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Abstract

Let P be a finite, connected partially ordered set containing no crowns and let Q be a subset
of P. Then the following conditions are equivalent:

(1) Q is a retract of P;
(2) Q is the set of fixed points of an order-preserving mapping of P to P;
(3) Q is obtained from P by dismantling by irreducibles.
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1. Introduction

Let P and Q be partially ordered sets. We call Q a retract of P if there are order-
preserving mappings g of Q to P and/of P to Q such that/og is the identity mapping
of Q. In particular, a subset Q of P is a retract of P provided that there is an
order-preserving mapping/of/* onto Q such that / i s the identity mapping on Q; in
this case, we ca l l / a retraction mapping of P onto Q.

Retracts promise to play a significant role in combinatorial investigations of
finite partially ordered sets. To give an example, let us consider the fixed point
problem. A partially ordered set P has the fixed point property if every order-
preserving map of P to P fixes an element ofP.P has the fixed point property if and
only if every retract of P has the fixed point property; in fact, a finite partially
ordered set P is fixed point free if and only if P has a retract with a fixed point free
automorphism (Duffus et al. (1977)).
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496 Dwight Duffus and Ivan Rival [2]

Here we examine a condition related to the fixed point property.
Let P be a partially ordered set. For elements a > b in P, we say a covers b or

a is an upper cover of b (denoted a>b) if, for all ceP, a^c>b implies a = c. An
element a of P is irreducible in P if a has precisely one upper cover (denoted by a*)
or precisely one lower cover (a*) in P. We let /(P) denote the set of irreducible
elements of P. P is called connected if for all a,beP there is a sequence
a = a0,at, ...,an = ft of elements of P such that at is comparable with af+1

(i = 0,1, ...,n— 1); otherwise, P is disconnected.

Let P be finite. A nonempty subset Q of P is obtained from P by dismantling (by
irreducibles) if P—Q = {alta2, ...,an} and

aie/(i>-{«1,a2, . . . ,a i_i}) ( /= 1,2,...,«).

We call P dismantlable (by irreducibles) if a singleton subset of P is obtained from P
by dismantling by irreducibles. (Note that a dismantlable partially ordered set is
connected.) Every dismantlable partially ordered set has the fixed point property
(Rival (1976)). Moreover, every retract of a dismantlable partially ordered set is
dismantlable (Duffus et al. (1977)).

Which subsets of a given partially ordered set are retracts ? For instance, any
subset of a partially ordered set P that, under the induced ordering, is a complete
lattice, is a retract of P (Birkhoff (1937)). Beyond this fact very little is known about
this question. The purpose of this paper is to answer the question in the case that
P contains no crowns.

For an integer n ̂  3, a 2n-crown, or simply a crown, is a 2n-element partially
ordered set {xv yt, x2, y2, ...,xn,yn) so that x i < j i , x i + 1 < j ' f (i = 1,2,.. . ,«-1) and
xlyxn<yn are the only comparabilities (see Fig. 1). A subset C of a partially
ordered set P is a 2«-crown in P provided that, with the partial ordering inherited
from P, C is a 2«-crown. A four-crown in P is a four-element subset {xlt yv x2, y2}
of P so that xi<yi(i,j= 1,2) are the only comparabilities and there is no zeP
such that xt < z < j y (j,y = 1,2).

FIG. 1. A 2n-crown.

Our main result provides a characterization of retracts of partially ordered sets
without crowns; in fact, we provide a 'canonical' procedure for obtaining retracts
of such partially ordered sets.
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[3] Retracts of partially ordered sets 497

THEOREM. Let P be a finite connected partially ordered set containing no crowns
and let Q be a subset of P. Then the following conditions are equivalent:

(1) Q is a retract ofP;
(2) Q is the set of fixed points of an order-preserving mapping of P to P;
(3) Q is obtained from P by dismantling by irreducibles.

Actually, (1) follows from (3), and (2) follows from (1) for any finite partially
ordered set P. However neither converse, (2) implies (1), nor (1) implies (3), holds
for arbitrary finite connected partially ordered sets (see Figs. 2 and 3). A finite
connected partially ordered set containing no crowns is dismantlable (Duffus and
Rival (1976)); however, the examples of Fig. 3 demonstrate that the theorem
cannot hold for an arbitrary dismantlable partially ordered set. The connectivity
hypothesis of the theorem ensures against degenerate cases: indeed, every subset
of an unordered set is a retract.

4=/-(6) 5-H5) 6=/(4)

(a) Q = {xeP \f(x) = x} is not
a retract of P.

(b) Q = {1,2,4,5} is a retract
of P, I{P) = 0.

FIG. 2.

A<5) =

(a) Q = {xeP \f(x) = x) is not
a retract of P.

(b) Q = {3,5,6,7,8} is a retract
ofP,

FIG. 3.

2. Preliminaries

Let P be a partially ordered set. Let Pp denote the set of all order-preserving
mappings of P to P. For fePp, we let />(/) = {xeP\f(x) = x}. Also, let/0 be the
identity mapping on P, let /1 = / a n d / * =fo(J

i-^) (i = 1,2,...). For aeP, we set
/a = (/<(<# = 0,1,...}.
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498 Dwight Duffus and Ivan Rival [4]

LEMMA 1. Let P be a finite partially ordered set and letfePp. Then there exists a
positive integer n such that f =f\fn(P) is an automorphism offn(P) andfn(P) is a
retract of P.

PROOF. Since P is finite there is a positive integer n such that

that i s , / ' =f\fn(P) is an automorphism offn(P). We choose a positive integer k
such that (/')* is the identity mapping of fn(P). Then/nfc is a retraction mapping
of P onto fn(P). This completes the proof.

A fence is a partially ordered set obtained from a crown by deleting either a
single element or a comparable pair of elements from the crown (see Fig. 4). The
elements of a fence comparable with only one other element of the fence are
endpoints.

For two elements x and y of a partially ordered set, we write x\\y provided that
x is noncomparable with y.

H x3

*z

FIG. 4. Fences.
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LEMMA 2 (Kelly and Rival (1974)). Let P be a finite partially ordered set containing
no crowns and let F= {xvx2, ...,xm} be a fence contained in P with m^3 and the
comparabilities x1>x2, x2<x3, x3>xt, ,... xm_1>xm. If xm+1 belongs to P and
satisfies xm+1>xm, xm+i|l*m-i and xm+11| xm_2 then Fu{xm+1} is a fence.

PROOF. We need to show that xm+1 \\xt for U ; < m - 3 . If xm+1 <xi then xm<Xj
and, since F is a fence, xt = xm_v Therefore, xm+1 is not less than any element of F.
Suppose xm+1 is greater than some element of F—{xm}. Let k be the greatest
integer such that xk<xm+1. Since xm_2<xm+1, l^k<m — 3. Also, by our choice
of k, xk is a minimal element of F. It follows that {xk,xk+1,...,xm_1,xm,xm+1} is a
2w-crown (n ̂  3).

Finally, we shall repeatedly apply the following fact in the proof of the theorem:
if a partially ordered set P contains no crowns then every retract of P contains
no crowns.

3. Proof of the theorem

From the definition of a retract of a partially ordered set it follows that (1)
implies (2) in any partially ordered set.

To see that (3) implies (1) let P-Q = H , ^ , ...,an}, aieI(P-{alta2, ...,ai_1}),
and let ft be the mapping of P-{a1,fl2,...,ai_1) to P—{a1,a2,...,ai} that is the
identity on P—{a1,a2, ...,af} and maps at to a't where a't is either the unique upper
cover or unique lower cover of a in P—{a1,a2>...,ai_1}(i=\,2,...,ri). Then
/'=fn°fn-i° • • • °fi >s a retraction mapping of P onto the subset Q.

The rest of the proof is devoted to showing that (2) implies (3). Let fePp and
let Q = P(f). We proceed by induction on \P-Q\. Let P-Q = {a}. As P is
connected, we may assume that a has two upper covers b and c. If/(a)||a then
{a,b,f(a),c} is a four-crown in P. Clearly, f(a)%a; therefore, f{a)<a and/(a)
must be the unique lower cover of a in P.

Let n be the positive integer guaranteed by Lemma 1, let R =fn(P), and choose k
so that fnk is a retraction mapping of P onto R. Then R = P(fnk), Q^R
where Q = R{f) and / ' = / | R, and R contains no crowns. lf\P-R\<\P-Q\ and
\R — Q\<\P— Q\ then, by our induction hypothesis, Q is obtained from R by dis-
mantling by irreducibles and R is obtained from P by dismantling by irreducibles.
Consequently, Q is obtained from P by dismantling. Therefore, either P — R or R = Q.

Let us suppose that P = R; that is,/is an automorphism of P. In this case we
shall show that there exists aeI(P) — Q. Let us first verify that this is sufficient to
complete the proof when P = R. Since/is an automorphism of P and aeI{P) — Q,
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fa = {a =fk(a),f(a),f\a), ...,fk-\a)}, k>2, and

f{a)eI{P-{a,f{d), ...,/*-1(a») (i = 1,2, . . . ,*-1).

Since P' — P—fa is obtained from P by dismantling by irreducibles, P' contains no
crowns. We have Q = P\f\P') and, applying the induction hypothesis to P' — Q,
we conclude that Q is obtained from P by dismantling by irreducibles.

Suppose that /(/>)£ Q and choose a eP— Q. Since P is connected a has two upper
covers x1 andyv Assuming xx$ Q, we choose JC2 such that x2 < xt and x2\\a. Suppose
we have obtained the fence F ={a,x1,xi,...,xm$<=,P—Q with comparabilities
a < xx, *! >-x2, x2<x3, ..., xm_x >»xm. Since xm$I{P), we can choose xOT+1 such
that * m <x m + 1 ; by the covering relations in F, xm+1\\xm_1 and *m+1||xm_2. By
Lemma 2, Fu {xm+1} is a fence. Since /* is finite and contains no crowns there is an
integer s ̂  1 such that Fx = {a, xx, xz,..., xs} is a fence in /* satisfying Fx—{xj £ P — Q,
xseI(P), and with comparability relations

a. - s JCj,Xj >- x 2 , x 2 ""s x$,...,xs_i )>- x g .

(The case xs > Xg.! is similar.) Also, there is an integer t ̂  1 such that
F2 = {a,yvy2,...,yt} is a fence in P satisfying F2-{>>(}£P-Q, yteI(P) and

(Again, the case yt_^ >- j , in F2 is similar.) Since P contains no crowns, F1nF2 = {a}
and Ft u F2 is a fence in /" (Lemma 2). Set

Let us consider /*(*,•) (1 <y<J - l ) and suppose JCy>-ofy.!, x}>xj+v Then
x^), fKx})>f\xj+1) and JC, # xy+1 implies / ^ O # /i(x,.+1). Also,

( Jz - i ^ /^ - i ) ) ; therefore, xg is covered by at least two distinct
elements of F' (yt covers two distinct elements of F'). Since F ' is a connected
partially ordered set containing no three-element chains and each element of F '
has two upper covers or two lower covers in F' , F' contains a crown.

We turn to the case that R = Q. Then/is a retraction mapping of P onto Q; in
fact, by the induction hypothesis, Q is a maximal proper retract of P and I(P) S Q.
We shall complete the proof by constructing a crown in P— Q. Since the construc-
tion is long and detailed, we divide it into several steps.

First, we record some straightforward observations. If xemax(0, the set of
maximal elements of Q, and x <y in P then/(>>) = •*; hence, the mapping/' of P
to P defined by

< y, if z>y,
/'(*) =

{f(z) otherwise
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is a retraction mapping of P onto Q u {y}. This contradicts the maximality of Q.
Therefore, max(0 £ maxCP) and min(0smin(JP). Also, if yemax(P)-Q and
f(y)<y t n e n /'» a s defined above, is again a retraction mapping. Let
N = {xeP\x\\f(x)}. We have

(max (P) u min (/»)) -Q^N.

Moreover, we may take f(y) emax(Q) (min(0) for any yemax(P) (min(P)).
Since P contains no four-crowns, a subset of P that is bounded above (below)

has a supremum (infimum). Now, if zeP and z = sup(X) = inf(7) for X, Y^ Q
then zeQ. Of course, each zeP is the supremum (infimum) of {yeP\y^z}
({y eP \y ̂  z}). In fact, since every chain in P is finite, z is the supremum (infimum)
of those elements y ̂  z [y ̂  z) that have at most one lower (upper) cover. Since
/(P)££, it follows that (max(P)umin(P))£(8.

A. P—Q contains a maximal chain C of P such that sup (C)eN and inf (C)eiV.

Let aemax(P)- Q; a$I(P) so a = sup (j\ a > y). If each lower cover of a
belongs to Q then aeQ. Choose a1eP—Q such that ax<a. If a^min^P), we
choose a2 «< ax such that a2eP—Q. Continuing in this manner we obtain a maximal
chain of P contained in P—Q.

Of course, sup (C) e JV and inf (C) e AT.

B. There is a fence F = {u,x1>xi,...,xm,v}{m'^2) in P with endpoints u,veQ.
For each i, 2^i^m-l, x^N and one of (I), (1'), (2) or (2') obtains:

(1) u<xlt x1>x2,...,xm_1<xm, xm>v, andf(x1)*x1,f(xm)>xm;

(1') u>x1,x1<x2,...,xm_1 >xm, xm<v, andfixj)<xlt f(xm)<xm;

(2) u < *!, *j >- x2,..., xm_x > xm, xm < v, andfixj > xx, f(xm) < xm;

(2') u>x1,x1<xi,...,xn_1 <xm,xm>v, andfixj<xx,f(xm)>xm.

For the proof of B we shall require some further notation. Let x >- y in P. We set

S(x,y) = {zeP\z<x and

and
T{x,y) = {zeP\z%x and z>y).

If xeP-Q then S{x,y) + 0 and if yeP-Q then J(x,j) 4= 0.
Let £ be the set of ordered pairs (x,y) satisfying the following properties:
(i) x>yinP;
(ii) x,yeN;

(iii) {zeP\y^z^x} contains a maximal chain C such that Ccp—Q.
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Now, let D be that subset of E consisting of ordered pairs (M, V) such that, if
(x,y)eE and u^x>y^v, then u = x and v = y. Note that an ordered pair (u,v)
in E belongs to D precisely if [v, u] is minimal (with respect to set inclusion) in
{[y,x]\(x,y)eE}.

By A, there is a maximal chain C of P such that CzP-Q and inf (C), sup (C) eN.
Therefore, D is nonempty.

The proof of B is divided into two cases. In the first case we assume there exists
(x, y)eD such that x > y in P. (The reader may find it helpful to refer to the
schematic diagram in Fig. 5 which illustrates the construction.)

<*4

FIG. 5. Construction scheme.

Let (ao,bo)eD with the associated chain C and choose a0*, b$ in C such that
ao >~ ao* ̂  *o ~>~ V Then/(a0Hs) is comparable with aOsK and/(Z$) is comparable
with b$. Since C is finite and any zeC with a0+ ^z^bfi is comparable with/(z),
either /(«„.,.) >a0* or /(ft*)<^o- Let u s suppose the former. If there exists
c e S(a0, a0+) n g then {f(a0), c, a0, aOit.} is a four-crown. Therefore,

Take b'x to be a minimal element of S(a0,a,,*). Since b'x$I(P), b\ has no lower
covers or at least two lower covers in P. If b'x>x,y then {^,^,7,00*} is a four-
crown in /*. Hence, ^emin(.P) and b^eN. Now we choose bx to be a maximal
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element of S"(ao,aOHc) satisfying bj^eN. It follows that {ao,b^)eD. Clearly b^b^;
moreover, b1>b0 contradicts (ao,bo)eD. We now choose b% such that
sup(b0, bj) ^ b\ > Z?j and, if a0 y blf we choose aOit.% such that ao>- a0^^. ^bf.
Notice that if 6*#a0 then bf,a^^ eP— Q and bf,^^^ $N.

We now assume that T{bf,b^^P—Q and choose a maximal element a[ of
T(bf,bj). Then ajemax(?) and, therefore, a^eN. Let ax be minimal in
satisfying ax e JV. Again, (ax, Ẑ ) e D. Let £>f *, a1+ satisfy

> inf (a0. Oi)> ^ Ss i* * >-

and, provided that ax > bv a^^bf*. Now ax^a0 and Oi<a0 contradicts
(ao.fcJeZ). Therefore fljllao. Of course 60^aa; also, a^bf implies a{2?\.

Suppose we have obtained the fence {b0, a0, bv ..., bit a j (/^ 2) as above. Assuming
that S ( a i , a w ) £ f - g , we let bi+1 be a maximal element of S(at, afH.) satisfying
bi+1eN. Then (ai; fti+1) e £). Since ^+1^0**, fti+i^^i- Since bi+1>bt contradicts

, bi+1\\bi. Since a^Oj-!, 6<+i^a<-i- I f * i+i<af- i t h e n

Therefore, by the dual of Lemma 2, {fco>a<)> •••>̂ t> at>^t+i) is a fence in P. We
choose Z>J+1,ai+% in P satisfying

sup (bit fci+1) > if+1 >- *i+1, ^ > flf * * ̂  *i+i

and, provided that ô  }• bi+1, afHc!(. >bf+1. We proceed in a similar manner to adjoin
ai+i to {6o,

ao> •••>bi,ai,bi+1} under the assumption that T(bf+1,bi+1)^P-Q.
Since P is a finite, connected partially ordered set and P contains no crowns,

there is a least integer n such that

T(b*,bn)$P-Q

or

Let us take c e T{b%, bn) n g . If/(Z)*) < fc* then {A*,/(ftn), 6n, c} is a four-crown in P.
Therefore, either f(bl)\\b*, implying an_1 = b%>bn, orf(b*)>b*. In the latter

C a ^ ^ J x z ^ * * ; hence, eitherf{an^\\an_lil:, implying

or f(an-i*)<an-i*- Continuing, we obtain either Of^bf or at_x >- fcf (/> 1) for
otherwise we contradict/(a0*)>£<,*. Let us take at > bt and af >• fliHsHc >bi+1. (The
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cases di>bi+1, bf^1>ai+1(i<n—l) and an-\>bn are similar.) Now choose the
integer j least such that

(a) Uj

or

(b) bs<apa}>bp...,

If (a) holds and/(a3H.)>ay4. then we consider the fence

F' = {f(aj

F' satisfies condition (1') on F specified in B (this case is illustrated in Fig. 6).
Similarly, if the comparabilities in (b) obtain and f(bf)<bf we consider the fence

= \J(bj),bj,bj,ap ••.,bi,at,a^^,j(o^^)).

F" satisfies condition (2) on Fin B.

f(OjJ Oj

bn

FIG. 6. Construction scheme.

Let us suppose (a) holds and/(a;!(.)<a3!ft. (Again, the case that (b) obtains and
f(bf)>bf is similar.) Then f(bj*)<bf* and, therefore, either aj_x>-b} or
f(bf)>bf. In any event we obtain ak>bk or ale>-bk_1(k<j) and repeat the
argument above. Eventually we obtain a fence F with properties specified in B.

We now consider the case that x^-y whenever (x,y)eD. Let (a0,b0)eD. If
there exist ceS(a0,b0)nQ and deT(ao,bo)nQ then either {ao,bo,f(ao),f(bo),c,d}
is a six-crown or one of its four-element subsets is a four-crown in P. If
ceS(a0,bQ)nQ and T(aQ,b^P~Q then, as above, we obtain a fence F
satisfying the conditions specified in B with c = u. If both S(a0,bo)^P— Q and
T(ao,bo)<^P—Q, we construct two fences in P, as above, one beginning with
{a0, b0, b'j), b'x e S(a0, b0) and the other with {a0, b0, cQ, a"x e T(a0, b0). Then the union
of the two fences is the required fence (this case is illustrated in Fig. 7). The proof
of B is complete.
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For the remainder of the proof we fix the fence F = {u,xvx2,...,xm, v} (m^2)
withxf 6JV(2</</M—1), w, veQ and satisfying, say, (l)of Bif m^3 and satisfying
(2)ofBifm = 2.

by bo b\ bz
FIG. 7. Construction scheme.

C. Each of the sets T{xx,x2), S(x3,x2), T(x3,x2), S(x3,x4), r(x3,x4),...,
S(xm-vXm-i)> T{xm_2,xm_i), T(xm,xm_j) is contained in P-Q.

To establish C it is enough to take F to be a fence of minimum cardinality in P
satisfying the conditions listed in B.

Finally, we show

xi then

D. Fuf(F) = {u,xl9f(xj),x2,/(x2),...,xm,f(xj,v} contains a crown.

Let us first suppose that m = 2. Let f(x2) || x2. If, in addition, / (
F' is a six-crown or a four-element subset forms a four-crown in P.
then {v,xx,x2,f(x2)} is a four-crown in P. Therefore, f(x2)>x2. But
since otherwise xx >f(x1) ^f(x2) > x2 contradicts x1 >- x2, and {/(x^), u, xv x2} is a
four-crown in P.

If m = 3 an argument similar to that above demonstrates that P contains a
crown.

Let us assume w>4. If/(x1)<x}- for some j , l^j^m — 1, then f{x^)<x} for
j = 2,3, . . . , / M - 1 , by C. But then M^/(JC1)<X2, which is nonsense. Similarly,
f(x1)>xi for some j , 2^j^m—l, implies /(x-,)>x1: this contradicts (1) in B.
Hence, f(x1)\\xj(j=2,3,...,m-l) and, similarly, f(xj\\xj (j = 2,3, . . . ,w- 1).
It is easy to see that each element of {/(*j)\i= 1,2,...,m) is noncomparable with
each x i ( / = 2,3, . . . , w - l ) . Also, if some /Oq) (1 s;zs:m) is comparable with
x^xj then /(**) < *j, (f(Xi) < xm).

Suppose there exist integers j , k, 2^j, k^m—l such that f{x})<xx and
f(xk)<xm. We can choose xs and xt in {x^i = 2,3, ...,m— 1} so there is a fence
T£ {/(*,) | / = 2,3,..., m -1} containing /(xs), /(x() such that y<=T,

implies y^\x^ and .y||x2. Since each element of T— {/(xs),/(x()} is noncomparable
with each element of {xt \ i = 1,2,..., m), Tu {x1; x2,..., xm} contains a crown.
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Let us suppose x1 \\f(xt) (i = 2,3,..., m — 1) and f{x?) < xm for some such /. Then
*i||/C*i) an<i w e c a n choose s, 2^s^m—l, so that/(xg)<xm and in order that
there is a fence Tl(=:{f{x^\i — \,2,...,m— 1} with endpoints/(xx) and/(xs) and
containing no other element comparable with an element of {u, xlt x2,..., xm}. Then
Tu{u,x1,x2, ••-,*,„} contains a crown.

Finally, if ^H/ ta ) and xm\\f(x^ (i = 2,3, ...,m-\) then x^fixj, xm\\f(xm);
that is, {/(^i),/(^m)} u F is a fence. Clearly, Fuf(F) contains a crown.

The proof of the theorem is now complete.
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