figure 1(d) shows
the effective viscosity as a function of the Bagnold number for different volume fractions,
while the inset reports the Bagnold number as a function of the Reynolds number. The
effective viscosity is calculated as the viscosity of a single-phase laminar flow that would
give the same shear stress as in our simulations

νe = τxy

/(
ρ

dU
dy

∣∣∣∣
lam. φ=0 %

)
, (3.2)

with τxy the shear stress in the streamwise direction. The data follow a power law, νe ∝
Baa, with exponent 0 < a < 1, indicating a departure from the macro-viscous regime, but
not yet the fully Bagnoldian regime, where νe is proportional to Ba, hence the quadratic
relation of stress with the shear rate. The exponent a is closer to unity for the cases with
higher Bagnold number.
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Figure 2. Outer-scaled mean fluid velocity profiles, compared with the single-phase data, for (a) φ = 0.1,
(b) φ = 0.2 and (c) φ = 0.3.

Next, we examine the single-point statistics from the simulation data. The profiles of
averaged Eulerian statistics reported here correspond to mean intrinsic averages. The
intrinsic average of a quantity ξ is computed as

〈ξ〉( yj) =

∑
ik,t

ξijk,tΨijk,t

∑
ik,t

Ψijk,t
, 〈ξp〉( yj) =

∑
ik,t

ξijk,t(1 − Ψijk,t)

∑
ik,t

(1 − Ψijk,t)
, (3.3a,b)

where Ψijk,t is the fluid volume fraction at the grid cell ijk and instant t, and yj the
wall-normal location of the averaging bin, which extends over the entire domain in the two
homogeneous directions. Figure 2 shows the mean streamwise fluid velocity profiles for
different values of the particle volume fraction. We observe two distinct trends in regions
close to the channel wall (y/h < 0.3) and close to the channel centreline (y/h > 0.7): close
to the wall, the mean flow decreases (increases) with increasing φ (Re), while at the core of
the channel we observe the opposite behaviour, i.e. blunter and turbulent-like profiles with
decreasing (increasing) φ (Re) (we recall that the flow rate is constant in these simulations).
The profiles show a progressive decrease in slope near the wall with increasing φ and an
increase in the centreline velocity, which are symptoms of turbulence attenuation (Zade
et al. 2018).

955 A30-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1078


Inertia in channel flows of neutrally buoyant particles

0.25

0.20

0.15

0.10

0.05

0 0.5 1.0

0.02

0.04

0.06

0.08

0.10 4

3

2

1

00 0.5

y/h
1.0

0.10

0.08

0.06

0.04

0.02

0 0.5 1.0

0.5

y/h
1.0

(×10–3)

urm
s /

U
b

v
rm

s /
U

b

w
rm

s /
U

b

〈–u
′ v

′ 〉/U
b2

φ = 0.2; Re = 3000
φ = 0.2; Re = 6000
φ = 0.2; Re = 9000
φ = 0.2; Re = 12 000
φ = 0.2; Re = 15 000
φ = 0.3; Re = 3000
φ = 0.3; Re = 6000
φ = 0.3; Re = 9000
φ = 0.3; Re = 12 000
φ = 0.3; Re = 15 000

φ = 0.0; Re = 3000
φ = 0.0; Re = 6000
φ = 0.0; Re = 9000
φ = 0.0; Re = 12 000
φ = 0.0; Re = 15 000
φ = 0.1; Re = 3000
φ = 0.1; Re = 6000
φ = 0.1; Re = 9000
φ = 0.1; Re = 12 000
φ = 0.1; Re = 15 000

(a) (b)

(c) (d )

Figure 3. Wall-normal profiles of (a) streamwise, (b) wall-normal and (c) spanwise fluid velocity r.m.s. (d)
Wall-normal profiles of the Reynolds stress. All panels are in outer scale.

The root-mean-square (r.m.s.) of the fluid velocity fluctuations and the Reynolds shear
stress are reported in figure 3 in outer units. We note that, in line with previous studies (see
e.g. Picano et al. (2015) and Shao, Wu & Yu (2012)), the peak of the streamwise velocity
r.m.s., urms, decreases monotonically for increasing φ. For the cross-stream components,
instead, we observe a non-monotonic behaviour when increasing φ (see figure 3b,c): at
φ = 0.1 the peak of vrms and wrms profiles are higher compared with the single-phase
ones, while for φ ≥ 0.2, the peaks drop to values slightly lower than the single-phase flow.
The profiles of the Reynolds stresses, which represent the main mechanism for production
of turbulent fluctuations, are depicted in figure 3(d). While these stresses increase for
φ = 0.1, they decrease substantially for φ ≥ 0.2 compared with the single-phase flow,
indicating that although the presence of particle at φ = 0.1 is able to amplify the fluid
fluctuations, the turbulence level decreases significantly at higher volume fractions, to a
point that we have a re-laminarized flow for low values of Re at the bulk of the channel.
It is also worth noting that, on increasing the Reynolds number, the difference between
the profiles of the laden cases and the single-phase flow with the same Re decreases
significantly, which is in line with the numerical results of Yu et al. (2019) in turbulent
channel flow, laden with finite-size particles at Reτ = 395.

The wall-normal profiles of the local particle volume fraction, Φ( y), are depicted
in figure 4(a) for different Reynolds numbers and bulk particle volume fractions. At
φ = 0.1, we observe an almost uniform distribution of the particles across the channel
walls, except for the region y/h < Dp, close to the wall, where the kinematic constrain
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Figure 4. (a) Profiles of the local solid volume fraction as a function of the wall-normal distance. (b)
Outer-scaled mean streamwise particle velocity profiles; the inset shows the apparent particle-to-fluid slip
velocity, 〈up〉 − 〈u〉, in semi-logarithmic scale, while the vertical dashed line indicates the wall-normal distance
corresponding to one particle diameter.

on the particle motion results in the formation of a layer (Picano et al. 2015). In this
case, turbulent mixing induces a homogeneous solid concentration in the bulk, whereas
particles experience asymmetric interaction of the lubrication force with the wall, which
hinders particles in that region. The presence of a particle wall layer is associated with
an increase in drag (see Costa et al. (2016) and Costa et al. (2018)), while the role of the
rotation for the layer formation is discussed in Peng, Ayala & Wang (2019). Increasing
the volume fraction to φ = 0.2, the peak in the profiles close to the wall becomes more
distinct.

The concentration profiles also change with the Reynolds number: at Re = 3000, we
observe a weak migration of particles toward the channel centreline even at φ = 0.2. This
is reminiscent of the Segre–Silberberg effect (Segre & Silberberg 1961), an inertial effect
resulting from the balance between the Saffman lift (Saffman 1965), inhomogeneous shear
rate and wall effects; see also Yeo & Maxey (2010). Increasing Re, the peak close to the
wall increases, the profiles become blunter and migration to the channel core attenuates;
this is in contrast with previous results for a lower range of Reynolds numbers; see e.g.
Yousefi et al. (2021), where results are presented for 500 ≤ Re ≤ 5600. At φ = 0.3, both
the accumulation of particles in the particle wall layer and the migration towards the
centreline are more significant when compared with the lower volume fraction data. In
these cases also, the increase of Re results in a larger peak close to the wall and less
migration to the centreline, as observed for φ = 0.2.

Figure 4(b) shows the wall-normal profiles of the mean particle velocity for all the
multiphase cases. The particle phase velocity presents a similar behaviour to the fluid
phase, i.e. close to the wall the mean velocity decreases when increasing the volume
fraction and increases when increasing the Reynolds number, whereas close to the channel
centreline the scenario is the opposite. In line with previous observations, it is also
noticeable that, close to the wall, y/h ≤ Dp, the particles have a mean velocity larger than
that of the surrounding fluid, resulting in a significant apparent slip velocity (see inset
of figure 4b). It should be considered here that, while the velocity at the wall is zero for
the fluid, this is not the case for the solid phase as particles can have a relative tangential
motion.
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3.1. Total stress balance
The understanding of the momentum exchange between the two phases in dense
particle-laden turbulent channel flow is addressed by examining the mean streamwise
momentum budget. Following the rationale on the mean momentum balance given in
Marchioro, Tanksley & Prosperetti (1999) and Picano et al. (2015), the three contributions
to the total stress, τ , in a plane channel are the viscous stress τV , the Reynolds
stress τT (due to the correlated motions of fluid and particles) and the particle stress
τP (due to the particle resistance to deformation, the stresslet and particle–particle
interactions/collisions)

τ( y) = τV + τT + τP = ρu2
τ (1 − y), (3.4)

where

τV = ρν(1 − Φ)
dU
dy

, (3.5)

τT = −ρ(1 − Φ)〈u′v′〉 − Φ〈u′
pv

′
p〉, (3.6)

τP = Φ〈σ p
xy〉, (3.7)

and σ
p
xy is the general stress in the particle phase, projected in the streamwise direction.

Figure 5 reports the stress balance given in (3.4) for each bulk volume fraction in panels
(a–d); the results are normalized by the corresponding mean wall shear, ρu2

τ . Examining
the single-phase cases (figure 5a), we observe the classical results where the total stress τ ,
is mainly due to the turbulent Reynolds stress term for y/h ≥ 0.2, while viscous transport
dominates near the wall where fluctuations decay to zero. Increasing the Reynolds number,
the place where the leading contribution to the total stress changes from τT to τV moves
closer to the wall, i.e. the viscous sublayer becomes thinner.

At φ = 0.1 (see figure 5b), the basic picture remains unaltered with the particle-induced
stress τP showing a non-negligible contribution only near the wall, reaching a maximum at
y ≈ Dp/2. Increasing the volume fraction to φ = 0.2 (see figure 5c), the contribution from
the particle stress becomes significant throughout the channel, although still weaker than
that from the Reynolds stress, especially at higher Reynolds numbers. The near-wall peaks
of the particle stress profiles are more evident at φ = 0.2 than φ = 0.1, followed by a local
minimum at y ≈ 2Dp. The local minimum of the particle stress is compensated by a local
maximum of the viscous stress which is caused by the strong shear that the first layer of
particles (local maximum in figure 4), flowing with significant slip velocity, imposes on
the fluid above it (Costa et al. 2018).

To conclude with the highest volume fraction considered, φ = 0.3 (see figure 5d), we
note that the dynamics is now dominated by the particle-induced stresses, as these are the
major contributors to the total stress throughout the whole channel, except for the region at
0.1 ≤ y/h ≤ 0.3. Close to the wall, the maximum of the profiles is larger compared with
lower volume fractions and at the core (y/h > 0.8) almost all the stress originates from the
particle-induced one. At this bulk volume fraction, the effect of the Reynolds number is
more noticeable in the region 0.2 ≤ y/h ≤ 0.8, where increasing Re results in the increase
of τT and the decrease of τP, which is contrary to the observations in Lashgari et al. (2014)
for the case of bigger particles than in the present study.

To better understand the role of the different transport mechanisms on the bulk flow
behaviour in the range of Reynolds numbers and particle volume fractions investigated,
we show in figure 6(a–c) contour maps of the relative contribution of viscous, Reynolds
and particle stress to the total momentum transfer integrated across the channel.
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Figure 5. Momentum budget for the different bulk volume fractions: (a) single phase, (b) φ = 0.1, (c) φ = 0.2
and (d) φ = 0.3. Here, τ is the total stress, τV denotes viscous stress, τT the turbulent Reynolds shear stress of
the combined phase and τP the particle-induced stress.

The contribution of the viscous stress ΣτV is, expectedly, maximum for the lowest value
of the Reynolds number, although it never becomes the dominant term (the maximum
contribution in our data set is 0.34 for the single-phase case with Re = 3000). The
numerical results of Yousefi et al. (2021) with the same particle size showed that the
region in the Re − φ plane for which ΣτV is the leading contributor (more than 50 % of
the total stress) is limited to Re ≤ 2500 and φ ≤ 0.15. The contour lines in figure 6(b)
show a monotonic decrease of the contribution ΣτT when increasing φ, in the fully
turbulent regime. The contribution of the Reynolds stress is more than 50 % of the total
for Re > 4000 and φ ≤ 0.15: the fluid and particle phases induce strong fluctuations that
cannot be damped by viscous dissipation. The region with φ > 0.25 and Re < 10 000
is characterized by values of the particle stress larger than 50 % of the total stress. In
this region, we expect a high level of hydrodynamic and particle–particle interactions
that induce strong particle stresses (see figure 6c). Increasing the Reynolds number at
the highest volume fraction considered, φ = 0.3, the Reynolds stress term becomes the
dominant contributor once again, which is in contrast with the predictions from ReT

τ

presented earlier in the text. This can be explained by the fact that the slope at the centreline
is no longer indicative of the turbulence activity as the flow and particle dynamics are
substantially different in the near-wall and core region for a suspension flow, see discussion
in § 3.2. To conclude this part, we present in figure 6(d) the map of the flow regimes
pertaining the present simulation data. In this map, the regions on the Re − φ plane where
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Figure 6. Contour map of the contribution of (a) viscous stress ΣτV , (b) Reynolds stress ΣτT and (c)
particle-induced stress ΣτP to the total momentum transport integrated across the channel; the white dashed
lines denote iso-levels as guide for the eye. Panel (d) displays a map of the flow regimes in the Reynolds
number–volume fraction plane, identified by the dominant contribution to the momentum budget. Blue colour:
turbulent Reynolds stress dominated regime; yellow: particle stress dominated regime. The different symbols
display the available simulation data.

more than 50 % of the total momentum transfer is due to ΣτT are coloured with blue,
whereas yellow indicates when more than half of the total is due to ΣτP. The simulation
data points are represented with orange and green symbols on the map.

To provide further insight into the flow dynamics, figure 7 depicts the effect of the
changes in the contribution of each term in (3.4) to the drag modulation of the multi-phase
flows, compared with the single-phase references. Panel (a) shows the results at the lowest
investigated Reynolds number (Re = 3000) and panel (b) the maximum (Re = 15 000),
while panel (c) depicts an intermediate Reynolds number of 9000; each contribution is
integrated across the channel walls and normalized by the total stress of the single-phase
flow with the same Reynolds number; note that all the multi-phase cases show drag
increase when compared with the single-phase case. For the flows with Re = 3000
(figure 7a), the maximum increase is 54 % at φ = 0.3 whereas it is 64 % for the cases at
Re = 15 000, also found at the highest volume fraction under consideration (φ = 0.3). One
should also note that, when the results for all the cases are normalized by the same value
e.g. the drag of the laminar flow at Re = 3000, the flow with Re = 15 000 and φ = 0.3
shows a much higher drag increase compared with the one with Re = 3000 and φ = 0.3
(Στ |Re=15 000;φ=0.3/Στ |Re=3000;φ=0.3 ≈ 18.3). At the intermediate Reynolds number of
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Figure 7. The contribution of the viscous, ΣτV , Reynolds, ΣτT , and particle-induced stress, ΣτP, for different
solid volume fractions at (a) Re = 3000, (b) Re = 15 000 and (c) Re = 9000. Each contribution is integrated
across the channel and normalized by the total stress of the single-phase flow with the same bulk Reynolds
number.

9000, the behaviour is similar to the high Re case at low volume fraction φ = 0.1 and to
low Re at high volume fraction of φ = 0.3.

Comparing the single contributions in the figure, the total absolute contribution of the
viscous stress is almost unaltered, while the share of the particle-induced stress increases
monotonically when increasing the volume fraction. The Reynolds stress contribution,
however, shows a non-monotonic behaviour, when increasing φ at Re = 3000 (panel a): at
φ = 0.1 it increases compared with the single-phase case (turbulence is enhanced), while
it decreases further on increasing the volume fraction until it becomes the smallest term
at φ = 0.3, which can be explained by the formation of a densely packed core region
due to inertial particle migration (see figure 4 and Fornari et al. 2016). Indeed, in the
local volume fraction profiles of figure 4, the mass fraction in the bulk is not far from the
maximum value for random loose packing for all cases with φ = 0.3. This exacerbates
the decrease in Reynolds shear stresses in the bulk. On the other hand, at Re = 15 000
(figure 7b), the contribution of τT is enhanced with respect to the single-phase case for all
the laden cases, with a peak contribution at φ = 0.2. The decrease for φ = 0.3 compared
with 0.2 is, however, not as significant as at Re = 3000. Similarly, the monotonic increase
of the importance of the particle stresses with the volume fraction is less important at the
highest Reynolds number considered. These observations suggest that turbulence remains
important at high Reynolds number for all volume fractions; the turbulence-induced
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mixing reduces the particle migration and hence the total contribution of the particle
stresses. Combining the two effects, the total drag is found to approach the single-phase
values when increasing the Reynolds number, which is in agreement with the experimental
data discussed above.

To conclude the analysis, we show in figure 8 the terms in (3.4), normalized by the
total stress in the laminar single-phase flow, as a function of Re. To better follow how
the picture changes when increasing the Reynolds number, we have also included data
pertaining Re ∈ [500–2000] from the numerical study of Yousefi et al. (2021) with the
same flow set-up and particle size. Figure 8(a) shows that the viscous stress τV scales
almost linearly with Re, even though increasing Re translates to decreasing viscosity in our
simulations. The turbulent stress (figure 8b), starts from negligible values in the laminar
regime and becomes ∝ Re2 after the transition, which is consistent with the mixing-length
hypothesis, stating 〈u′v′〉 = l2m(dU/dy)2, with lm the mixing length. One can also note that
the transition is sharper and happens at lower Reynolds number for lower volume fractions,
see also Matas et al. (2003). The particle-induced stress, on the other hand (see figure 8c),
is initially proportional to Re in the laminar regime, with magnitude proportional to the
bulk volume fraction. Further increasing the Reynolds number, the scaling changes to
τP ∝ Re1.4 for the cases with the highest Ba (this line is not shown in the figure). To further
clarify, we present in figure 8(d) the total stress, τ = (τV + τT + τP), as a function of Re.
At low Re, where the viscous stress is dominant in the laminar-like suspension regime,
with the particle-induced stress in the inertial shear-thickening regime, the total stress
scales as ∝ Re; note that the inertial shear thickening is still viscous dominated for particle
Reynolds numbers lower than 10 (Alghalibi et al. 2018). Further increasing the Reynolds
number, the total stress scaling lies between two limits: for single-phase and low volume
fraction cases τ ∝ Re1.76, as suggested by the empirical fit from single-phase turbulence
Reτ ≈ 0.09Re0.88 (Pope 2000); at higher volume fractions, the total stress should approach
a quadratic dependence, τ ∝ Re2, i.e. for the simulations with higher Ba, the stresses are
closer to the quadratic scaling.

To interpret this observation, we first note that the empirical exponent 1.76 is found
from single-phase simulations and experiments at moderately large Reynolds number, yet
far from the asymptotic limit of Prandtl theory, and is within the viscous linear and the
turbulent quadratic behaviours. In particle-laden flows, we have the additional contribution
from the particle stress, which tends to scale as ∝ Re1.4 at the highest Reynolds number
considered here, and should approach a quadratic dependence in the Bagnoldian regime. It
is therefore not surprising that at these high Reynolds numbers one sees something closer
to the quadratic dependence not for the pure turbulence and typical of the Bagnoldian
regimes. This is not because Reynolds stresses becomes less important than the particle
stresses, rather the viscous contribution is relatively less important once particle and
turbulent stresses dominate and determine the scaling with the shear rate.

3.2. Particle dynamics
In this section, we present the Lagrangian statistics pertaining the dispersed phase. To
take into account the statistics dependence on the distance from the wall and yet examine
a significant statistical sample, we have divided the half-channel width, h, into three
equal bins and present the results conditionally averaged over these bins. We first discuss
the spanwise particle dispersion, which is defined as the evolution of the single-point
mean-square displacement of particles in the spanwise direction

〈Δz2
p〉(Δt) = 〈(zp(t + Δt) − zp(t))2〉, (3.8)
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Figure 8. (a) The viscous stress, ΣτV , (b) the turbulent stress, ΣτT , (c) the particle-induced stress, ΣτP,
and (d) the total stress, Σ(τV + τT + τP), normalized by the total stress in the laminar single-phase flow, as
a function of the Reynolds number; the data pertaining to Re ∈ [500–2000] are adapted from Yousefi et al.
(2021).

where 〈 〉 denotes time average over all particles at time t with the centre initially (Δt = 0)
located inside one of the bins considered. Figure 9 shows the spanwise mean-square
particle displacement, averaged over the whole domain in panel (a), and inside each
bin in panels (b–d). The two well-known regimes are distinguishable in the figure: at
small time separation, the particle trajectories have high temporal correlation (ballistic
regime), which results in a quadratic dependence of the mean-square displacement with
time, 〈Δz2

p〉 ∝ Δt2; the trend changes for larger time separation, when particle–particle
and hydrodynamic interactions decorrelate the trajectories from the initial sampling instant
(diffusive regime), and 〈Δz2

p〉 ∝ Δt (see e.g. Sierou & Brady 2004).
The results averaged over the whole domain (figure 9a), show that the dispersion value

decreases when increasing φ at constant Re; though, the difference is less significant
at higher values of Re. Increasing Re while keeping φ constant, on the other hand,
leads to a sudden increase of the dispersion from Re = 3000 to 6000, followed by
almost constant values on further increasing Re. Comparing the results displaying the
particle behaviour at different wall-normal distances reveals that, close to the wall, the
mean-square displacement assumes similar values for all the cases, while on further
increasing the wall-normal distance, the differences between cases with different volume
fractions increase. This is caused by the differences in turbulence intensity for different
volume fractions in different regions of the channel – the differences between cases are
relatively small near the wall, but quite significant in the bulk, where the turbulence is
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Figure 9. Single-particle mean-square spanwise displacement, 〈Δz2
p〉(Δt, y), normalized with the half-channel

height, h2, averaged over (a) the whole domain and for particles initially (Δt = 0) located at (b) 0 < yp < h/3,
(c) h/3 < yp < 2h/3 and (d) 2h/3 < yp < h.

highly dampened at higher Φ. Note that the rate at which 〈Δz2
p〉 grows in the ballistic

regime is directly proportional to the particle velocity variance (Nieuwstadt, Westerweel
& Boersma 2016).

Finally, we explore the particle collision dynamics. To this end, we examine the two
main factors determining the likelihood of collisions: (i) the distance between particle pairs
and (ii) their relative velocity. The first is investigated by means of the radial distribution
function (RDF), g(r), which quantifies the probability of finding a second particle at
distance r (between the centres), normalized by the probability of a random distribution of
particles

g(r) = 1
4πr2

dNr

dr
1
n0

, (3.9)

where Nr denotes the number of particle pairs in a spherical volume of radius r and n0 =
0.5Np(Np − 1)/Vt. Figure 10 shows g(r) averaged over the whole domain in panel (a) and
in bins at different wall-normal distances in panels (b–d). For all the cases, the maximum
of g(r) occurs at r/Dp = 1 where the particles are in contact and collisions are active.
Increasing r, the RDF value drops to 1 rapidly, i.e. to the random distribution, with a local
maximum in r/Dp = 2, which corresponds to formation of particle triplets, mainly due to
the damping effect from the lubrication force (Xia et al. 2020). This second peak is more
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Figure 10. The RDF, g(r), averaged over (a) the whole domain and for particles located at (b) 0 < yp < h/3,
(c) h/3 < yp < 2h/3 and (d) 2h/3 < yp < h.

significant for the cases with φ = 0.3, in the core region of the channel, panel (d), which
is followed by a less noticeable local maximum at r/Dp ∼ 3, indicating the formation of
trains of particles which move as a plug.

To provide a full picture of the particle pair dynamics, we follow the study of Sundaram
& Collins (1997) and compute the normal approaching velocity of the particle pairs as a
function of the separation distance r. Considering particles p and q, the normal relative
velocity of the particle pair is obtained as the inner product of their relative velocity and
the direction of their relative position

Δvn(rp,q) = (up − uq) · (rp − rq)

|(rp − rq)| . (3.10)

The normal relative velocity can be either negative, Δv−
n , indicating approaching

particles, or positive, Δv+
n , when the two particles depart from each other. Figure 11

displays the magnitude of the negative relative velocity |Δv−
n | as a function of the

separation distance r, averaged over all particles in panel (a) and for particles inside bins
with different distance from the walls in panels (b–d) . The relative velocity increases
almost monotonically with r as the pairs are more likely to approach with higher velocity
when farther away. Close to contact, r/Dp → 1, the relative velocity reduces significantly
because of the attenuating effect of the lubrication force; cases with φ = 0.3 experience
a milder reduction also at r/Dp ∼ 2, due to formation of triplets and particle chains.
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Figure 11. Magnitude of relative approaching normal velocity, |Δv−
n |, averaged over (a) the whole domain

and particles located in (b) 0 < yp < h/3, (c) h/3 < yp < 2h/3 and (d) 2h/3 < yp < h.

All cases and all regions of the channel show reduction in |Δv−
n |, increasing the Reynolds

number, as the increased turbulent mixing makes the dispersed phase velocity more
homogeneous. However, the variation of |Δv−

n | with the volume fraction is clearly
inhomogeneous across the channel. Interestingly, although the magnitude of the relative
velocity increases in the region 0 < y < 2h/3 when increasing the volume fraction
(figure 11b,c), the core region (figure 11d) and the whole domain average (figure 11a)
show the opposite behaviour. This observation is more evident for the cases with φ = 0.3,
as the intense migration toward the channel core region results in oversampling of this
region, and hence a bias of the global Lagrangian statistics towards the behaviour close
to the centreline where the relative particle velocity decreases in more dense conditions.
The decrease in the magnitude of |Δv−

n | with increasing φ is expected, since turbulence
intensity should decrease with φ in this region – particles flowing with a small apparent
slip velocity in a turbulent flow have a thickening effect, which dampens turbulence
(Marchioro et al. 1999; Picano et al. 2015; Costa et al. 2016). Since the mean shear
in this region is low, only velocity fluctuations can drive particles towards each other.
Conversely, the near-wall value of |Δv−

n | can be driven by both the high local shear –
bringing particles with small wall-normal offsets closer to each other – and the turbulent
fluctuations. Indeed, the much larger value of |Δv−

n | near the wall, much larger than the
local turbulence intensity, suggests that these interactions are predominantly triggered by
the mean local shear. We will discuss this in more detail at the end of this section.
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Figure 12. Collision kernel, κc(r) = g(r) · ΔVn,−
p (r), averaged over (a) the whole domain and over particles

located in (b) 0 < yp < h/3, (c) h/3 < yp < 2h/3 and (d) 2h/3 < yp < h.

Finally the collision kernel, κc, is calculated as the product of the RDF and the relative
approaching velocity (Sundaram & Collins 1997)

κc(r) = g(r) · |Δv−
n |(r). (3.11)

Figure 12 reports the product κc(r) again averaged over the whole domain in
panel (a), and conditionally averaged over particles located inside bins with different
wall-normal location in panels (b–d). Similar to the relative velocities, the kernel increases
monotonically with the distance r. When particles are not in contact, i.e. r/Dp > 1, the
variation of κc(r) with the Reynolds number and the solid volume fraction is similar
to that of the relative velocity: increasing inertia results in a monotonic decrease of the
kernel all over the channel cross section; moreover, although the kernel increases with φ

for the particles located closer to the walls, 0 < yp < 2h/3, the global average follows the
behaviour in the core of the channel, that is a reduction of κc(r) when increasing φ.

The collision kernel, κc(r), measures the rate at which particles approach each other,
hence its value at r = Dp is of most interest to us, showing the probability of a collision.
We therefore focus on the values at contact, r/Dp = 1, and display in figure 13 the value
of the different terms contributing to the kernel, i.e. RDF at contact in panel (a) and the
magnitude of the relative (approaching) velocity in panel (b), while the resulting κc(Dp)

is depicted in panel (c). We also report the particle collision rate, Nc ≡ π〈Φ〉2D2
pκc(Dp),

with 〈Φ〉 the averaged local solid concentration inside each bin, in panel (d) of the same
figure. For clarity, we only show the results for particles inside bins adjacent to the walls,
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Figure 13. (a) The RDF, (b) magnitude of the relative approaching velocity and (c) collision kernel at contact
(r = Dp), together with (d) collision frequency, Nc = π〈Φ〉2D2

pκc(Dp), vs the Reynolds number for different
volume fractions. Solid lines denote averaging over particles located at 0 < yp < h/3 and dashed lines 2h/3 <

yp < h.

0 < yp < h/3, with solid lines, and data for those at the channel core, 2h/3 < yp < h, with
dashed lines.

As deduced from the figure, the values of g(Dp) and |Δv−
n |(Dp) are almost independent

of the Reynolds number; they do, however, increase and decrease with the particle volume
fraction: the RDF (figure 13a) does not vary significantly close to the wall (solid lines)
when changing the volume fraction, while at the core (dashed lines), we observe a
noticeable increase with φ. This is due to the strong shear-induced migration we have
observed for denser cases, while the local volume fraction at the particle wall layer does
not show the same degree of correlation with φ; see figure 4(a). For the relative velocity
(figure 13b), we observe opposite trends close to the wall and at the core region: |Δv−

n |(Dp)
increases with the volume fraction φ close to the wall (solid lines in the figure) and
decreases when increasing φ at the core region (dashed lines). Once again the intense
migration towards the centreline observed for denser cases creates a compact aggregate of
particles with weak relative motion between the particles (almost a factor of five smaller
than for the particle wall layer).

The combined effect of these two parameters results in the collision kernel at contact
(figure 13c), which increases slightly close to the walls when increasing the volume
fraction φ, while it has an almost constant value for all the cases at the channel core. As one
can notice, the expression for the collision frequency (shown in figure 13d) emphasizes the
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Figure 14. Conditionally averaged contributions of the velocity vector components to the collision kernel of
approaching particle pairs in contact, normalized by the translational kinetic energy of particles, Kp ≡ 0.5(u2

p +
v2

p + w2
p), for the range of wall-normal locations indicated on the left of each row. The bottom row pertains

to particles located at 0 < yp < h/3, middle row: 0 < yp < h/3 and top row: 0 < yp < h/3. The left column
shows the results for flows with volume fraction φ = 0.1, middle column φ = 0.2 and the right column φ =
0.3.

importance of the local solid volume fraction, unlike the collision kernel where the solid
volume fraction only appears implicitly, i.e. in the definition of the RDF. As a consequence,
we observe that, although the value of κc(Dp) is smaller at core region than in the wall
region by a factor of five, the collision rate Nc assumes similar values in the two regions
for cases with the same bulk volume fraction; this is due to the particle migration towards
the channel centreline which locally increases the volume fraction and compensates for the
lower value of κc(Dp) in the core region. In other words, the many particles in the channel
core have a lower probability to collide than the few particles near the wall, making the
estimated collision frequency of the same order. Finally, note that Nc has similar values
for the different Reynolds numbers, and, expectedly, increases when increasing φ.

So far, we have established that, despite the different values of the collision kernel,
κc(Dp), close to the walls and at the channel core, these two regions display similar values
of the collision frequency, Nc. This behaviour suggests that different key mechanisms are
determining the collision frequency in each region. To investigate this aspect, we present
the averaged approaching velocity components for particle pairs at contact inside bins with
different wall-normal distances; see figure 14. The results are normalized with the particle
translational kinetic energy, Kp ≡ 0.5(u2

p + v2
p + w2

p), inside each bin.
The data show that close to the walls (bottom panels in the figures) the main contribution

to the approaching velocity of particle pairs comes from the streamwise component.
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Interestingly, the other two components have negative values for the lowest Reynolds
number, i.e. although the particle centres are getting closer to each other in the streamwise
direction, they are getting further away in the other two directions; the data therefore
show the dominant role of the mean shear on particle pair interactions – as particles are
brought towards each other in the streamwise direction by the mean shear, they move
past each other, which causes negative relative velocities in other directions. Increasing
the Reynolds number, we observe that the difference between the streamwise and the two
cross-stream velocity components reduces due to the homogenizing mixing induced by
the fluid turbulent fluctuations. Comparison between the channel core region (top row)
and the region close to the walls (bottom row) reveals that the difference between the
velocity components is less in the former than in the latter region, which can be seen as
a result of relatively weak but frequent collisions between particles, as the local volume
fraction increases due to the migration towards the centreline. Hence, the particle motion
is more isotropic in the channel core where their behaviour can be modelled as a diffusive
process.

4. Final remarks

We have studied by means of particle-resolved direct numerical simulation the flow of
suspensions of finite-size neutrally buoyant particles in a pressure-driven channel flow,
aiming to quantify the different mechanisms of momentum transfer in highly inertial
regimes and connect the local particle behaviour to the bulk flow properties. The analysis is
based on simulation data covering a wide range of Reynolds number, 3000 ≤ Re ≤ 15 000,
and particle volume fraction, 0 ≤ φ ≤ 0.3, where the particles are rigid spheres with
a diameter equal to 1/15 of the channel height. The Bagnold number pertaining the
simulated cases is in the range 27 ≤ Ba ≤ 225, i.e. for most cases departing from the
macro-viscous regime and approaching the Bagnoldian one.

In line with previous studies, all the laden cases show drag increase compared with
the single-phase one, even when the Reynolds number based on the effective viscosity
of the suspension is used, indicating that for the investigated parameters, the underlying
dynamics is highly dependent on the distance from the walls and the flow cannot
be considered as a homogeneous suspension. However, the present data and recent
experiments at even higher Reynolds numbers show that the friction factor of the laden
cases approaches at high Reynolds numbers that of the single-phase flow, suggesting that
a homogenized model, based on an increased effective viscosity of the suspension may
be capable of describing the basic macroscopic bulk properties at these high Reynolds
numbers.

The evaluation of the streamwise stress balance confirms that, for the investigated
parameter space, the contribution of the viscous stress is negligible and the turbulent
and particle-induced stresses are the major competing mechanisms: for 0 ≤ φ ≤ 0.15
and 3000 ≤ Re ≤ 15 000 the suspension is turbulent like, while at 0.15 ≤ φ ≤ 0.3 and
3000 ≤ Re ≤ 10 000 the particle-induced stress is the major contributor to the total stress
and the suspension lays in the so-called inertial shear-thickening regime. Interestingly,
when increasing the Reynolds number in dense conditions (φ = 0.3), the relative share of
the turbulent stress compared with the particle-induced one increases significantly and for
Re > 10 000 the suspension becomes turbulent like again. In this case, the local particle
concentration profiles show that increasing the Reynolds number reduces the migration
of particles toward the centreline, which in turn, reduces the particle-induced stress at the
core and allows the turbulent transport to take over again.
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Recalling the seminal work of Bagnold (1954), we have examined the variation of the
stress budget terms with the shear rate. Our simulations show that, while the viscous
stress keeps the linear scaling for all the Bagnold numbers, as expected, the turbulent
stress scales quadratically with the shear rate, i.e. with the Reynolds number. Also, the
cases with lower volume fraction show sharper transition of the flow to the turbulent
regime, which happens at lower Reynolds numbers compared with the denser cases. The
particle-induced stress, on the other hand, shows a linear scaling with the shear rate
for the low values of the Bagnold number, while increasing the shear rate results in a
scaling in the form of ∝ Rea; 1 < a < 2, with a maximum value of a = 1.4 for the highest
investigated Bagnold numbers. The combination of these effects gives a total stress which
scales linearly with the Reynolds number (shear rate) at low Bagnold numbers, in line with
predictions of Bagnold (1954), while at higher shear rates we show that the total stress goes
as ∝ Rea; 1.76 < a < 2, with the exponent a, increasing with the Bagnold number.

To quantify the dependence of the particle dynamics on the distance from the walls, we
have considered the single- and pair-particle statistics separately in regions adjacent to the
walls and centreline of the channel. The spanwise particle dispersion shows that, close to
the walls, all the cases assume similar values, while at the core of the channel, the densest
cases have much lower dispersion and the particle trajectories are more de-correlated
from their initial condition, evolving faster from the ballistic to the diffusive regime than
at lower volume fractions. Looking at the different components of the relative velocity
vector between approaching particle pairs reveals that there is a significant degree of
anisotropy close to the walls compared with the core, which highlights the importance
of the background shear in this region.

We have therefore demonstrated that, in dense conditions, φ = 0.3, the total contribution
of the turbulent mixing takes over the particle-induced stresses at high enough Reynolds
numbers. This suggests that on increasing the particle inertia, the flow resembles a classic
turbulent flow (see also the experiments in Zade (2019)) and questions the conjecture by
Bagnold (1954) that turbulence would give place to particulate stresses when increasing
the Reynolds number in dense conditions. Our results indicate that Reynolds stresses and
the associated characteristic dynamics of near-wall turbulence would eventually prevail
again over the particle stresses when inertial effects are strong enough, at least for volume
fractions φ � 0.3. Additional experiments, and partly simulations, at higher Reynolds
numbers and volume fractions would be important to prove this conjecture and reveal
the result of the competition between turbulent and particle-induced stresses.

We also show that, due to the inhomogeneity which originates from the non-uniform
distribution of particles, the dominant dynamics in regions close to the walls and at
the channel core are significantly different. Close to the walls, the strong mean shear
dominates the particle–particle interactions, whereas the flow in the core region is
characterized by higher collision rates, which have an isotropic and diffusive nature. In
the same spirit as the observation above on the role of turbulent motions, we speculate
that further increasing the inertial effects, i.e. the Reynolds number, the turbulent mixing
may affect the dynamics in both regions and make it closer to what is observed in classic
turbulence, thus reducing the particle resistance to the correlated near-wall flow structures.
This issue might be solved by new, and more costly, simulations, which might, however,
be possible relatively soon.
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