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EMBEDDING GROUPS OF CLASS TWO AND PRIME
EXPONENT IN CAPABLE AND NONCAPABLE GROUPS
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Abstract

We show that if G is any p-group of class at most two and exponent p, then there exist groups G1 and
G2 of class two and exponent p that contain G, neither of which can be expressed as a central product,
and with G1 capable and G2 not capable. We provide upper bounds for rank(Gi

ab) in terms of rank(Gab)

in each case.
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1. Introduction

A group is called capable if it is a central factor group. Capability plays an important
role in Hall’s scheme of classifying p-groups up to isoclinism [5], and has interesting
connections to other branches of group theory. The finitely generated capable Abelian
groups were classified by Baer [1]. It is not too difficult to determine whether a given
finitely generated group of class two is capable or not by finding its epicentre Z∗(G),
the smallest subgroup of G such that G/Z∗(G) is capable. Computing the epicentre in
this setting reduces to relatively straightforward computations with finitely generated
Abelian groups; see for example [3, Theorems 4 and 7]. However, currently available
techniques seem insufficient to give a classification of capable finitely generated
groups of class two along the lines of Baer’s result for the Abelian case.

A full classification for the p-groups of class two and prime exponent seems a
modest and possibly attainable goal; some purely numerical necessary conditions
[6, Theorem 1] and sufficient ones [8, Theorem 5.26] are known, and a number of
results allow us to reduce the problem to a restricted subclass. If we let G be a p-
group of class at most two and odd prime exponent, it is not hard to show (for example,
using [2, Proposition 6.2]) that if G is a nontrivial direct product, then G is capable if
and only if each direct factor is either capable or nontrivial cyclic. We can write G as
G = K × Cn

p where K is a group that satisfies Z(K )= K ′ and C p is cyclic of order p,
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and so G is capable if and only if K is nontrivial capable, or K is trivial and n > 1.
If G can be decomposed as a nontrivial central product, G = C D with [D, C] = {e}
and {e} 6= [C, C] ∩ [D, D] (where e is the identity of the group), then G is not capable
[6, Proposition 1]. Ellis proved that if {x1, . . . , xn} is a transversal for G/Z(G), and
the nontrivial commutators [x j , xi ], 1≤ i < j ≤ n form a basis for [G, G], then G is
capable [3, Proposition 9]. We are then reduced to considering groups in a restricted
class; we give it a name for future reference.

DEFINITION 1.1. We will denote by R p the class of all p-groups G of odd prime
exponent p that cannot be decomposed into a nontrivial central product, with Z(G)=
[G, G], and such that if {x1, . . . , xn} is a transversal for G/Z(G), then there
is a nontrivial relation among the nontrivial commutators of the form [x j , xi ],
1≤ i < j ≤ n.

Unfortunately, the situation appears to be far from straightforward once we reach
this point. In particular, as the two main results in this paper show, to determine
whether such a G is capable we need a ‘holistic’ examination of G: there are no
forbidden-subgroup criteria for the capability or noncapability of G. Explicitly, we
show that if G is any group of class at most two and odd prime exponent p, then G is
contained in groups G1 and G2, both in R p, and with G1 capable and G2 not capable.

In Section 2 we prove some properties of the 2-nilpotent product with
amalgamation, which is our main construction tool. Section 3 contains our main
results.

2. The 2-nilpotent product with amalgamation

Groups will be written multiplicatively, and we will use e to denote the identity
element of G; C p denotes the cyclic group of order p.

DEFINITION 2.1. Let A and B be nilpotent groups of class at most two. The 2-
nilpotent product of A and B is defined to be the group F/[[F, F], F], where
F = A ∗ B is the free product of A and B. We denote the 2-nilpotent product of A
and B by A qN 2 B.

The 2-nilpotent product was introduced by Golovin [4], with a more general
definition that applies to any two groups A and B. If A and B are nilpotent of class
at most two, then their 2-nilpotent product is their coproduct (in the sense of category
theory) within the variety of all groups of class at most two, hence our choice of
notation. The elements of A qN 2 B can be written uniquely as αβγ , with α ∈ A,
β ∈ B, and γ ∈ [B, A]; multiplication in A qN 2 B is then given by

(α1β1γ1)(α2β2γ2)= (α1α2)(β1β2)(γ1γ2[β1, α2]).

A theorem of MacHenry [7] shows that [B, A] ∼= Bab
⊗ Aab via [b, a] 7→ b ⊗ a

(where x denotes the image of x under the canonical maps A→ Aab and B→ Bab,
and Aab

⊗ Bab is the usual tensor product of Abelian groups). Note that A qN 2 B
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contains isomorphic copies of A and B and is generated by these copies, so if A and
B are both of odd exponent n, then so is A qN 2 B.

DEFINITION 2.2. Let A and B be nilpotent groups of class at most two, let
H ≤ [A, A], K ≤ [B, B], and let ϕ : H → K be an isomorphism. The amalgamated
coproduct of A and B along ϕ is defined to be the group

A qN 2
ϕ B =

A qN 2 B

{hϕ(h)−1 | h ∈ H}
.

It is again easy to verify that A qN 2
ϕ B contains isomorphic copies of A and B whose

intersection is exactly the image of H identified with the image of K as indicated by ϕ.
Recall that a group G is said to be a central product of subgroups C and D if and

only if G = C D and [C, D] = {e}. The direct product is thus a special case of the
central product. If in addition we have that C ∩ D = Z(G) then we say that G is the
full central product of C and D. The central product is said to be trivial if C ⊆ D
or D ⊆ C . We prove that if A and B are both nontrivial, then A qN 2

ϕ B cannot be
decomposed as a nontrivial central product.

THEOREM 2.3. Let A and B be nontrivial groups of class at most two and odd prime
exponent p, let H ≤ [A, A], K ≤ [B, B], and let ϕ : H → K be an isomorphism. If
G = A qN 2

ϕ B, then Z(G)= [G, G] and G cannot be expressed as a nontrivial central
product.

PROOF. Identify A and B with their images in G. Let {a1, . . . , am} be a transversal
for A/[A, A], and {b1, . . . , bn} a transversal for B/[B, B]. Since A is of exponent p,
every element of A can be written uniquely in the form ar1

1 · · · a
rm
m a′ with 0≤ ri < p

and a′ ∈ [A, A], and similarly for every element of B. From the construction of the
amalgamated coproduct it follows that {a1, . . . , am, b1, . . . , bn} is a transversal for
G/[G, G], and that [G, G] ∼= [A, A][B, B] × [B, A]. In particular, the commutators
[b j , ai ], 1≤ i ≤ m, 1≤ j ≤ n form a linearly independent subset of [G, G] (viewing
the latter as an Fp-vector space).

Let g ∈ G; then we may write g = ar1
1 · · · a

rm
m bs1

1 · · · b
sn
n g′, with 0≤ ri , s j < p and

g′ ∈ [G, G]. We first assert that g ∈ Z(G) if and only if ri = s j = 0 for all i and j .
Indeed,

[g, ai ] =

m∏
j=1

[a j , ai ]
r j ·

m∏
j=1

[b j , ai ]
s j .

For this to be trivial, we must have s j = 0 for each j . Symmetrically, computing
[g, b j ] we obtain that ri = 0 for each i . Thus, Z(G)= [G, G], as claimed.

Now suppose that G is decomposed as a central product, G = C D. We can express
a1 = c1d1 for some c1 ∈ C , d1 ∈ D. Let

c1 = ar1
1 · · · a

rm
m bs1

1 · · · b
sm
m c′,

d1 = aρ1
1 · · · a

ρm
m bσ1

1 · · · b
σm
m d ′,
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with c′, d ′ ∈ [G, G]; since c1d1 = a1, we have r1 + ρ1 ≡ 1 (mod p), and ri + ρi ≡

s j + σ j ≡ 0 (mod p) for 2≤ i ≤ m, 1≤ j ≤ n. Since [d1, c1] = e, and

[d1, c1] = a′′b′′
m∏

i=1

n∏
j=1

[b j , ai ]
σ j ri−s jρi , a′′ ∈ [A, A], d ′′ ∈ [B, B],

we have 0≡ σ jr1 − s jρ1 ≡ σ jr1 + σ j (1− r1)≡ σ j ≡−s j (mod p). That is,
c1, d1 ∈ A[G, G]. Since a1 /∈ Z(G), either c1 /∈ Z(G) or d1 /∈ Z(G). If both hold, then
we have C ⊆ CG(d1)⊆ A[G, G] and D ⊆ CG(c1)⊆ A[G, G], so we conclude that
G = C D ⊆ A[G, G], which is impossible. Thus, exactly one of c1 and d1 is
noncentral. Without loss of generality say c1 /∈ Z(G) and d1 ∈ Z(G), so a1 = c1d1 ∈

C Z(G).
Since none of b1, . . . , bn commute with a1, and a1 ∈ C Z(G), we must have

b1, . . . , bn ∈ C Z(G) as well; that is, B ⊆ C[G, G]. And since b1 ∈ C[G, G] and
none of a1, . . . , am commute with b1, we must also have a1, . . . , am ∈ C[G, G].
Thus, G = C[G, G], and so [G, G] = [C, C] and D ⊆ C . Hence the central product
decomposition G = C D is trivial, as claimed. 2

We finish this section by describing the epicentre of an amalgamated coproduct.

THEOREM 2.4. Let A and B be nontrivial groups of class at most two and odd prime
exponent p, let H ≤ [A, A], K ≤ [B, B], and let ϕ : H → K be an isomorphism. If
G = A qN 2

ϕ B, then Z∗(G)= {h ∈ H | h ∈ Z∗(A) and ϕ(h) ∈ Z∗(B)}; that is, if we
identify A and B with their images in G, then Z∗(G)= Z∗(A) ∩ Z∗(B).

PROOF. Let a1, . . . , am be a transversal for A/[A, A], and b1, . . . , bn a transversal
for B/[B, B]. Following Ellis, for x, y, z ∈ {ai , b j | 1≤ i ≤ m, 1≤ j ≤ n} let

J (x, y, z)= [x, y] ⊗ z + [y, z] ⊗ x + [z, x] ⊗ y,

and let S be the subgroup of [G, G] ⊗ Gab generated by all such J (x, y, z). By
[3, Theorem 7], an element g ∈ Z(G)= [G, G] lies in Z∗(G) if and only if g ⊗ w ∈ S
for all w ∈ {ai , b j }. Since [G, G] ∼= [A, A][B, B] × (Bab

⊗ Aab), Gab ∼= Aab
× Bab,

and all factors are elementary Abelian p-groups, we have that [G, G] ⊗ Gab is
isomorphic to

(C ⊗ (Aab
× Bab))⊕

( m⊕
i,k=1

n⊕
j=1

〈[b j , ai ] ⊗ ak〉

)
⊕

( n⊕
j,k=1

m⊕
i=1

〈[b j , ai ] ⊗ bk〉

)
,

where C is the central product of [A, A] and [B, B] obtained by identifying H
with K along ϕ. An easy computation shows that none of the elements J (x, y, z)
has a nontrivial [b j , ai ] ⊗ b j component. Thus, if g ∈ [G, G] has a nontrivial [B, A]
component, say [b j , ai ], then it follows that g ⊗ b j does not lie in S, so g is not in
Z∗(G). Thus, Z∗(G)⊆ [A, A][B, B].
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Consider the elements J (x, y, z) in which at least one of x , y, or z is equal to b1.
Unless the other two are in B, the generators include nontrivial [B, A] ⊗ (Bab

× Aab)

components that do not occur in any other generator, and occur in pairs. It is
straightforward then that if g ∈ [G, G] lies in Z∗(G), since g ⊗ b1 must lie in S
we have that g can be expressed in terms of commutators of b1, . . . , bm ; that is,
g ∈ [B, B]. By a symmetric argument considering a1 instead, we obtain that if
g ∈ Z∗(G) then g ∈ [A, A]. Thus, Z∗(G) is contained in [A, A] ∩ [B, B]; recall that
this intersection is equal to the identified subgroups H = K .

If g ∈ H lies in Z∗(G), then g ⊗ ai ∈ S for each i , and this readily yields that for
all a ∈ A, g ⊗ a lies in the subgroup of [A, A] ⊗ Aab generated by all J (ai , a j , ak);
thus g ∈ Z∗(A); symmetrically, since g ⊗ b j ∈ S we obtain that g (considered now
as an element of K ) lies in Z∗(B), so Z∗(G)⊆ Z∗(A) ∩ Z∗(B). Conversely, if
h ∈ H ∩ Z∗(A) is such that ϕ(h) ∈ Z∗(B), then h ⊗ ai ∈ 〈J (ar , as, at )〉 for all i and
ϕ(h)⊗ b j ∈ 〈J (br , bs, bt )〉 for all j , hence h = ϕ(h) ∈ Z∗(G), giving the desired
equality. 2

3. Main results

We now give the promised results.

THEOREM 3.1. Let G be any nontrivial group of class at most two and odd prime
exponent p. Then there exists a capable group G1 ∈R p that contains G. If G is
nonabelian and capable, then we may choose G1 so that rank(Gab

1 )≤ rank(Gab)+ 2.
Otherwise, we may choose G1 such that rank(Gab

1 )≤ rank(Gab)+ 3.

PROOF. We construct G1 in two steps. If G is nonabelian and capable, set G0 = G;
otherwise, let G0 = G qN 2C p. To obtain G1, let H = C p q

N 2C p, and let ϕ be an
isomorphism between [H, H ] and a nontrivial cyclic subgroup of [G0, G0]. Finally,
let G1 = G0 q

N 2
ϕ H . Since G0 is capable, G1 is capable; by Theorem 2.3 G1 is

not a nontrivial central product. The identification of the generator of [H, H ] with
a nontrivial element of [G0, G0] guarantees the existence of a nontrivial relation
among nontrivial commutators of any transversal, hence G1 ∈R p, as desired. The
rank inequality is immediate. 2

THEOREM 3.2. Let G be any nontrivial group of class at most two and exponent p.
Then there exists a noncapable group G2 ∈R p that contains G. If G is nonabelian,
then we may choose G2 such that rank(Gab

2 )≤ rank(Gab)+ 6. If G is Abelian, then
we may choose G2 with rank(Gab

2 )≤ rank(Gab)+ 7.

PROOF. If G is nonabelian, let H1 = C p q
N 2C p, let g ∈ [G, G] be nontrivial, and

let H be the central product of G and H1 identifying g with a generator of [H1, H1].
Since this is a nontrivial central product with [G, G] ∩ [H1, H1] 6= {e}, it is not capable
and g ∈ Z∗(H) by [6, Proposition 1]. Now let G2 = H qN 2

ϕ E , where E is an
extraspecial group of order p5 and exponent p, and ϕ identifies g with a generator
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of [E, E] (which is in Z∗(E)); since this is an amalgamated coproduct that identifies
elements of the epicentres, Theorems 2.3 and 2.4 yield that G2 is not capable and lies
in R p (the theorem of Ellis mentioned in the introduction guarantees the existence of
a nontrivial relation among nontrivial commutators of any transversal).

If G is Abelian, then let H be the central product of G qN 2C p with C p q
N 2C p

identifying a generator of C p q
N 2C p with a nontrivial commutator in G qN 2C p; this

is a noncapable group. We now let G2 = H qN 2
ϕ E where E is again the extraspecial

group of order p5 and exponent p, and ϕ identifies elements of the epicentres. Again,
G2 is not capable and lies in R p. The rank inequalities are immediate. 2
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