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Abstract In this paper we prove that sub-Gaussian estimates of heat kernels of regular Dirichlet forms
are equivalent to the regularity of measures, two-sided bounds of effective resistances and the locality
of semigroups, on strongly recurrent compact metric spaces. Upper bounds of effective resistances imply
the compact embedding theorem for domains of Dirichlet forms, and give rise to the existence of Green
functions with zero Dirichlet boundary conditions. Green functions play an important role in our analysis.
Our emphasis in this paper is on the analytic aspects of deriving two-sided sub-Gaussian bounds of heat
kernels. We also give the probabilistic interpretation for each of the main analytic steps.
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1. Introduction

In recent years, people have studied heat kernels or transition densities on fractals, and
have obtained elegant sub-Gaussian estimates of the form

a1t
−α/β exp(−b1(t−1/βd(x, y))γ1) � p(t, x, y)

� a2t
−α/β exp(−b2(t−1/βd(x, y))γ2) (1.1)

for heat kernels p(t, x, y) on a certain class of fractals, where ai, bi, γi > 0 for i = 1, 2
and α > 0, β � 2, and d(x, y) is a metric on the fractal considered (see, for example,
[2–4, 11, 17]). In order to obtain (1.1), the theory of Markov processes has been used
extensively in the literature cited above. On the other hand, people are also interested in
obtaining (1.1) in a purely analytic approach, without recourse to the theory of Markov
processes. Recall that, for the classical case where β = 2, there have been analytic
approaches to deriving (1.1) (see, for example, [1,6,8]). However, to our knowledge, no
analytic approach is available for the fractal case or, more generally, for metric spaces
where β > 2. Note that the existent analytic method for β = 2 is not applicable to the
case where β > 2.
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In this paper we will establish analytically sub-Gaussian estimates of the type (1.1)
for heat kernels on compact metric spaces satisfying the chain condition. More precisely,
we show that sub-Gaussian estimates for heat kernels of Dirichlet forms on strongly
recurrent compact metric spaces are equivalent to the regularity of measures, polynomial
growth of effective resistances and the locality of the semigroups (see Theorem 2.2).
We explain here how to derive sub-Gaussian estimates of heat kernels analytically. Let
X be a metric space, and let B(x, r) be an open ball in X. The effective resistance
R(x, B(x, r)c) between x ∈ X and B(x, r)c is well defined. This gives rise to the existence
of the Green function gx

B(x,r)c(·) vanishing on B(x, r)c. The Green function gx
B(x,r)c(y)

has the same polynomial growth as the effective resistance R(x, B(x, r)c), for x and y

sufficiently close. An important step is to bound from above the solution of the linear
heat equation with initial values vanishing on the ball (see (5.55), below). This can be
achieved by estimating the solution uλ to a linear elliptic equation (see (5.52), below)
for λ > 0 (see the crucial estimate (5.48)). We obtain (5.48) by applying the locality of
the semigroup of the Dirichlet form, together with the estimate of the solution u0 to a
Poisson equation with zero boundary condition (see (5.20), (5.21), below). We estimate
u0 by using the regularity of the measure and the estimate of the Green function. Once
we obtain the estimate (5.55), off-diagonal upper bounds of heat kernels easily follow by
using on-diagonal upper bounds. Lower off-diagonal bounds of heat kernels are derived
more easily by using the chain argument (see, for example, [2,16]).

We mention in passing here that there is a probabilistic interpretation for each of the
main analytic steps for deriving (5.55), which will be pointed out in the remarks following
it. (The reader may consult [2,13] for the probabilistic arguments.) A result similar to
Theorem 2.2 was obtained on strongly recurrent graphs in [5] and on resistance forms
in [20], by using the probability theory.

Finally, we remark that the method of this paper could be applicable to more general
bounded or unbounded metric spaces. We will address this issue elsewhere.

Notation.

In the following, we keep ci, εi, i � 0, fixed, and use c, c′ and c′′ to denote general
constants. For two functions f and g, by f � g we mean that there is some c > 0 such
that c−1f � g � cf .

2. Preliminaries and main results

Let (X, d) be a compact metric space satisfying the chain condition, that is, there exists
a constant c0 > 0 such that, for any distinct points x, y ∈ X and any integer n � 1, there
exists a sequence of points {xk}n

k=0 in X such that x0 = x, xn = y and

d(xi, xi+1) � c0n
−1d(x, y), 0 � i � n − 1. (2.1)

Set r0 := diam(X) < ∞, the diameter of X. Let B(x, r) = {y ∈ X : d(y, x) < r} be an
open ball in X with centre x and radius r. Denote by ∂B(x, r) = {y ∈ X : d(y, x) = r}
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the boundary of the ball B(x, r). For any x ∈ X and r ∈ (0, r0), the chain condition and
the compactness of X imply that the boundary ∂B(x, r) of any ball B(x, r) is not empty.

Let µ be a Borel measure with supp µ = X. For simplicity, we assume that µ(X) = 1.
For α > 0, we say that µ satisfies condition (A1) if µ is α-regular, that is, there exists
some c1 > 0 such that

c−1
1 rα � µ(B(x, r)) � c1r

α (A1)

for all x ∈ X and all 0 < r � r0. We call X an α-set if (A1) holds.
For 1 � p < ∞, denote by Lp(µ) := Lp(X, d, µ) the space of all p-integrable real-valued

functions on X with the norm

‖u‖p :=
( ∫

X

|u(x)|p dµ(x)
)1/p

.

Denote by C(X) (or C0(X)) the space of all continuous functions (or all continuous
functions with compact support) on X with uniform norm. Let (E ,F) be a Dirichlet
form on L2(µ). Recall that (E ,F) is regular if F ∩ C0(X) is dense in F with norm

(E(u) + ‖u‖2
2)

1/2,

and dense in C0(X) with uniform norm. (Here we use the abbreviation E(u) := E(u, u).)
The form (E ,F) is local if E(u, v) = 0 for u, v ∈ F with disjoint supports, and irreducible if
E(u) = 0 when and only when u is constant [12]. Let {Tt}t�0 be the semigroup associated
with (E ,F). For any t > 0, the operator {Tt}t�0 may possess an integral kernel p(t, x, y),
termed the heat kernel, that is, for t > 0 and µ-almost all x ∈ X,

Ttu(x) =
∫

X

u(y)p(t, x, y) dµ(y) (2.2)

for u ∈ L2(µ). Since E(1) = 0, we see that Tt1 = 1 (see [2, Lemma 4.10, p. 50]). Therefore,
if the heat kernel p(t, x, y) exists, for t > 0 and µ-almost all x ∈ X, we have∫

X

p(t, x, y) dµ(y) = 1. (2.3)

Note that {Tt}t�0 is strongly continuous in the L2(µ)-norm, that is

lim
t→0

‖Ttu − u‖2 = 0, u ∈ L2(µ). (2.4)

Let H be the infinitesimal generator of {Tt}t�0 in the L2(µ)-norm, that is

lim
t→0

‖t−1(Ttu − u) − Hu‖2 = 0 (2.5)

for u ∈ D(H), the space of all functions u ∈ L2(µ) such that the above limit exists for
some function Hu ∈ L2(µ). Note that D(H) is dense in L2(µ). We shall see below that
the semigroup {Tt} considered in this paper is actually the Feller semigroup, that is,
Ttf � 0 for f � 0, Ttf � 1 for f � 1 and

(i) for any t > 0, the operator Tt : C(X) → C(X), and

(ii) ‖Ttu − u‖C(X) → 0 as t → 0 for u ∈ C(X).
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For a Feller semigroup {Tt} and u ∈ C(X), if there is a function v ∈ C(X) such that

lim
t→0

‖t−1(Ttu − u) − v‖C(X) = 0, (2.6)

then we define
∆u(x) = v(x), x ∈ X. (2.7)

Let D(∆) be the domain of ∆. Clearly, (2.6) implies that

lim
t→0

t−1(Ttu(x) − u(x)) = v(x) (2.8)

for each point x ∈ X. Note that H is the extension of the linear operator ∆ : D(∆) →
C(X). In the following, we will use the fact that

E(u, v) = lim
t→0

Et(u, v) := lim
t→0

(
u − Ttu

t
, v

)
, u, v ∈ F , (2.9)

where (· , ·) is the inner product in L2(µ) (see [12, Lemma 1.3.4, p. 22]).
For any non-empty open subset D of X, let

FD := {u ∈ F : u|Dc = 0},

where Dc = X \ D. If (E ,F) is a regular Dirichlet form, then (E ,FD) is also a regular
Dirichlet form [12, Theorem 4.4.3, p. 154]. As in the case of the form (E ,F), we denote
by {TD

t }t�0 and HD the semigroup and generator for the form (E ,FD), respectively.
In particular, denote by pD(t, x, y) the heat kernel of (E ,FD), if it exists. We extend
pD(t, x, y) so that pD(t, x, y) = 0 for t > 0 if x ∈ Dc or y ∈ Dc. For any u, v ∈ FD ⊂ F ,
observe that

lim
t→0

(
u − Ttu

t
, v

)
= E(u, v) = lim

t→0

(
u − TD

t u

t
, v

)
(2.10)

for any non-empty open subset D. Finally, for any two non-empty open subsets D1 ⊂ D2

of X, it is known that

pD1(t, x, y) � pD2(t, x, y) � p(t, x, y) (2.11)

for any t > 0 and µ-almost all x, y ∈ X, if all of them exist.

Remark 2.1. Let ({Xt}t�0, {Px}x∈X) be the Hunt process corresponding to a regular
Dirichlet form (E ,F). Let D1 ⊂ D2 be two open subsets. Then, for any t > 0 and µ-almost
all x ∈ X,

TD1
t u(x) = E

D1
x (u(Xt)) := Ex(1{t<τD1}u(Xt))

� Ex(1{t<τD2}u(Xt)) = TD2
t u(x)

� Ex(u(Xt)) = Ttu(x) (2.12)

for any non-negative bounded Borel function u, where

τD = inf{t > 0 : Xt /∈ D}

https://doi.org/10.1017/S001309150500177X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150500177X


Heat kernel estimates on strongly recurrent metric spaces 175

is the first exit time of Xt from D [12, (4.1.2), p. 135]. Thus, (2.11) easily follows.
The analytic proof of (2.11) for the classical case uses the maximum principle (see [7,
Lemma 3.3]).

For the form (E ,F), we define the effective resistance R(x, y) for any two points x, y ∈
X by

R(x, y)−1 = inf{E(u) : u ∈ F , u(x) = 1 and u(y) = 0} (2.13)

if x �= y, and R(x, y) = 0 if x = y (possibly R(x, y) = ∞ for some points x, y ∈ X). By
(2.13) we see that

R(x, y) = sup
{

|u(y) − u(x)|2
E(u)

: u ∈ F and E(u) > 0
}

, (2.14)

which gives
|u(y) − u(x)|2 � R(x, y)E(u), u ∈ F , x, y ∈ X. (2.15)

We say that R(x, y) satisfies condition (A2) if there exist a number γ > 0 and a constant
c2 > 0 such that

c−1
2 d(y, x)γ � R(x, y) � c2d(y, x)γ (A2)

for all x, y ∈ X.
We say that p(t, x, y) satisfies condition (A3) if there exist some constants ai, bi > 0,

i = 1, 2, such that

a1t
−α/β exp(−b1(t−1/βd(x, y))β0) � p(t, x, y)

� a2t
−α/β exp(−b2(t−1/βd(x, y))β0) (A3)

for all x, y ∈ X and all 0 < t � rβ
0 , where β > 0, β0 = β(β − 1)−1 and α is the same as

in (A1).
We say that the semigroup {Tt}t�0 of the form (E ,F) is of local character if, for any

non-empty closed subset D of X,

lim
t→0

1
t
(Tt1D)(x) = 0 (2.16)

uniformly in x ∈ X satisfying d(x, D) � δ > 0 for any fixed δ (the function 1D is the
indicator of D, that is 1D = 1 on D, and 1D = 0 elsewhere). Clearly, if (2.16) holds, then
a regular Dirichlet form (E ,F) is local, by using the dominated convergence theorem.
Moreover, if the heat kernel p(t, x, y) of {Tt} exists, it follows from (2.16) that p(t, x, y)
is of local character as well, that is, for any closed subset D and any fixed δ > 0,

lim
t→0

1
t

∫
D

p(t, x, y) dµ(y) = 0 (2.17)

uniformly in x ∈ X with d(x, D) � δ. Note that (2.17) was proved in [21] for the diffusion
on X = R by using the probability method (see also [10]).

We now state the main result of this paper.
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Theorem 2.2. Let (X, d) be a compact metric space satisfying the chain condition.
Assume that (E ,F) is an irreducible regular Dirichlet form on L2(µ). Then the following
conditions are equivalent.

(i) The heat kernel p(t, x, y) of (E ,F) exists and satisfies (A3) with α < β.

(ii) The measure µ satisfies (A1) and the effective resistance R(x, y) satisfies (A2) with
γ = β − α, β > 1, and the semigroup {Tt} of (E ,F) is of local character.

The proof of Theorem 2.2 will be given in §§ 3 and 5. It would be interesting to replace
the locality of the semigroup {Tt} in Theorem 2.2 (ii) by the locality of the form (E ,F).
We will explore this for the case of post-critically finite self-similar fractals introduced
by Kigami [18].

Remarks 2.3. (1) Condition (A1) implies that α is the Hausdorff dimension of X [9].
The number β in (A3) is termed the walk dimension. The spectral dimension ds of X is
determined by the Einstein relation ds = 2α/β. We say that X is strongly recurrent if
ds < 2. Clearly, the X considered in this paper is strongly recurrent.

(2) The upper estimate in (A2) implies the Morrey–Sobolev inequality, that is

|u(y) − u(x)|2 � cd(y, x)γE(u) (2.18)

for all x, y ∈ X and all u ∈ F , by virtue of (2.15). Thus, F ⊂ C(X). For a non-empty
proper subset A of X, let FA be equipped with norm E(u)1/2. If FA is not empty, then FA

is compactly embedded in C(X) by using the Ascoli–Arzelà theorem [22, p. 85], since X

is compact, that is, any bounded sequence in FA has a convergent subsequence in C(X).
The compact embedding will play an important role; in particular, it implies the existence
of Green functions with zero boundary conditions (see § 4).

(3) If the upper bound of R in (A2) holds, then R(x, y) is a metric on X (see § 4).
Thus, the chain condition, together with (A2), implies that γ � 1. In fact, let {xk}n

k=0
be a chain connecting x, y ∈ X(x �= y) with x0 = x and xn = y for a large integer n. We
see from (A2) and (2.1) that

c−1
2 d(y, x)γ � R(x, y) �

n−1∑
k=0

R(xk, xk+1) �
n−1∑
k=0

c2d(xk, xk+1)γ

�
n−1∑
k=0

c2(c0n
−1d(x, y))γ � cn1−γd(x, y)γ ,

which implies that nγ−1 � c. Thus, γ � 1, and so β = α + γ � α + 1.

(4) If R(x, y) defined as in (2.13) is shown to be a metric on X, we may take d(y, x) =
R(x, y) in (A2) with γ = 1. Then Theorem 2.2 says that, for an irreducible regular
Dirichlet form (E ,F) on L2(µ), the conditions (A1) and (2.16) are equivalent to (A3)
with β = α + 1 (see [5] for graphs, [17] for post-critically finite fractals with regular
harmonic structure and [20] for effective forms).
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3. Proof of (A3) =⇒ (A1) + (A2) + (2.16)

In this section we show that (i) ⇒ (ii) in Theorem 2.2. The fact that (A3) implies (A1)
and the upper bound of R(x, y) in (A2) was actually obtained in [16]. We need only to
prove the lower bound of R(x, y) in (A2) and (2.16). For the reader’s convenience, we
outline the whole proof.

Proposition 3.1 (Grigor’yan et al . [16, Theorem 3.2]). Assume that p(t, x, y)
satisfies (A3) (without the restriction that α < β). Then µ satisfies (A1).

Proof. In [16] X is assumed to be unbounded, and so p(t, x, y) satisfies (A3) for all
0 < t < ∞. One can slightly modify the proof in [16] to deal with the case in which X

is bounded. Thus, Proposition 3.1 follows. �

For σ > 0, we define

Wσ(u) = sup
0<r<1

r−2σ

∫
X

{
1

µ(B(x, r))

∫
B(x,r)

|u(y) − u(x)|2 dµ(y)
}

dµ(x) (3.1)

for u ∈ L2(µ).

Proposition 3.2 (Grigor’yan et al . [16, Theorem 4.11 (iii)]). Assume that µ

satisfies (A1). If α < β, then

|u(y) − u(x)|2 � cd(y, x)β−αWβ/2(u) (3.2)

for all x, y ∈ X and all u ∈ C(X), for some c > 0.

Proof. In [16] the embedding (3.2) was obtained for x, y ∈ X with d(y, x) � 1
3 . If

d(y, x) � 1
3 , we let {xk}n

k=0 be a chain connecting x and y such that d(xk, xk+1) � 1
3 for

all 0 � k � n− 1; this can be done by taking n = [3c0r0]+ 1. For u ∈ C(X), we use (3.2)
for each pair (xk, xk+1), 0 � k � n − 1, and then sum over k to arrive at (3.2) for all
x, y ∈ X with d(y, x) � 1

3 . �

Proposition 3.3 (Grigor’yan et al . [16, Theorem 4.2]). Assume that p(t, x, y)
satisfies (A3). Then

c−1Wβ/2(u) � E(u) � cWβ/2(u) (3.3)

for all u ∈ F , for some c > 0.

By (3.2) and (3.3), we see that if p(t, x, y) satisfies (A3) with α < β, then

|u(y) − u(x)|2 � cd(y, x)β−αE(u) (3.4)

for all x, y ∈ X and all u ∈ F . This immediately gives

R(x, y) � cd(y, x)β−α (3.5)

for all x, y ∈ X, by virtue of (2.14). So the upper bound of R(x, y) in (A2) follows with
γ = β − α > 0. It remains to prove the lower bound of R(x, y) in (A2).
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Theorem 3.4. Assume that p(t, x, y) satisfies (A3) with α < β. Then, for all x, y ∈ X,

R(x, y) � c−1d(y, x)β−α. (3.6)

Proof. We first show that

E(p(t, x, ·)) � (et)−1p(t, x, x) (3.7)

for all t > 0 and x ∈ X. Indeed, let f ∈ L2(µ), and set

u(t, y) = Ttf(y), y ∈ X.

By the spectral calculus, we have

E(u(t, ·)) =
∫ ∞

0
λe−2λt d(Eλf, f),

where {Eλ} is the spectral representation of the generator of {Tt}. Noting that

λe−2λt � (2et)−1

for λ � 0 and t > 0, we see from above that

E(u(t, ·)) � (2et)−1‖f‖2
2.

Fix x ∈ X. Letting f(y) = p(t, x, y), y ∈ X, we obtain u(t, y) = p(2t, x, y). Thus, we have

E(p(2t, x, ·)) � (2et)−1‖p(t, x, ·)‖2
2 = (2et)−1p(2t, x, x),

proving (3.7) by replacing 2t by t. It follows from (3.7) that, using the upper diagonal
bound of p(t, x, y),

E(p(t, x, ·)) � (et)−1p(t, x, x) � a2e−1t−(1+α/β) (3.8)

for all 0 < t � rβ
0 and all x ∈ X. Fix y ∈ X. By (A3), (2.15) and (3.8), we have

a1t
−α/β − a2t

−α/β exp(−b2(t−1/βd(x, y))β0) � p(t, x, x) − p(t, x, y)

� R(x, y)1/2E(p(t, x, ·))1/2

� (a2e−1)1/2R(x, y)1/2t−(1+α/β)/2

for all 0 < t � rβ
0 . Let t = (b−1b2)β/β0d(x, y)β , where b is so large that a2 exp(−b) � 1

2a1

and t � rβ
0 . It follows from above that

1
2a1t

−α/β � (a2e−1)1/2R(x, y)1/2t−(1+α/β)/2,

and so
R(x, y) � ct(β−α)/β = cd(x, y)β−α,

giving (3.6). �
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Finally, we see that (2.17) (or equivalently (2.16)) easily follows from the upper bound
of p(t, x, y) in (A3) and the regularity of µ. Indeed, for a closed subset D of X and any
point x ∈ X with dist(x, D) � δ > 0, we have

t−1
∫

D

p(t, x, y) dµ(y) � t−1
∫

B(x,δ)c
p(t, x, y) dµ(y)

� ct−1
∫ ∞

1
2 δt−1/β

sα−1 exp(−c′sβ0) ds → 0

as t → 0 (see, for example, [16, (3.7)]). If (A3) holds and (X, d) satisfies the chain
condition, then β � 2 (see [16, (4.27), p. 2081]).

4. Green functions

In order to prove the other direction in Theorem 2.2, we need to investigate the existence
of Green functions with zero boundary conditions. In this section, we assume only that
(E ,F) is an irreducible regular Dirichlet form, and that the upper bound of R in (A2)
holds. The variational problem (2.13) or (4.1) below possesses a unique solution, leading
to the existence of Green functions with boundary conditions. This also generalizes the
results on Green functions with boundary having finite points [19] to the case where the
boundary may have infinite points.

For any non-empty subset A of X, we define the effective resistance R(x, A) between
any point x ∈ X and A by R(x, A) = 0 if x ∈ A, and

R(x, A)−1 = inf{E(u) : u ∈ Fx
Ac} (4.1)

if x /∈ A, where

Fx
Ac := {u ∈ F : u(x) = 1 and u|A = 0}, x /∈ A.

(Recall that F ⊂ C(X) by Remark 2.3 (2), and so u ∈ F is defined pointwise on X.)
Note that Fx

Ac may be empty for some subsets A of X. However, we have the following.

Proposition 4.1. Assume that (E ,F) is an irreducible regular Dirichlet form on
L2(µ). Then, for any two disjoint non-empty closed subsets A and B of X,

{u ∈ F : u|A = 0, u|B = 1} �= ∅

In particular, the set Fx
Ac is not empty for any x /∈ A and any non-empty closed subset

A ⊂ X.

Proof. Let A and B be two closed subsets of X with A ∩ B = ∅. By the Urysohn
theorem [22, p. 7], there exists a real-valued continuous function v on X such that
0 � v � 1 on X, and v|A = 0 and v|B = 1. Since E is regular, there is a function u1 ∈ F
such that u1|A � 1

3 and u1|B � 2
3 . Since E is irreducible, we see that u1 − 1

3 ∈ F . Define
u+ = 0 ∨ u. Let

u = (3(u1 − 1
3 )+) ∧ 1.

It is easily seen that u is the desired function by using the Markov property of E . �
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Proposition 4.2. Assume that (E ,F) is an irreducible regular Dirichlet form on
L2(µ), and that the upper bound of R in (A2) holds. Then, for any non-empty closed
subset A of X and any x0 /∈ A, the variational problem

λ0 = inf{E(u) : u ∈ Fx0
Ac} (4.2)

possesses a unique solution in [0, 1], that is, there is a unique function ψx0
A ∈ Fx0

Ac with
0 � ψx0

A � 1 on X such that λ0 = E(ψx0
A ).

Proof. The proof is standard, by using the compact embedding theorem. We outline
the proof for the reader’s convenience. Since Fx0

Ac is not empty, we see that λ0 < ∞.
Let {un}n�1 be a minimizing sequence for (4.2), that is {un}n�1 ∈ Fx0

Ac and E(un) →
λ0 as n → ∞. The compact embedding (see Remark 2.3 (2)) implies that there is a
subsequence of {un} (still denoted by {un}) and a function ψx0

A ∈ C(X) such that {un}
uniformly converges to ψx0

A as n → ∞. Clearly, ψx0
A (x0) = 1 and ψx0

A |A = 0. We show that
ψx0

A ∈ F . In fact, since Et(u) increases to E(u) as t → 0, from (2.9), using the dominated
convergence theorem, we have

Et(ψx0
A ) = lim

n→∞
Et(un) � lim

n→∞
E(un) = λ0

for t > 0, which gives that E(ψx0
A ) � λ0 < ∞. Thus, ψx0

A ∈ F . Clearly, E(ψx0
A ) = λ0. To

show that ψx0
A is unique, let v ∈ Fx0

Ac , satisfying E(v) = λ0. Note that

0 � E
(

v − ψx0
A

2

)
= 1

2 (E(v) + E(ψx0
A )) − E

(
v + ψx0

A

2

)
� 0

since E( 1
2 (v + ψx0

A )) � λ0, and so v − ψx0
A is constant by virtue of the irreducibility of E .

Thus, v = ψx0
A on X. It remains to show that 0 � ψx0

A � 1. But this easily follows from
the Markov property of E and the uniqueness. Indeed, let u = (0 ∨ ψx0

A ) ∧ 1. By the
Markov property of E , we see that u ∈ Fx0

Ac and E(u) � E(ψx0
A ). The uniqueness proved

above implies that ψx0
A = u ∈ [0, 1]. �

For any two distinct points x0, y0 ∈ X, letting A = {y0}, we see from Proposition 4.2
that there is a unique function ψx0

y0
with the property that ψx0

y0
(x0) = 1 and ψx0

y0
(y0) = 0

such that
R(x0, y0)−1 = E(ψx0

y0
). (4.3)

Next we claim that, for any closed set A ⊂ X and x0 ∈ X, the function ψx0
A ∈ Fx0

Ac is the
solution to (4.1) with x = x0 if and only if

E(ψx0
A , v) = 0 (4.4)

for all v ∈ F satisfying v|A∪{x0} = 0. In fact, if ψx0
A is the solution to (4.1), we find that

ψx0
A + tv ∈ Fx0

Ac for any t ∈ R and v ∈ F satisfying v|A∪{x0} = 0. Thus,

E(ψx0
A ) � E(ψx0

A + tv) = E(ψx0
A ) + 2tE(ψx0

A , v) + t2E(v),
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which means that 2tE(ψx0
A , v) + t2E(v) � 0 for any t ∈ R. Therefore, (4.4) follows. Con-

versely, if there is a function ψx0
A ∈ Fx0

Ac such that (4.4) holds, then we let v = f − ψx0
A

for any f ∈ Fx0
Ac , and obtain

E(f) = E(v + ψx0
A ) = E(v) + 2E(ψx0

A , v) + E(ψx0
A ) = E(v) + E(ψx0

A ) � E(ψx0
A ).

Thus, ψx0
A is the solution to (4.1), proving the claim.

For any non-empty closed set A ⊂ X and any continuous function ϕ defined on A, we
say that a function f ∈ F is harmonic on Ac with the boundary condition f |A = ϕ if

E(f, v) = 0

for any v ∈ FAc . Thus, by (4.4), the function ψx0
A is harmonic on X \ A ∪ {x0} with

boundary condition on ψx0
A |A = 0 and ψx0

A (x0) = 1. Note that a harmonic function is
uniquely determined by its boundary condition, using the irreducibility of E .

Definition 4.3. Let A be a closed subset of X and x0 ∈ X. Define the Green function
gx0

A (·) = R(x0, A)ψx0
A (·) if x0 /∈ A, and gx0

A ≡ 0 if x0 ∈ A.

Remark 4.4. The Green function defined above is the same as that introduced in [19]
if A is a finite subset of X. If A = {y0} for y0 ∈ X, we write the Green function
gx0

y0
(·) = R(x0, y0)ψx0

y0
(·).

The Green function gx0
A has the following properties (see [19] if A is a finite set).

(i) gx0
A � 0 on X, and gx0

A (x) = 0 if x ∈ A or x0 ∈ A.

(ii) gx
A(y) = gy

A(x) for x, y ∈ X (see (4.7), below).

(iii) E(gx0
A ) = R(x0, A) = gx0

A (x0).

(iv) gx0
A (x0) � gx0

A (x) for all x ∈ X (since 0 � ψx0
y0

� 1 on X).

Lemma 4.5. Let gx0
A be the Green function defined above for any closed subset A of

X and any point x0 ∈ X. Then, for any u ∈ FAc ,

E(gx0
A , u) = u(x0). (4.5)

Remark 4.6. It is easy to see that (4.5) fails if u /∈ FAc , for example, by letting u ≡ 1
on X.

Proof. If x0 ∈ A, nothing can be proved. Now let x0 /∈ A. It suffices to show that

E(ψx0
A , u) = u(x0)R(x0, A)−1 (4.6)

for u ∈ FAc . We assume that u(x0) �= 0; otherwise, (4.5) follows from (4.4). Let v(x) =
ψx0

A (x) − u(x0)−1u(x) for x ∈ X. Clearly, v(x0) = 0 and v|A = 0. Thus, it follows
from (4.4) that

0 = E(ψx0
A , v) = E(ψx0

A ) − u(x0)−1E(ψx0
A , u),

giving (4.6) by using the fact that E(ψx0
A ) = R(x0, A)−1. �
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Since gy0
A ∈ FAc for any y0 ∈ X, it follows from (4.5) that

E(gx0
A , gy0

A ) = gx0
A (y0) = gy0

A (x0) (4.7)

for any x0, y0 ∈ X. If A = {y0}, from (4.5) we have

E(gx0
y0

, u) = u(x0) (4.8)

for any u ∈ F with u(y0) = 0. For general u ∈ F , we let ū = u − u(y0), and (4.8) applied
to ū gives

E(gx0
y0

, u) = u(x0) − u(y0) (4.9)

for any u ∈ F and any x0, y0 ∈ X.

Lemma 4.7. Let A be a non-empty closed subset of X and x0 ∈ X. Then

R(x0, A) � R(x0, y0) + R(y0, A) (4.10)

for any x0, y0 ∈ X. In particular, if A = {z0}, then R satisfies the triangle inequality

R(x0, z0) � R(x0, y0) + R(y0, z0) (4.11)

for any x0, y0, z0 ∈ X.

Proof. Let x0, y0 ∈ X, x0 �= y0. Motivated by [19], we let h(x) = gx0
A (x) − gy0

A (x) for
x ∈ X. Note that h(x0) � 0 and h(y0) � 0, since gx0

A (x0) � gx0
A (x) for any x ∈ X. Since

h ∈ FAc , we see from (4.5) that

E(h) = E(gx0
A − gy0

A , h) = h(x0) − h(y0),

which combines with (2.15) to give

(h(x0) − h(y0))2 � R(x0, y0)E(h) = R(x0, y0)(h(x0) − h(y0)).

Therefore,
0 � h(x0) � h(x0) − h(y0) � R(x0, y0),

and so
0 � gx0

A (x0) − gy0
A (x0) = h(x0) � R(x0, y0). (4.12)

Hence,
R(x0, A) = gx0

A (x0) � R(x0, y0) + gy0
A (x0) � R(x0, y0) + R(y0, A),

proving (4.10). �

Remark 4.8. The result in (4.10) was obtained by Kigami [19] for the case when A

is a finite subset of X. Note that (4.11) implies that R is a metric on X (we assume
that the upper bound in (A2) holds, so R(x, y) < ∞ for any x, y ∈ X; this is because, if
R(x0, y0) = ∞ for some x0, y0 ∈ X, then E(ψx0

y0
) = R(x0, y0)−1 = 0, which would imply

that ψx0
y0

≡ const., which is a contradiction by Proposition 4.2). We call R the effective
resistance metric on X.
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For y0 ∈ A, we observe that R(y0, A) = 0, and (4.10) implies that

R(x0, A) � inf
y∈A

R(x0, y) (4.13)

for any x0 ∈ X and any closed subset A of X. We next state that the Green function
gx0

A is uniformly Lipschitz in terms of R (see [19] for a finite subset A of X).

Lemma 4.9. Let A be a closed subset of X and x0 ∈ X. Then

|gx0
A (x) − gx0

A (y)| � R(x, y), (4.14)

for any x, y ∈ X.

Proof. The proof given here is motivated by [19, Lemma 4.9, p. 413]. Fix x0, x ∈ X

temporally. Assume that x0, x /∈ A; otherwise (4.14) is clear. By (4.4), the function

u(y) = gx
A(x)gx0

A (y) − gx0
A (x)gx

A(y), y ∈ X,

is harmonic on X \A∪{x0, x} with boundary conditions on A∪{x0, x}. Note that u = 0
on A, and u(x) = 0 and

u(x0) = gx
A(x)gx0

A (x0) − gx0
A (x)gx

A(x0) � 0.

Therefore, we have u � 0 on X.∗ Thus,

gx
A(x)gx0

A (y) � gx0
A (x)gx

A(y)

for all x0, x, y ∈ X. Therefore,

gx0
A (x) − gx0

A (y) � gx0
A (x) − gx

A(x)−1gx0
A (x)gx

A(y)

= gx0
A (x)gx

A(x)−1(gx
A(x) − gx

A(y))

� gx
A(x) − gx

A(y)

� R(x, y)

for all x0, x, y ∈ X, where the last inequality follows from (4.12). Exchanging x and y

yields
gx0

A (y) − gx0
A (x) � R(y, x),

whence (4.14) follows. �
∗ In fact, if u(x0) = 0, then u ≡ 0 on X by uniqueness, and if u(x0) > 0, then the function u/u(x0)

satisfies the variational problem

inf{E(u) : u|A∪{x} = 0 and u(x0) = 1},

and a similar argument to Proposition 4.2 in which A is replaced by A∪{x} shows that 0 � u/u(x0) � 1
on X.
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5. Proof of (A1) + (A2) + (2.16) =⇒ (A3)

In this section we prove the other direction in Theorem 2.2, that is (A1), (A2) and (2.16)
will imply (A3). We first obtain off-diagonal upper bounds of p(t, x, y). The key is to
estimate the solution of a linear elliptic equation (5.40) in the ball (see (5.48), below).
The Green functions discussed above will be used. The locality of the semigroup plays an
important role, which leads to a local maximum principle. We then derive lower bounds
of p(t, x, y) in a standard way by using the upper bound of p(t, x, y), (2.15) and the chain
condition.

5.1. On-diagonal upper bounds

Theorem 5.1. Let (X, d, µ) be a measure metric space and let (E ,F) be a Dirichlet
form (not necessarily local). If µ satisfies the lower bound in (A1) and R satisfies the
upper bound in (A2), then the heat kernel p(t, x, y) of (E ,F) exists, is continuous on
X × X for each t > 0 and satisfies

p(t, x, y) � ct−α/β (5.1)

for all x, y ∈ X and 0 < t � rβ
0 , where β = γ + α.

Proof. Let f be a non-negative bounded function on X with ‖f‖1 � 1. For 0 < t � rβ
0 ,

we show that there exists a constant c independent of f and t such that

‖Ttf‖∞ � ct−α/β . (5.2)

The proof given here is motivated by [5] for graphs, but we do not assume a priori the
existence of the heat kernel. To see this, note that ‖Ttf‖1 � ‖f‖1 � 1, and

‖Tt/2f‖2
2 = (Tt/2f, Tt/2f) = (f, Ttf) � ‖Ttf‖∞‖f‖1 � ‖Ttf‖∞, t > 0. (5.3)

Fix x0 ∈ X, and define B0 := B(x0, t
1/β). Since∫

B0

Ttf(x) dµ(x) � ‖Ttf‖1 � 1,

using (a + b)2 � 2(a2 + b2) and Hölder’s inequality, we have

Ttf(x0)2 =
(

µ(B0)−1
∫

B0

((Ttf(x0) − Ttf(x)) + Ttf(x)) dµ(x)
)2

� 2
(

µ(B0)−1
∫

B0

(Ttf(x0) − Ttf(x)) dµ(x)
)2

+ 2
(

µ(B0)−1
∫

B0

Ttf(x) dµ(x)
)2

� 2µ(B0)−1
∫

B0

(Ttf(x0) − Ttf(x))2 dµ(x) + 2µ(B0)−2. (5.4)

Observing that

E(Ttf) = −1
2

∂

∂t
‖Ttf‖2

2, t > 0,
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it follows that, using (2.15) and the upper bound of R in (A2),

(Ttf(x0) − Ttf(x))2 � R(x0, x)E(Ttf) � c2d(x0, x)β−αE(Ttf)

� −c2

2
t1−α/β ∂

∂t
‖Ttf‖2

2

for x ∈ B0 and t > 0. Therefore,

2µ(B0)−1
∫

B0

(Ttf(x0) − Ttf(x))2 dµ(x) � −c2t
1−α/β ∂

∂t
‖Ttf‖2

2,

which combines with (5.4) to yield that, using the lower bound of µ in (A1),

Ttf(x0)2 � −c2t
1−α/β ∂

∂t
‖Ttf‖2

2 + ct−2α/β (5.5)

for 0 < t � rβ
0 , where c is independent of x0, t and f . Set φ(t) = ‖Ttf‖∞. Note that φ is

decreasing on (0,∞) because, for s < t,

φ(t) = ‖Ttf‖∞ = sup
‖g‖1=1

(Ttf, g) = sup
‖g‖1=1

(Tt−s(Tsf), g)

= sup
‖g‖1=1

(Tsf, Tt−sg) � ‖Tsf‖∞ sup
‖g‖1=1

‖Tt−sg‖1 � ‖Tsf‖∞ = φ(s).

Since x0 is an arbitrary point in X, we see from (5.5) that

∂

∂t
‖Ttf‖2

2 � ct−1−α/β − c′t−1+α/βφ(t)2. (5.6)

Integrating (5.6) over (1
2 t, t), and then using (5.3) and the monotonicity of φ, we obtain

−φ(t) � ‖Ttf‖2
2 − ‖Tt/2f‖2

2

� c

∫ t

t/2
s−1−α/β ds − c′

∫ t

t/2
s−1+α/βφ(s)2 ds

� ct−α/β − c′φ(t)2
∫ t

t/2
s−1+α/β ds

= ct−α/β − c′tα/βφ(t)2.

Therefore,
c′tα/βφ(t)2 − φ(t) − ct−α/β � 0,

which gives

0 � φ(t) � 1 +
√

1 + 4cc′

2c′tα/β
= ct−α/β , (5.7)

proving (5.2) for 0 < t � rβ
0 . The estimate (5.2) implies that the operator Tt is ultra-

contractive from L1(µ) to L∞(µ) for 0 < t � rβ
0 . Thus, the heat kernel p(t, x, y) of (E ,F)

exists [13], and (5.1) holds for all 0 < t � rβ
0 and almost all x, y ∈ X. Finally, using (3.7)

and (5.1), we obtain the (Hölder) continuity of p(t, x, y) by noting that

|p(t, x, y1) − p(t, x, y2)|2 � R(y1, y2)E(p(t, x, ·)) � ct−(1+α/β)d(y1, y2)β−α.

This completes the proof. �
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The following proposition shows that the semigroup {Tt} of the Dirichlet form (E ,F)
is a Feller semigroup if the hypotheses in Theorem 5.1 hold.

Proposition 5.2. Assume that the hypotheses in Theorem 5.1 hold. Then Ttu is
continuous on X for any bounded function u on X and any t > 0. Moreover, {Tt} is
strongly continuous with uniform norm, that is

lim
t→0

‖Ttu − u‖C(X) = 0, u ∈ C(X). (5.8)

Proof. Let u be bounded on X. For a point x0 ∈ X, let {xk}k�1 be a sequence of
points in X such that xk → x0 as k → ∞. Since the heat kernel p(t, x, y) is continuous in x

for t > 0 and y ∈ X, and p(t, xk, y) � ct−α/β by (5.1), using the dominated convergence
theorem, we have

lim
k→∞

Ttu(xk) = lim
k→∞

∫
X

p(t, xk, y)u(y) dµ(y) =
∫

X

p(t, x0, y)u(y) dµ(y) = Ttu(x0).

Thus, Ttu is continuous on X for each t > 0. It remains to prove (5.8). To this end, note
that, for any u ∈ F ,

E(Ttu − u) =
∫ ∞

0
λ(e−λt − 1)2 d(Eλu, u) (5.9)

by using the spectral calculus, where {Eλ} is the spectral family associated with the
generator H of the form (E ,F). Thus, by the dominated convergence theorem,

lim
t→0

E(Ttu − u) = lim
t→0

∫ ∞

0
λ(e−λt − 1)2 d(Eλu, u) = 0. (5.10)

On the other hand, from the upper bound in (A2) and (2.15) we have

‖u‖2
C(X) � c(E(u) + ‖u‖2

2) (5.11)

for all u ∈ F . Replacing u by Ttu − u in (5.11), we see that

lim
t→0

‖Ttu − u‖2
C(X) � c lim

t→0
(E(Ttu − u) + ‖Ttu − u‖2

2) = 0 (5.12)

for any u ∈ F , by virtue of (5.10) and (2.4). Since (E ,F) is regular and ‖Ttu‖C(X) �
‖u‖C(X), we can easily see that (5.12) also holds for u ∈ C(X). �

As in Theorem 5.1 and Proposition 5.2, we observe that, for any open subset D, the
heat kernel pD(t, x, y) of the form (E ,FD) also exists and is jointly continuous, and

lim
t→0

‖TD
t u − u‖C(D) = 0 (5.13)

for any u ∈ C0(D).
We remark here that (5.8) was proved in [18, Lemma 5.2.7, p. 167] if X is a post-

critically finite fractal with regular harmonic structure.

https://doi.org/10.1017/S001309150500177X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150500177X


Heat kernel estimates on strongly recurrent metric spaces 187

5.2. Off-diagonal upper bounds

We first give estimates of the effective resistance between any point x0 ∈ X and
B(x0, r)c with r ∈ (0, r0]. The locality of the form (E ,F) will be used.

Proposition 5.3. Let (X, d, µ) be a measure metric space satisfying the chain condi-
tion. Assume that (E ,F) is a local regular Dirichlet form. If R satisfies (A2), then, for
all x0 ∈ X and 0 < r � r0,

R(x0, B(x0, r)c) � crγ . (5.14)

Proof. The proof is essentially the same as in [5] for graphs or in [20] for effective
forms. Let D = B̄(x0, r)\B(x0,

1
2r). For y ∈ D, let ψx0

y be the unique function such that
R(x0, y)−1 = E(ψx0

y ) (recall that ψx0
y (y) = 0 and ψx0

y (x0) = 1). It follows from (A2) that

ψx0
y (x)2 = |ψx0

y (x) − ψx0
y (y)|2

� R(x, y)E(ψx0
y )

= R(x, y)R(x0, y)−1

� c(d(y, x)r−1)γ � 1
4 (5.15)

if d(x, y) � ε1r, where ε1 is a small constant independent of x0, x, y and r. Thus,
ψx0

y (x) � 1
2 for x ∈ B(y, ε1r). We cover D by N balls {B(yi, ε1r)}N

i=1. Since µ satisfies
the doubling condition, the number N can be chosen independent of x0, yi and r. Define

v0(x) = min
1�i�N

ψx0
yi

(x), x ∈ X. (5.16)

We see that v0(x0) = 1 since ψx0
yi

(x0) = 1, and v0 � 1
2 on D since ψx0

yi
� 1

2 on B(yi, ε1r),
for 1 � i � N . We claim that there exists some c > 0 independent of r and x0 such that

E(v0) � cr−γ . (5.17)

In fact, from (5.16), for x, z ∈ X, we have

|v0(x) − v0(z)| � max
1�i�N

|ψx0
yi

(x) − ψx0
yi

(z)| �
N∑

i=1

|ψx0
yi

(x) − ψx0
yi

(z)|.

Therefore, using (A2),

E(v0) = lim
t→0

1
2t

∫
X

∫
X

(v0(x) − v0(z))2p(t, x, z) dµ(z) dµ(x)

� N

N∑
i=1

lim
t→0

1
2t

∫
X

∫
X

|ψx0
yi

(x) − ψx0
yi

(z)|2p(t, x, z) dµ(z) dµ(x)

= N

N∑
i=1

E(ψx0
yi

) � N2 max
1�i�N

R(x0, yi)−1 � cr−γ ,
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r

v1 = v2

x0

D

v1 = v2 = 0

v2 = 0

Figure 1. Functions v1 and v2.

proving (5.17). Let v1 = 2(v0 − 1
2 )+ and v2(·) = v1(·)1B(x0,r)(·) (see Figure 1). By the

locality of E , we have E(v2, v1 − v2) = 0, and so

E(v2) = E(v1) − E(v1 − v2) − 2E(v2, v1 − v2) � E(v1).

Noting that v2(x0) = 1, and v2 = 0 on B(x0, r)c, we see from (5.17) that

R(x0, B(x0, r)c)−1 � E(v2) � E(v1) � 4E(v0) � cr−γ , (5.18)

proving the lemma. �

For x0 ∈ X and 0 < r < r0, define B := B(x0, r). Let ϕ0 be a continuous function
on X satisfying the condition that 0 � ϕ0 � 1, and

ϕ0 =

{
1 on B(x0,

1
2r),

0 on B(x0,
2
3r)c.

(5.19)

Consider the Poisson equation with zero boundary condition

−HBu0 = ϕ0 in B, (5.20)

u0 = 0 in Bc, (5.21)

where HB is the generator of the Dirichlet form (E ,FB). We say that a function u0

defined on X is a weak solution to (5.20), (5.21) if u0 ∈ FB and

E(u0, v) =
∫

B

v(x)ϕ0(x) dµ(x) (5.22)

for any v ∈ FB . Note that a weak solution does not necessarily belong to the domain
D(HB) of HB . If it does, and (5.20) holds pointwise in B, we call it a strong solution.
Equation (5.20) with (5.21) has a unique weak solution,

u0(x) =
∫

X

gx
Bc(y)ϕ0(y) dµ(y) =

∫
B

gx
Bc(y)ϕ0(y) dµ(y), x ∈ X, (5.23)
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where gx
Bc(·) = R(x, Bc)ψx

Bc(·) is the Green function whose existence was proved in
Proposition 4.2. In fact, from (5.23) and (4.5), for any v ∈ FB , we have

E(u0, v) = lim
t→0

1
t

∫
X

(u0(x) − Ttu0(x))v(x) dµ(x)

= lim
t→0

1
t

∫
X

( ∫
X

(gy
Bc(x) − (Ttg

y
Bc)(x))v(x) dµ(x)

)
ϕ0(y) dµ(y)

= lim
t→0

∫
X

Et(g
y
Bc , v)ϕ0(y) dµ(y)

=
∫

X

E(gy
Bc , v)ϕ0(y) dµ(y)

=
∫

B

v(y)ϕ0(y) dµ(y), (5.24)

and so u0 is a weak solution to (5.20), (5.21). The uniqueness easily follows from the
irreducibility of E .

Alternatively, the Green function gx
Bc above may usefully be expressed as

gx
Bc(y) =

∫ ∞

0
pB(t, x, y) dt, x, y ∈ B, (5.25)

where pB(t, x, y) is the heat kernel of (E ,FB). (Note that pB(t, x, y) exists, and is con-
tinuous on (0,∞) × B × B. The finiteness of the integral in (5.25) may be seen below.)
In other words, the solution u0 may also be written as

u0(x) =
∫

B

( ∫ ∞

0
pB(t, x, y) dt

)
ϕ0(y) dµ(y) =

∫ ∞

0
TB

t ϕ0(x) dt, x ∈ X. (5.26)

In fact, from (5.26) we have

u0(x) − TB
t u0(x) =

∫ t

0
TB

s ϕ0(x) ds,

and so, for v ∈ FB ,

E(u0, v) = lim
t→0

1
t

∫
B

(u0(x) − TB
t u0(x))v(x) dµ(x) =

∫
B

v(x)ϕ0(x) dµ(x).

Remark 5.4. Let Xt be the Hunt process associated with the regular Dirichlet form
(E ,F). Then the solution to (5.20), (5.21) can be written as

u0(x) = Ex

( ∫ τB

0
ϕ0(Xt) dt

)
. (5.27)

In fact, using the Fubini theorem, we see from (5.26) that

u0(x) =
∫ ∞

0
E

B
x (ϕ0(Xt)) dt

=
∫ ∞

0
Ex(1{t<τB}ϕ0(Xt)) dt
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= Ex

( ∫ ∞

0
1{t<τB}ϕ0(Xt) dt

)

= Ex

( ∫ τB

0
ϕ0(Xt) dt

)
. (5.28)

We now estimate u0.

Proposition 5.5. Assume that all the hypotheses in Proposition 5.3 hold, and that
µ satisfies (A1). Let u0 be the solution to (5.20), (5.21). There then exist constants
c3, c4, ε2 > 0 independent of x0 and r such that

c3r
β � min

x∈B(x0,ε2r)
u0(x) � max

x∈X
u0(x) � c4r

β . (5.29)

Proof. The key is to estimate the Green function gx
Bc . This can be done by using (A1)

and (A2). Using (4.13) and the upper bound of R in (A2), we have

gx
Bc(y) � gx

Bc(x) = R(x, Bc) � inf
z∈Bc

R(x, z) � c2r
γ (5.30)

for all x, y ∈ X. Thus, it follows from (5.23) and (A1) that, using γ = β − α,

u0(x) � c2r
γµ(B(x0, r)) � c4r

γ+α = c4r
β

for all x ∈ X, proving the third inequality in (5.29). On the other hand, let ψx
Bc be such

that R(x, Bc)−1 = E(ψx
Bc), for x ∈ B(x0,

1
2r). It follows from (5.14) and (A2) that, for

x ∈ B(x0,
1
2r),

(1 − ψx
Bc(y))2 = (ψx

Bc(x) − ψx
Bc(y))2

� R(x, y)E(ψx
Bc)

= R(x, y)R(x, Bc)−1

� R(x, y)R(x, B(x, 1
4r)c)−1

� c(d(x, y)r−1)γ

� 1
4 ,

if y ∈ B(x, 2ε2r) for a small ε2 ∈ (0, 1
2 ) independent of x0 and r. Thus, ψx

Bc(y) � 1
2 .

Therefore, for all x, y ∈ B(x0, ε2r),

gx
Bc(y) = R(x, Bc)ψx

Bc(y) � 1
2R(x, B(x, 1

4r)c) � crγ , (5.31)

where c is independent of x0 and r. Hence, from (5.23) and (A1) we have

u0(x) =
∫

B

gx
Bc(y)ϕ0(y) dµ(y) �

∫
B(x0,ε2r)

gx
Bc(y) dµ(y) � c3r

β ,

for all x ∈ B(x0, ε2r). This proves the first inequality in (5.29). �
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Remark 5.6. By Remark 5.4, the estimates in (5.29) may be obtained by estimating
Ex(τB) and Ex(τB(x0,r/2)) by using the fact that

Ex(τB(x0,r/2)) � u0(x) � Ex(τB), x ∈ B. (5.32)

For x0 ∈ X and 0 < r < r0, let B = B(x0, r) as before. The estimates in (5.29) give
rise to a lower integral estimate for the heat kernel pB(t, x, y), that is, there exist two
constants c5 ∈ (0, 1) and c6 > 0 independent of x0, r and t such that, for all x ∈ B(x0, ε2r)
and t > 0, ∫

B

pB(t, x, y) dµ(y) � c5 − c6r
−βt. (5.33)

Indeed, let u0 be the solution to (5.20), (5.21). Using the semigroup property, we see
from (5.26) that, for t > 0,

∫ ∞

t

( ∫
B

pB(s, x, y)ϕ0(y) dµ(y)
)

ds

=
∫ ∞

0

( ∫
B

pB(s + t, x, y)ϕ0(y) dµ(y)
)

ds

=
∫ ∞

0

( ∫
B

{ ∫
B

pB(t, x, z)pB(s, z, y) dµ(z)
}

ϕ0(y) dµ(y)
)

ds

=
∫

B

u0(z)pB(t, x, z) dµ(z)

� max
z∈B

u0(z)
∫

B

pB(t, x, z) dµ(z).

Therefore, noting that

∫
B

pB(s, x, y) dµ(y) � 1 and 0 � ϕ0 � 1,

we have

u0(x) =
∫ ∞

0

( ∫
B

pB(s, x, y)ϕ0(y) dµ(y)
)

ds

=
∫ t

0

( ∫
B

pB(s, x, y)ϕ0(y) dµ(y)
)

ds +
∫ ∞

t

( ∫
B

pB(s, x, y)ϕ0(y) dµ(y)
)

ds

� t + max
z∈B

u0(z)
∫

B

pB(t, x, z) dµ(z),

which yields ∫
B

pB(t, x, z) dµ(z) � u0(x) − t

max u0
, x ∈ X, t > 0. (5.34)
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Thus, (5.33) follows by using (5.29). Combining (5.33) and (2.11), we see that∫
B(x0,r)c

p(t, x, y) dµ(y) = 1 −
∫

B

p(t, x, y) dµ(y)

� 1 −
∫

B

pB(t, x, y) dµ(y) � ε + c6r
−βt (5.35)

for all t > 0 and x ∈ B(x0, ε2r), where ε = 1 − c5 ∈ (0, 1).

Remark 5.7. From the viewpoint of probability theory, we have∫
B(x0,r)c

p(t, x, y) dµ(y) = Tt1Bc(x) = Px(Xt ∈ Bc) � Px(τB � t). (5.36)

Thus, (5.35) can be obtained by estimating Px(τB � t). The reader may consult [2,
Lemma 3.16, p. 33] for the estimates on Px(τB � t) for the special case x = x0 when
assuming that Ey(τB(y,r)) � rβ for any y ∈ X.

Remark 5.8. The estimate (5.33) is interesting. To see this, note that, for any λ > 0
and x ∈ X,

λ

∫ ∞

0
e−λtTB

t 1(x) dt = λ

∫ ∞

0
e−λt

Ex(1{t<τB}) dt

= Ex

( ∫ τB

0
λe−λt dt

)

= 1 − Ex(e−λτB ). (5.37)

On the other hand, we see from (5.33) that, for all x ∈ B(x0, ε2r),

λ

∫ ∞

0
e−λtTB

t 1(x) dt = λ

∫ ∞

0
e−λt

( ∫
B

pB(t, x, y) dµ(y)
)

dt

� λ

∫ ∞

0
e−λt(c5 − c6r

−βt) dt

= c5 − c(λrβ)−1. (5.38)

Combining (5.37) and (5.38), we obtain

Ex(e−λτB ) = 1 − λ

∫ ∞

0
e−λtTB

t 1(x) dt � (1 − c5) + c(λrβ)−1 (5.39)

for all x ∈ B(x0, ε2r) and λ > 0.

Estimate (5.35) is useful, but it is not good enough to obtain optimal off-diagonal
upper bounds of p(t, x, y). We need a more delicate estimate than (5.35) (see (5.55),
below). In order to do this, we first estimate the solution to an elliptic equation in the
ball B = B(x0, r). Let ∆ be defined as in (2.7). For λ > 0, consider a function u1 ∈ D(∆)
satisfying the equation

∆u1 = λu1 in B. (5.40)
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Here u1 is a strong solution, that is u1 ∈ D(∆) satisfies (5.40) pointwise in B. The
solution u1 of (5.40) exists, which coincides in B(x0,

1
2r) with uλ determined by (5.52)

or (5.53), below.

Lemma 5.9. Assume that all the hypotheses (A1), (A2) and (2.16) hold. Let u1

satisfy (5.40). If 0 � u1 � 1 on B̄, then there exists some ε3 ∈ (0, 1) independent of x0,
r and λ such that

u1(x) � ε3 (5.41)

for all x ∈ B(x0, ε2r), provided that λrβ is sufficiently large.

Proof. Set u = 1 − u1. Then u satisfies

(λ − ∆)u = λ in B. (5.42)

Let ϕ0 be as before; see (5.19). Let v ∈ FB be the solution to the equation

(λ − ∆B)v = λϕ0 in B, (5.43)

where ∆B is defined in the same way as in (2.7) for the semigroup {TB
t } of the form

(E ,FB). It is easy to see that

v(x) = λ

∫ ∞

0
e−λtTB

t ϕ0(x) dt, x ∈ B. (5.44)

Note that v is a strong solution to (5.43), that is, the function v ∈ D(∆B) satisfies (5.43)
pointwise in B. Indeed, one can easily verify from (5.44) that

lim
t→0

‖t−1(TB
t v − v) − λ(v − ϕ0)‖C(B) = 0

by using (5.13), and so ∆Bv = λ(v − ϕ0) in B. Now we claim that

v(x) � u(x), x ∈ B̄. (5.45)

Indeed, letting h = u − v, we see that h is continuous on B̄ since both u and v are
continuous on B̄. Since h|∂B = u|∂B � 0, the inequality (5.45) holds if we can show that
h � 0 in B. Assume that this is not true. Then there would be a point y0 ∈ B such that
h(y0) = minB̄ h < 0. Let δ > 0 be so small that B(y0, δ) ⊂ B. Thus, it follows from (2.17)
that

lim
t→0

1
t
(Tth(y0) − h(y0)) = lim

t→0

1
t

{ ∫
B(y0,δ)

(h(y) − h(y0))p(t, y0, y) dµ(y)

+
∫

B(y0,δ)c
(h(y) − h(y0))p(t, y0, y) dµ(y)

}

� lim
t→0

1
t

∫
B(y0,δ)c

(h(y) − h(y0))p(t, y0, y) dµ(y)

= 0.
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Therefore, by (5.42) and (5.43) and using (2.11),

0 > λh(y0) = λ(1 − ϕ0(y0)) + ∆u(y0) − ∆Bv(y0)

� lim
t→0

Ttu(y0) − u(y0) − (TB
t v(y0) − v(y0))

t

� lim
t→0

Tth(y0) − h(y0)
t

� 0, (5.46)

which is a contradiction. This proves (5.45). Finally, by (5.33) with B replaced by
B(x0,

1
2r),

TB
t ϕ0(x) =

∫
B

pB(t, x, y)ϕ0(y) dµ(y)

�
∫

B(x0,r/2)
pB(x0,r/2)(t, x, y) dµ(y) � c5 − 2βc6r

−βt,

and so

v(x) = λ

∫ ∞

0
e−λtTB

t ϕ0(x) dt � c5 − c(rβt)−1.

This combines with (5.45), for all x ∈ B(x0, ε2r), to give

u1(x) = 1 − u(x) � 1 − v(x) � (1 − c5) + c(λrβ)−1 � ε3, (5.47)

if λrβ is sufficiently large. �

The estimate (5.41) will give a more accurate bound of u1 at the point x0.

Lemma 5.10. Assume that the hypotheses in Lemma 5.9 hold. There then exist
c, c7 > 0 independent of x0, r and λ such that

u1(x0) � c exp(−c7λ
1/βr). (5.48)

Proof. We consider only the case where λrβ is large; otherwise, (5.48) is trivial since
u1 � 1 on B̄. Let r′ = r/n, where n � 2 is an integer to be determined below. Denote
by xi the maximum point of u1 on the closed ball B̄(x0, ir

′) for 1 � i � n (since u1 is
continuous, each of such points xi exists). Set mi = u1(xi) for 1 � i � n.

Consider the ball Bi := B(xi,
1
2r′). For 1 � i � n − 1, define

vi(x) =
u1(x)
mi+1

for x ∈ X.

Then vi satisfies the condition that ∆vi = λvi in Bi (see Figure 2).
By Lemma 5.9 with x0 replaced by xi and r by 1

2r′, and noting that 0 � vi � 1 on B̄i,
we find that vi(xi) � ε3 if λ( 1

2r′)β � c for some large c. Therefore,

mi � ε3mi+1, 1 � i � n − 1,
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r' / 2

Bi

Bi + 1

ir'

x0

(i + 1) r'

xi

xi + 1

Figure 2. ∆vi = λvi in Bi, and 0 � vi � 1 on B̄i.

which gives
m1 � εn−1

3 mn � εn−1
3

by noting that mn � 1. Setting c′ = − log ε3 > 0, we see that

u1(x0) � m1 = u1(x1) � exp(−c′(n − 1)) � exp(−c7λ
1/βr),

by choosing the largest integer n so that λ( 1
2r′)β � c. Therefore, (5.48) follows. �

The proof of Lemma 5.10 given here is motivated by [15, Lemma 5.4] (see also [14,
Lemma 7.3]) on infinite graphs.

Remark 5.11. It follows from (5.39) that

Ex0(e
−λτB ) � ε3 (5.49)

if λrβ is sufficiently large. By the locality of E and using the chain argument (see [2, pp. 34,
35] or [13, Theorem 9.1, (iv) ⇒ (v)]), one can find from (5.49) that

Ex0(e
−λτB ) � c exp(−c7λ

1/βr) (5.50)

by applying the strong Markov property of the diffusion ({Xt}t�0, {Px}x∈X) of the form
(E ,F). On the other hand, letting B1 = B(x0,

1
2r), we see from (5.37) that

v(x0) = λ

∫ ∞

0
e−λtTB

t ϕ0(x0) dt � λ

∫ ∞

0
e−λtTB1

t 1(x0) dt = 1 − Ex0(e
−λτB1 ). (5.51)

Thus, combining (5.47) and (5.50) with r replaced by 1
2r, it follows that

u1(x0) = 1 − u(x0) � 1 − v(x0) � Ex0(e
−λτB1 ) � c exp(−c′λ1/βr).

Hence, (5.48) can be also obtained by using probability theory.
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To obtain the key estimate (5.55) below, we introduce a function uλ on X determined
by the equation

(λ − ∆)uλ = λϕ1 on X (5.52)

for λ > 0, where 0 � ϕ1 � 1 is a continuous function on X satisfying ϕ1(x) = 1 for
x ∈ B(x0,

2
3r)c and ϕ1(x) = 0 for x ∈ B(x0,

1
2r). Observe that (5.52) has a unique strong

solution

uλ(x) = λ

∫ ∞

0
exp(−λt)Ttϕ1(x) dt, x ∈ X, (5.53)

for any λ > 0, by using (5.8). By (5.53), we have 0 � uλ � 1 on X. Note that, for
x ∈ B(x0, r)c, using (5.33) with x0 replaced by x, we have

Ttϕ1(x) �
∫

B(x0,2r/3)c
p(t, x, y) dµ(y)

�
∫

B(x,r/3)
p(t, x, y) dµ(y)

�
∫

B(x,r/3)
pB(x,r/3)(t, x, y) dµ(y)

� c5 − c6( 1
3r)−βt � 1

2c5

if rβt−1 � c for a large c. Thus, from (5.53) we have

uλ(x) � λ

∫ crβ

0
e−λtTtϕ1(x) dt � 1

2c5(1 − e−cλrβ

) � 1
4c5

if λrβ is large. Therefore,
uλ(x) � 1

4c51B(x0,r)c(x) (5.54)

for all x ∈ X if λrβ is large.

Theorem 5.12. Let (X, d, µ) be a metric measure space satisfying the chain condition,
and let (E ,F) be a Dirichlet form. Assume that the hypotheses (A1), (A2) and (2.16) all
hold. Then, for x0 ∈ X and r ∈ (0, r0),∫

B(x0,r)c
p(t, x0, y) dµ(y) � c exp(−c8(rβt−1)1/(β−1)), (5.55)

where c, c8 are independent of x0, r and t.

Proof. Let uλ be as in (5.52). Observe that uλ ∈ D(∆) satisfies

∆uλ = λuλ in B(x0,
1
2r).

Thus, it follows from (5.48) that

uλ(x0) � c exp(−c7λ
1/βr). (5.56)
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Define
wλ(t, x) = eλtuλ(x), t > 0, x ∈ X. (5.57)

Clearly, for x ∈ X and t > 0,

∂wλ

∂t
(t, x) = λeλtuλ(x) = ∆wλ(x) + λeλtϕ1(x)

with initial value wλ(0, x) = uλ(x)(x ∈ X). Thus, we see that, using (5.54),

wλ(t, x) =
∫

X

uλ(y)p(t, x, y) dµ(y) + λ

∫ t

0
eλs ds

∫
X

ϕ1(y)p(t − s, x, y) dµ(y)

� 1
4c5

∫
B(x0,r)c

p(t, x, y) dµ(y) (5.58)

for t > 0, x ∈ X and any λ > 0, if λrβ � c for a large c. For a suitable λ, we need to
bound wλ(t, x0) for t > 0. Indeed, from (5.57) and (5.56) we obtain

wλ(t, x0) � c exp(λt − c7λ
1/βr) � c exp(−c7(t−1rβ)1/(β−1)),

by letting 2λt = c7λ
1/βr, if t−1rβ � c. Thus, it follows from (5.58) that∫

B(x0,r)c
p(t, x0, y) dµ(y) � 4

c5
wλ(t, x0) � c exp(−c7(t−1rβ)1/(β−1)), (5.59)

giving (5.55), if t−1rβ � c for a large c. However, if t−1rβ � c, then (5.55) is obvious. �

Remark 5.13. Note that from (5.50) one can easily obtain

Px0(τB � t) � eλt
Ex0(e

−λτB )

� c exp(λt − c7λ
1/βr)

� c exp(−c7(t−1rβ)1/(β−1)), (5.60)

by choosing a suitable λ, as above. Thus, (5.55) can alternatively be obtained in this
way, by noting the fact that∫

Bc
p(t, x0, y) dµ(y) = Px0(Xt ∈ Bc) � Px0(τB � t).

We are now in a position to derive off-diagonal upper bounds of p(t, x, y) by using (5.1)
and (5.55). Fix x0, y0 ∈ X, x0 �= y0, and let r = 1

2d(x0, y0). By (5.1) and (5.55), we have

∫
B(x0,r)c

p(t, x0, z)p(t, z, y0) dµ(z) � ct−α/β

∫
B(x0,r)c

p(t, x0, z) dµ(z)

� ct−α/β exp(−c′(t−1d(y0, x0)β)1/(β−1)).
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The above estimate is true if we exchange x0 and y0. Therefore, by the semigroup property
of p(t, x, y), it follows that

p(2t, x0, y0) =
∫

X

p(t, x0, z)p(t, z, y0) dµ(z)

�
∫

B(x0,r)c
p(t, x0, z)p(t, z, y0) dµ(z) +

∫
B(y0,r)c

p(t, x0, z)p(t, z, y0) dµ(z)

� ct−α/β exp(−c′(t−1d(y0, x0)β)1/(β−1)),

giving the upper bound of p(t, x, y) in (A3) for 0 < t � r0.

5.3. Off-diagonal lower bounds

Lower bounds of p(t, x, y) can be obtained in a standard way. We sketch the proof, as
follows. We first deduce on-diagonal lower bounds. Indeed, letting B1 := B(x, (λ1t)1/β)
for some λ1 > 0 to be specified later on, we see from (5.33) that∫

B1

p(t, x, y) dµ(y) �
∫

B1

pB1(t, x, y) dµ(y) � c5 − c6λ
−1
1 = 1

2c5

if 2λ−1
1 c6 = c5. Thus, for all x ∈ X and 0 < t � r0, using Hölder’s inequality,

p(2t, x, x) =
∫

X

p(t, x, y)2 dµ(y)

�
∫

B1

p(t, x, y)2 dµ(y)

� µ(B1)−1
( ∫

B1

p(t, x, y) dµ(y)
)2

� ct−α/β , (5.61)

giving an on-diagonal lower bound of p(t, x, y). We next derive near-diagonal lower
bounds of p(t, x, y). Observe that, by (3.7) and (5.1),

E(p(t, x, ·)) � ct−(1+α/β)

for all x ∈ X and 0 < t � rβ
0 . Therefore, by (5.61),

p(t, x, y) � p(t, x, x) − |p(t, x, x) − p(t, x, y)|
� ct−α/β − R(x, y)1/2E(p(t, x, ·))1/2

� ct−α/β − c9(d(x, y)β−αt−(1+α/β))1/2

� 2−1ct−α/β (5.62)

if d(x, y) � ε4t
1/β for a small ε4 independent of t, x and y. Finally, off-diagonal lower

bounds of p(t, x, y) follow from (5.61) and (5.62) by using the chain argument (see [2,
pp. 36, 37] or [16, Corollary 3.5]). We omit the details.
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