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1. In an earlier paper [2], we raised the question of determining

t
the minimum span of the k h derivative of a polynomial with real
zeros having a given span. Morc precisely let s denote the class
n ’
of polynomials P(x) = C U (x - xi), with x

i

<x < ...<x, and
- - —"n

1 2

=1
28 (fixed). The problem is to determine

t = -
he span o (P) = x - %,
k
(1) min cr(P( )) , k=14,2,...,n- 2.
Peon

y &

We showed thatif k = n - 2, the above minimum is attained only for

2 2 -2
the polynomials of the form C{(x - a) - s } (x- a)n , areal,
In a recent paper, Ahmad [1] has obtained an upper estimate for (1)
when k = 1.

Here we obtain the exact value of (1) for all k and determine
the polynomials for which this is attained.

2. THEOREM. In the notation of section 1, for k=1,2,...,n-2,
we have

1
(k)):Zs. (n—k n—k—i)Z

(2) min o(P
Penmn
n, s

n " n-1

and this is attained only for polynomials of the form

Clx - a) % {(x - a)% - s%) ,
with a and C real.
Proof. It will be enough to prove (2) for k=1 and n > 3.

For if (2) has been proved for k =1 and all n> 3, then on successively

(J_“(j =1,2,...,k) we have

applying it to P
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o) > o) 2z t)2 o2k

n-j+1
whence
k 1 1
(k) n-j-1.2 _ n-k n-k-1 2
@) o) 2e@ (n TN = ofP) (B LA
Jj=1
1
. . . n-2.2
with equality only if o(P') = o¢(P). (—) . So we
n

proceed to prove (2) for k = 1. We may assume, without loss of
generality, that s =1 and that the zeros of P(x) T4 2re located

’

in [-1, 1]. Then

2 n-2
Px)=C(x -1) T (x-x), -1<x <x <...<x < 1.
. i - 11— 2- - n-2-—
i=1
It is clear that the minimum span of P' cannot be attained if X, = - 1
and x = +1. So denoting the zeros of P'(x) by £ < ...<¢§ ,
n-2 1= — “n-1

it follows from Rolle's theorem that either (i) both 51 and gn_1

are the extreme solutions of

. 2 n-2
(4) %é‘f‘l = 2& + = £ ! =0
£5-1 i=t 2T
or (ii) one of them is fixed (say gn_ 1 = + 1) and the other §1 is the

smallest root of (4).

We will show that the minimum span of P' cannot be attained

when x1 < X o For if %, < X o then differentiating g1 partially

with respect to x, on the hyperplane X, + X 5= d (d constant),

-2
we have from (4),

2
o -
g’l [nZZ 1 +2(§1 +1)] i 1 ) 1
ox, "t .~ 2 2 27 7 2 2
1 st (g, - x)T (g - 1) (6, -x)" (&, -x )
0t |
Since gi < x, < X _,» Wesee from the above that é}-; > 0.

A similar argument shows that in case (i) as well as in (ii)
9
g’n-1
ox
1

< 0, so that
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¢ o,

53-’— (@(P) = 8‘“ - 5o <0,
*1 *4 *1

This shows that the minimum span can occur only if Xy TE, een =

=, < 1.
x =a, lal<

We now show that we must necessarily have o= 0. Since if
P(x) = C(xz- 1)(x - a)n-z, then o(P!) =2 ’ullé(-n—_'g

n

which can be further decreased if o# 0. This completes the proof of
theorem.

The problem of computing the maximum span of derivatives of
polynomials was first investigated by Robinson[ 4].
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