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TUBES, COHOMOLOGY WITH GROWTH 
CONDITIONS AND AN APPLICATION TO THE 

THETA CORRESPONDENCE 

STEPHEN S. KUDLA AND JOHN J. MILLSON 

Introduction. In this paper we continue our effort [11], [12], [13], [14] to 
interpret geometrically the harmonic forms on certain locally symmetric 
spaces constructed by using the theta correspondence. The point of this 
paper is to prove an integral formula, Theorem 2.1, which will allow us to 
generalize the results obtained in the above papers to the finite volume 
case (the previous papers treated only the compact case). We then apply 
our integral formula to certain finite volume quotients of symmetric 
spaces of orthogonal groups. The main result obtained is Theorem 4.2 
which is described below. We let (, ) denote the bilinear form associated 
to a quadratic form with integer coefficients of signature (/?, q). We 
assume that the fundamental group Y c SO(p, q) of our locally 
symmetric space is the subgroup of the integral isometries of ( , ) 
congruent to the identity matrix modulo some integer N. We assume that 
N is chosen large enough so that T is neat (the multiplicative subgroup of 
C* generated by the eigenvalues of the elements of T has no torsion), Borel 
[2], 17.1 and that every element in T has spinor norm 1, Millson-
Raghunathan [15], Proposition 4.1. These conditions are needed to ensure 
that our cycles Cx (see below) are orientable. The methods we will use 
apply also to unitary and quaternion unitary locally symmetric spaces, 
see [13]. 

Let G denote 0(p, q) and G' denote the non-trivial 2-fold cover of 
Spn(R). Let V = Rp+q be the standard representation space of G. Let 
S(Vn) denote the Schwartz space of the direct sum of n copies of V. Then 
G operates on S(Vn) in the obvious way and we may consider the 
continuous cohomology groups H*t(G, S(Vn) ). It is a remarkable fact that 
G' also acts on S(Vn) and this action of G commutes with that of G. The 
corresponding action of G is by the oscillator or Weil representation and 
will be denoted co. A convenient reference for our purposes is [14]. Hence 
G' also acts via <o on H*t(G, S(Vn)). By the van Est theorem we may 
represent elements of the previous cohomology group by closed differen­
tial forms <§>(z) on Z), the symmetric space of G, with values in S(V") which 
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2 S. S. KUDLA AND J. J. MILLSON 

are invariant under the action of T, the fundamental group of the locally 
symmetric space. Since G acts on such <j> we may define a function 4>(g\ g) 
on G X G by 

<Kg', g) = <o(g>00 

where z is the image of g in Z). We let K denote a maximal compact 
subgroup of G and we assume that 4> transforms by a character under 
co\K. We may then consider <j> to be a section of a homogeneous line 
bundle on G IK as a function of g'. This quotient is of course the Siegel 
space l)n. In Section 4 we construct a continuous cohomology class 
<f> e H"?(SO(p, q), S(V") ) for each /?,/?, and g which is an eigenclass of 
o)\K. We will henceforth specialize our consideration to these <f>, though 
there are other continuous cohomology classes. 

We now recall, see example [14], that given a lattice L in V there is a 
continuous linear functional ©L on S(Vn), the theta distribution, which is 
a sum of Dirac delta functions, one at each point of the lattice Ln c V". 
We assume ( , ) takes integral values on L. Then &L is invariant under 
suitable arithmetic subgroups of G and G Fix a lattice L as above and 
an element x0 e Ln. We will let 0 denote the sum of Dirac delta func­
tions located at the points in L" congruent to x0 modulo NL". We may 
still find arithmetic groups T and F which leave 0 invariant. We let 
M = T\GIK and M - T\GIK and we define: 

W - g) = ©MgXg) )-
Then ^ is a section of a line bundle ££ on Af in the g' variable and a 
closed differential form on M in the g variable. We may accordingly use 0^ 
as the kernel of an integral transform A^ from cuspidal sections of J£ to 
7/*(M, C); it is well known that 0^(g\ g) has moderate growth on M\ see 
[8]. The line b u n d l e d has a holomorphic structure and we restrict A^ to 
the holomorphic cuspidal sections of ££. Our goal is to interpret 
geometrically the image of A^. 

The basic fact underlying our program is that the lattice J^' in the 
symmetric n by n matrices which parametrizes the Fourier coefficients of 
the holomorphic sections of S£also parametrizes certain reducible cycles in 
M. This lattice is the following. Let 1^ be the subgroup of matrices in P 
of the form (0 }). Then T^ is a lattice in the space of symmetric n by n 
matrices. We let L' be the dual lattice to T^ for the trace pairing. 

We now describe the cycles. We will restrict ourselves to cycles of 
positive type, see [14], 1.5. Let x = (JCJ, JC2, . . . , xn) in Vn be such that each 
x- has rational coordinates relative to the standard basis for 
V = Rp q and such that the matrix ( (JCZ, x ) ) is positive definite. We wish 
to construct a singular cycle i:Cx —> M such that Cx is an orientable finite 
volume locally symmetric space and i is a proper map with totally geodesic 
image. Then Cx will be a locally finite cycle. We recall that D may be 
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realized as the subset of the Grassmannian of g-planes in V consisting of 
those planes P such that ( , ) \P is negative definite. We define Dx to be 
the subset of those planes which lie in the orthogonal complement u1- of u, 
where u is the span of x. We observe that Dx is the fixed-point set in D of 
the involution rx in 0(/?, q) defined by: 

rx(x) = — x for x e u 

rx(x) = —x for x e u . 

In particular Dx is totally geodesic. However, there is a remarkable 
amount of extra structure, see Section 5. We let Tx be the centralizer of rx 

in T and Cx be the finite volume locally symmetric space Cx = TX\DX. That 
Cx has finite volume follows from the standard (but hard) result from 
reduction theory, see [2], that if H is a semi-simple algebraic group defined 
over Q then H(Z)\H(R) has finite volume. If T is neat then Tx fixes x 
pointwise, see [9], Lemma 7.1 and consequently Tx can be considered as an 
element of SO(p — n, q). But since every element in 1̂ . has spinor norm 1 
we find that Tx is contained in SO0(p — n,q), the connected component of 
the identity, and consequently preserves the orientation of Dx. Hence, Cx is 
orientable. The quotient mapping p:D —> M restricted to Dx factors 
through a map v.Cx —» M. The map is proper by [1], Lemma 2.7 which 
shows that if H c G is an inclusion of reductive algebraic groups over Q 
and T c G(Q) is a discrete subgroup of G(R) then the map 

T n H(R)\H(R) -» T\G(R) 

is proper. We call cycles in locally symmetric spaces which are locally the 
fixed point set of an involution special cycles. 

We now construct the cycles promised above as a sum of the cycles Cx 

just constructed. Let ft = (/?••) be a positive definite symmetric n by n 
matrix which is an element of U. Given x = (JC1? x2, • - - , xn) in Vn we say 
x has length ft if (xh x-) = ft-. Let ^ be a set of T-orbit representatives 
for the vectors in Ln of length 2ft. Then ^ is finite, [2], Theorem 9.11, and 
we define the reducible cycle ^ by: 

Cp = 2J CX. 

In order to prevent C^ from being trivially zero we consider only those x 
as above congruent to x0 modulo NL where x0 was chosen previously in 
the definition of the modified theta distribution. We let tffa denote the set 
of T-orbit representatives of such x and we redefine C^ according to: 

^ = 2 cx. 
x^% 

We recall that a smooth closed form to on M is said to be Poincaré dual 
to a locally finite cycle Cg if for any closed compactly supported form r] on 
M we have: 
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All such forms lie in the same cohomology class. We now state our main 
theorem (Theorem 4.2) relating the cycles Cp to the image of A^. 

THEOREM. The image of A^ is the span of the Poincaré duals of the cycles 
Cpifn < (p + q)/4. 

We now give an indication of why Theorem 2.1 is a key step in the proof 
of the above theorem. The main ingredient in the proof of the above 
theorem is a formula for OLJJBAI]) ), the /?-th Fourier coefficient of the 
section of ££ defined by 

e,(v) = I v A e,, 
here r\ is a compactly-supported closed form on M. Note that a^{d^(r\) ) is a 
function of v where r e fyw satisfies r = u + /v with w and v symmetric n 
by ft matrices and v positive definite. Our formula is then: 

Theorem 2.1 plays a critical role in the proof of this formula. Indeed by 
definition we have: 

Here ^(v) is a fundamental domain for the subgroup F^ acting on the 
subset of \)n defined by Im T = v. It is a formal and well-known result that 
such integrals "unfold" to a sum of integrals (indexed by ^ ) of the type 
considered on the left-hand side of the formula presented in Theorem 2.1. 
In the case discussed above the degree of 4» is equal to the codimension of 
Cg and the right-hand side of Theorem 2.1 is the right-hand side of the 
above formula. 

The third section of our paper is a digression intended to show how 
the integral formula of Section 2 follows from a comparison of the 
cohomology of complexes of sufficiently rapidly decreasing forms with 
that of the cohomology of the complex of forms with compact support. 
Our results in this section are analogous to those of Borel [3]. 

For example in the case of a cusp of a finite volume quotient of the 
upper half plane Borel's results imply that the cohomology of the complex 
of forms that decrease rapidly (along with their derivatives) along the cusp 
is the same as the cohomology of the complex of forms which are 
compactly supported on the cusp. His results also imply that the 
cohomology of the complex of forms that increase slowly (along with their 
derivatives) is the same as the de Rham cohomology. In our analogue of 
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this example we divide the upper half plane by a hyperbolic element and 
get a "tube" rather than a cusp. We now discuss what our results in the 
third section imply for this case. 

Let H denote the upper half plane and Tx be the infinite cyclic group 
generated by a primitive hyperbolic element yj. Let Ax be the one 
parameter group generated by yx. We let £ and T] be the fixed-points of yx 

on the boundary of H and c be the oriented geodesic joining £ to T). Let E 
be the "tube" given by E = r i \ H and/;:H —» E be the projection. We 
have a fibering 7r:H —> ? by geodesies normal to ?. The fibering TT induces a 
fibering, also denoted 77, of E over c, the image of c under/?. We note that c 
is a closed geodesic. Let r be the function on E defined so that r(x) is the 
distance from x to c. We then consider the complex of forms A*_X(E) 
consisting of those forms 17 satisfying: 

\\V(x)\\ ^ e-^x)px(r(x)) 

\\A]{x)\\ ^ e-r(x)p2(r(x)) 

for polynomials px and p2 in one variable. By analogy with the results in 
[3], we might expect that the cohomology of s/lx(E) would be the 
cohomology of E with compact supports. However, this is not the case. 
The first cohomology of stflx(E) is R with basis 77*/x and *77*/A in the 
notation of [10]. It is proved in Section 3 that if one takes complexes of 
forms which are sufficiently rapidly decreasing then one obtains the 
cohomology of E with compact supports and if one allows slow increase 
then one obtains the absolute cohomology of E. However there is a gap 
between the two types of growth conditions. We note that if (in the 
notation of Theorem 2.1) we take O = 77*JU and 77 = *77*ju then 

| Î ) A O ^ J y'*T7 A 77*$. 

Hence the integral formula of Theorem 2.1 will not hold unless <ï> is 
sufficiently rapidly decreasing. 

We conclude by observing that there is considerable overlap between 
our results and those of [18] and [19]. In [18], the authors found the 
exhaustion argument of Lemma 2.3 independently. However, they do not 
use our homology argument but instead use an interesting uniqueness 
theorem, Theorem 2.1 of [18] and 4.9 of [19]. Using their unique­
ness theorem Tong and Wang obtain a canonical piece of the dual form to 
the cycles Cp via an integral transform of the type described above. 

1. Geometric preliminaries on tubes. Let N be an /7-dimensional 
connected complete orientable submanifold of an orientable connected 
complete m-dimensional Riemannian manifold E with sectional curvature 
bounded below by — p2 (with p > 0). We will assume E is without 
boundary or else that E has boundary JV, so TV is a hypersurface in the case 
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6 S. S. KUDLA AND J. J. MILLSON 

E has boundary. In this latter case, the assumption that E is complete 
means that E is complete as a metric space. We assume that N has finite 
volume in the induced metric and that the Riemannian exponential map 
exp of the normal bundle v(N) in E is a diffeomorphism onto E. Thus 
there is induced a vector bundle structure TT\E —> N so that the following 
diagram commutes. 

V(N) CXP >E 

N 

As a consequence of our assumption above we see that the inclusion of 
N into E is a homotopy equivalence and hence the universal cover N oî N 
embeds into the universal cover D of E. We denote the image of TV by Dx. 
We again have an induced vector bundle structure: 

V(DX) ^ - ^ E 

We let F denote the group of deck transformations of the covering 
p:D —» E. Then T takes Dx into itself and/?(£>]) = N. We assume Dx is 
diffeomorphic to R". In fact this is not necessary but it is convenient to 
have global coordinates. 

We now introduce coordinates on D. We choose global coordinates 
(xj, x2, . . . , xn) on Dx. Let E]9 E2, • • • , Ek be an orthonormal frame field 
for v (£>,). We assume that this frame may be chosen so that the 
functions 

f,(T) = ||Vr£,||, l ^ i ^ k , 

are uniformly bounded for T G S^Dj), the tangent sphere bundle of D}. 
Then we associate to 

Cx,,x2, . . . , * „ , .y , ,^ , ...,yk) e Rn+k 

the point 
e*Px(y\E\(x) + . . . + ykEk(x) ) 

where x is the point in Dx with coordinates ( i j , x2, . . . , xn). Such 
coordinates are often called Fermi coordinates, see [7], page 205. We 
obtain an atlas on E by composing (jtj, . . . , xn, y\, . . . ,yk) with local 
cross-sections of the covering p:D —» £". We continue to denote 
these coordinates (JCJ, . . . , xtv yx, . . . ,yk). We call such coordinates Fermi 
coordinates in E. We let Q)x denote the interior of a fundamental domain 
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for the action of T on Dx and put Si = IT" (SX). Hence S will be the 
interior of a fundamental domain for the action of T on D. We will often 
identify integrals over E (respectively N) with integrals over S (respective­
ly Sx). We let S(r) denote the subset of elements of E consisting of those 
points having distance r from N. If X is a Riemannian manifold then vol X 
will denote the volume of X and volx will denote the Riemannian volume 
element. Let r be the function on E defined by 

r = (y] + . .. + ytf'\ 
Hence, if £ is a point in E, then r(£) is the distance from £ to N. 

LEMMA 1.1. vol S(r) ^ Crk~xe{m~X)pr. 

Proof. We estimate the integral expressing vol S(r) by using [7]. There 
exists a smooth function A(x, y) on E such that 

vo\E = A(x, y)dxx A . . . A dxn A dyx A . . . A dyk. 

We introduce polar Fermi coordinates (r, ux(y), . . . , uk_x(y) ). We 
obtain: 

vol£ = A(x, ru)dxx A . . . A dxn A dr A dwj A . . . A duk_x 

and 
v o W ) = ^ ^ ' ru)d*\ A . . . A dx,7 A dwj A . . . A duk_x. 

By [7], Lemma 6.2 we have: 

A(x, ru) ^ Cxr
k~xe{m~~X)prA(x, u). 

Hence: 

vol S(r) â c / " 1 ^ - 1 ^ j [ i X S , _ , ^ (x , «)</*, A . . . A 

Jx/? A dux A . . . A duk_x 

^ Cx vo\S(\)rk-xe{m-X)pr. 

With this the lemma is proved. 

In Section 3 we will need a lower bound for the lengths of the 
coordinate differentials in a coordinate patch. We have the following 
lemma. Let [ / b e a standard coordinate patch. By this we mean that U is 
the inverse image under 77 of a small ball in N. The coordinates on U are 
induced by a local section of/?. 

LEMMA 1.2. If N is totally geodesic then there exist constants Cx and C2 

such that for any x G U we have: 

(a) C]e-
pr(x) ë \\dx,\x\\ g C2 fori = 1 , 2 , . . . , n 

(b) Qe~pr(x) Si II^.IJI g C2 /or y = 1 , 2 , . . . , * . 
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This lemma follows from standard techniques in Riemannian geometry 
(the Rauch comparison theorems). It is proved in the appendix for the 
convenience of the reader. 

LEMMA 1.3. If rj is a bounded form on N then 77*17 is a bounded form 
on E. 

Proof. From Lemma A2 of the appendix it follows that: 

\W*V\J\ = IhU.JI f o r a11 x G E. 
With this the lemma is proved. 

2. An integral formula. In what follows s and / will be positive integers 
satisfying s = k and t = m — s. For x e E, let r(x) be the geodesic 
distance from x to N. Let j:N —» E denote the inclusion and C a generic 
positive constant. 

THEOREM 2.1. Let 0 be a differential s-form on E satisfying: 
(i) O is closed 

(ii) ||4>(x) || = e mp,p(r) for some polynomial p. 
Then, if 77 is any closed, bounded t-form on E we have: 

j,:V A 4 = JNJ*(V) A 77*($). 

Notation, TT* denotes the operation on forms on E of "integration over 
the fiber", the adjoint of 77* for the pairing: 

fo* 4>] = Jj V A <J>. 

See [4], page 61 for details. 

Remark 2.1. We observe that O and 77 A <I> are integrable over E. Since 
||TJ A 0 | | ^ C||0|| it is sufficient to prove the former. Using Lemma 1.1 
we have: 

I,-H*" = L J* \M«x. y)dxdy 
/*oo 

= C J 0 e~mprp(r) vol S(r)</r < 00. 

We also observe that ||7r^(0) || is bounded on TV and hence TT*(<£) Aj*(ri) is 
integrable over N. 

The proof of the theorem will occupy the rest of this section. 

Definition. For X <E R̂ _ we denote by ax the operator on E obtained by 
exponentiating the operation of multiplication by X in the fibers of v. If 
£ e vv(7V) we have 

ax expv £ = expv A£. 
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We note r(axx) = Xr(x). 

LEMMA 2.1. 

lim a^y = 7r*/*Tj. 

Proof. The proof is by a calculation in Fermi coordinates. We write out 
7] in the coordinates (jcb . . . , xn, yx, . . . ,yk) to obtain: 

•*?(*, J>) = 2 g/r(*> j O ^ + 2 gfc //•*> y)dxK A rf^ 
K K\L 

\L\^\ 

where K, K', L are multi-indices and \L\ denotes the cardinality of L. We 
have 

atT)(x,y) ix=o 2 gtf(*, A y ) ^ 
\=o 

+ X|L| 2 g^7Xx,Xy)rf^ AJy7 

| L | ^ 1 

\ = 0 

= 21 g#(x, 0)dxK = ir*j*j)(x, y). 
K 

With this the lemma is proved. 

LEMMA 2.2. 

lirn^ JE j) A ûjfO = J^ y*7| A 77*($). 

Proof. We have: 

j [ T, A ax*<& = JE ajt(ajt-.T, A $ ) = j f ^ aj-.ij A $ 

= ^ Û Ï - ' T J A«D. 

Hence, it suffices to prove: 

lim / aft A 0 = / 7*T, A **($). 

Now we have \\a%T\ A 0| | S C||0|| with the constant C independent of À; 
hence, by the Lebesgue dominated convergence theorem we obtain: 

lim / aft A $ = / lim Û?II A $ = / TT*/*T? A 0 
\-*o ^ J i i x-*o ^ 

= JN j*v A 77*(0). 

With this the lemma is proved. 
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Remark 2.3. Consider the function A(X) defined in [1, oo) by: 

A(X) = JEV AaJO. 

Then A(X) = B(X~]) where B(X) is the function defined on (0, 1] by: 

B(X) = JE aft A <D. 

Expanding ?)ina Taylor series around 0 in the coordinates (y]9 y2, . . . ,yk) 
we see that A has an asymptotic development at oo given by: 

oo 

/4(A) = 2 aX~j 

7=0 

with 

The other a- cannot be expressed in terms of 7*17; for example: 

"1 = X 7'*(??) A "*<&d/dr*) + X ^ / ^ A "*(* A rfr). 
Here ^^/dr denotes Lie derivation and ^d/dr denotes interior multiplica­
tion by rd/ dr. 

We now show that if O is closed then A (A) is constant. We can give a 
formal argument for this as follows: 

f(A) = i SE "I"** A *'n-i = SE^,^U A * 

= JE Ad/dr^ A O = JE Vd/d^jfr? A </<& = 0. 

Unfortunately, the next to last inequality requires an application of 
Stokes' Theorem to E. This involves estimating Vd/dr̂ A7? which 1S e a s v a n d 
estimating ^r^i^ra\t\ which appears to require that Hchj/drll is slowly 
increasing in r, a requirement that is hard to restate in such a way that it 
would be satisfied for the applications we have in mind. Instead we give a 
direct argument for the constancy of B. 

We will construct for each A in [1, 00], a form rx satisfying: 

(i) drx = fljfO - <D 

(11) ^ X ( ^ A T ^ ° 
where S(r) is the sub-bundle of E with fiber the sphere of radius r in the 
corresponding fiber of E. 

Let us first suppose that such forms {rx} exist. We denote by D(r) the 
bundle obtained from E by replacing each fiber with the closed ball of 
radius r. 
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LEMMA 2.3. 

A TX. L, v A <*?$ - L 11 A $ = I 7] 
JD(r) ' A JD(r) ' jS(r) ' 

Proof. In the following argument we abbreviate 17 A rx by \p. Since TV is 
complete, there exists a proper smooth function fi:N —* [0, 00) and 
a constant c so that \dfi(x)\ < c for all 1 e iV ( [16], Section 35). Let 
B(R) c TV be given by 

B(R) = M " 1 ( [ 0 , ^ ] ) . 

Then {B(R):R ^ 0} is an increasing family of compact sets which exhaust 
TV. We now define a function p on D(r) by p = /x o 77 so p is constant 
on the fibers of 77. We let 

C(R) = p-\[09R]). 

Then {C(7?):i? = 0} is an increasing family of compact sets which exhaust 
D(r). Of course C(R) is the inverse image of B(R) under 7r:D(r) —» TV. 

Now let m be a smooth function from ( — 00, 00) to [0, 1] which is 0 for x 
negative and 1 for x ^ 1. We define a one parameter family {fR : ^ 0} of 
smooth functions on D(r) by the formula: 

fR(x) = m(p(x) - R 4- 1). 

We find that fR is identically zero on C(R — 1) and identically 1 
on C(R)\ the complement of C(R) in D(r). Also \dfR\ is bounded on 
D{r) independent of R and is identically zero outside of the annulus 
C(R) - C(R - 1). We have: 

* = / * * + ( ! - /*)* 
^ = dfRA^ +fRd* + </((l - /*)*). 

Hence: 

XW * = . L * A * + X M ^ + X(D rf< (1 " ^ 
We show the first two integrals on the right hand side go to zero as R 

goes to infinity. 

IX(.) ̂  A 1̂ - IXW-C(^-D ̂  A ̂ 1 
jc(R-\y M f o r s o m e K > °" 

But since \ty\ is an integrable function on D(r) and the cylinders {C(R) } 
exhaust D(r) we have: 

l i m LR-IY M = °-

* X , 
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This fact is proved from the Lebesgue dominated convergence theorem by 
noting that if XR is the characteristic function of C(R — 1)' then X/?M g ° e s 

to zero pointwise and is dominated by \\p\. 
As for the second integral we have: 

The right-hand integral tends to zero by the previous argument. 
To evaluate the third integral we note that 1 — fR vanishes outside 

C(R). We choose R' larger than R so that the vertical sides of C(R') are 
smooth (such an R' exists by Sard's Theorem applied to p). We then 
have: 

i „ à( (i - m = fCiR, dm- m = fS(r) (i - m 
The last equality follows because (1 — fR)\p vanishes on the vertical sides 
of C(R'). Thus we obtain: 

L * = *%, L <» - M-
We apply the Lebesgue dominated convergence theorem to the integral on 
the right-hand side noting that 

lim (1 - fRW = * and | (1 - fR)M fk | # 
R->oo 

With this the lemma is proved. 

Under the assumption that the forms {T^} exist, we have now proved the 
theorem. Indeed, passing to the limit in Lemma 2.3 as r goes to infinity we 
obtain for every X: 

JE v A a^ = JE i\ A O. 

Now passing to the limit in À we obtain our theorem by Lemma 2.2. 

We now construct rx. First recall that {ax'.X e R y is the one parameter 
group with infinitesimal generator rd/dr. We define rx by the formula: 

fX * ^ M 
TA = Vd/dr J ! <%& — • 

It is immediate that rx satisfies (i) above. Indeed: 

d f * ^ M 
ds J s M ix s = 1 /x 
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We now prove that rx satisfies (ii). We first note that for any form r and 
any fini te-volume oriented submanifold N of a Riemannian manifold E 
such that IITII is bounded on N we have: 

IX . „ 7 * T | ^ S U P A ^ J | T ( X ) H vol(JV). 

Indeed since j * is norm decreasing it is sufficient to prove the above 
inequality for a top dimensional form (on N) where it is obvious. 

We next note that: 

IKHâJlf a ^ l U r / j | a ^ | | * 

Si e~mprq(r) 

where q is a polynomial. This last estimate is obtained by integrating the 
inequality: 

e~mmp(pr)^~x S e~mprp(i>.r)n
k~x for 1 S ju S A. 

Hence: 

HT, A TX|| ^ C||TX | | =i Ce-"">rq(r). 

But we have seen in Lemma 1.1 that 

vol(S(r)) ^ Crk-Xe{m~X)pr. 

With this (ii) is established and the theorem is proved. 

Theorem 2.1 may be generalized to include the case of cycles with 
coefficients. Let F be a flat bundle over E and s a. parallel section of V. 
Then we may form a cycle N Q s with coefficients in V; see [9], Section 4. 
We assume that we have chosen a Riemannian metric on K* such that \\s\\ 
is bounded on E. 

COROLLARY. If K] is a closed bounded t-form on E with values in F* we 
have: 

j E 1\ A ($ 0 S) = JN j*T\ A 77*(<ï> 0 S). 

Proof. 

JE V A (O 0 S) = JE <TJ, s) A $ = JN y*(îï, s) A 77*(0). 
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Here ( , ) denotes the pairing between V* and V. The last equality follows 
because (77, S) is a bounded closed form with scalar values so Theorem 1 
applies. 

3. A variation on a theme of Borel. In this section we give another proof 
of Theorem 2.1 (in order to put it in its proper context) by considering the 
analogues for the tubes of Section 1 of Theorem 3.4 and Theorem 5.2 of 
[3]. For simplicity we assume the manifold TV of Section 1 is totally 
geodesic. 

We will also assume that TV has the following property. Let s#£(N) 
denote the subcomplex of the de Rham complex J^*(JV) consisting of 
those forms of 77 such that 77 and di] are bounded. We assume that the in­
clusion of jtf?(N) into J / * (TV) induces an isomorphism of cohomology. 
This property is satisfied trivially if TV is compact and for arithmetically 
defined finite volume quotients of symmetric spaces by [3], Theorem 3.4. 

We have a vector bundle structure IT:D -* Dx. By choosing a system of 
global Fermi coordinates we can enlarge D to a manifold with boundary D 
by adding a point for each ray in the normal bundle emanating from a 
point of Dx. We note each ray may be parametrized by the restriction of 
the function r of Section 2. Since the group T acts by isometries it will 
preserve the set of rays and consequently it will act on D. The quotient 
space E = Y\D is clearly compact along the fibers. We use the Fermi 
polar coordinates («j, U2, . . . , uk_x) to give coordinates in S, the sphere 
bundle at infinity; observe that the w-'s are constant on rays. 

We now construct the analogue of a Siegel set centered around a point 
00 y at infinity in the fiber over x e TV. We let Wj be a small convex 
neighborhood of x in TV and co2 a small disk in the unit sphere in the 
normal fiber over x intersecting the ray corresponding to ooY. Since 
the covering p\D —* E is trivial over the contractible set TT~~ (coj) we 
have a product structure on ir~l(ux) induced by the global Fermi co­
ordinates on D. We let co = col X co2 and define St w to be the set of points 
in E whose x and u coordinates are in co] and co2 respectively and such 
that r(x) > /. Clearly, the collection of open sets obtained by varying œ 
and t in the above construction gives a neighborhood basis for the points 
in S. We will call such sets, special open sets. Each special open set is 
stable for the action of ax provided X = 1. 

We now give a precise notion of growth for differential forms on E. Let 
n be a real number. We define a:E —> R + by: 

a(x) = er{x\ 

Definitions, (i) A form 77 is said to be n-bounded if there exists a 
polynomial p = p(r) in one variable such that: 

| |TKX)|| ë a(x)np(r(x)). 
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(ii) A form is said to have moderate growth if it is «-bounded for some « 
(hence for all m = «). 

(iii) A form is said to have rapid decrease if it is «-bounded for all «. 
(iv) A form 77 is said to have compact support along the fiber if the 

support of 77 is contained in the disk bundle D(r) for some r (depending 
on 77). 

We now consider the complex s/*(E) consisting of those forms 77 on E 
such that 77 and dx\ are «-bounded. We also have the complexes s/*(E) 
consisting of those forms 77 on E such that 77 and a\ are moderate growth 
and s/r^(E) consisting of those forms 17 on E such that 77 and dr\ are rapidly 
decreasing and s/*(E) consisting of forms on E that are compactly 
supported along the fiber. We then have the following theorem, to be 
compared with [3], Theorem 3.4. 

THEOREM 3.1. The cohomology of stf*(E) for « = 0 is the cohomology of 
E with coefficients in R. In particular, the cohomology of s/* (E) is the 
cohomology of E with coefficients in R. 

Proof Let s/^(N) denote the complex described in the first paragraph of 
this section. Then by Lemma 1.3 if « ^ 0 we have maps of complexes: 

ir*:s/£(N)-+s/f(E) 

j*:s/;(E)-*s/£(N). 

These maps satisfy7*77* = id; hence, 77* induces an injection of H*(N, R) 
into H(s/*(E) ). To prove surjectivity of 77* it is sufficient to prove 77*/* 
induces the identity map on H(s/*(E)). But in Lemma 2.1 we have 
seen that 

l im a%i\ = 77*7*77. 
X-K) 

Hence, it is sufficient to prove that a^i) is cohomologous to 77 ins/*(E) for 
each X. But we have seen that if we define 

fX * dp 
TX = h-d/dr J j at1l — 

then 

drx = a*T7 - 77. 

But clearly, rx is «-bounded if 77 is and the first statement of the theorem is 
proved. The second follows from the first because cohomology commutes 
with direct limits and 

sCg(E) = lim < * ( £ ) . 
n 
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The next theorem is the analogue of [3], Theorem 5.2. 

T H E O R E M 3.2. There exists a real number n0 so that if n = — n0 then the 
cohomology of s/*(E) is the cohomology of E with compact support along 
the fiber. Moreover the cohomology ofs/f%(E) is the cohomology of E with 
compact support along the fiber. 

Proof Of course we have an inclusion for every n: 

i:s/*(E) ^ s/*(E). 

To show i is onto in cohomology, for n is sufficiently negative, is easy, see 
[12], Lemma III.3.1. However, it is somewhat harder to establish 
injectivity. In fact, we establish injectivity and surjectivity at the same 
time following the sheaf-theoretic method of [3]. 

As in [3], we define presheaves .^* and J^* by assigning to any open set 
U' c E the space of differential forms on U Pi E which are restrictions of 
forms compactly supported along the fiber (respectively «-bounded 
with «-bounded exterior derivatives). The presheaves J^* and J^* are ob­
viously sheaves. J^* and J^f are flabby sheaves by definition. Hence, by 
the comparison theorem in sheaf theory, [6], II, 4.6.2, it is sufficient to 
prove that the inclusion J£? —» J ^ induces an isomorphism of derived 
sheaves. To see this it is sufficient to prove a Poincaré lemma for J^*(£/) 
where U is the complement of a tubular neighborhood D(a) of TV. Now if r\ 
e ^(U) we consider the following expression: 

f°° * d[i 
TX = -ird/dr J ! <%q — . 

We extend rx to E by multiplying 7] by a smooth function o of r which is 
zero in a neighborhood of N and 1 on U. Then for x G U we find 
rx satisfies: 

drx = i). 

Also if j] is «-bounded then T^ is also clearly «-bounded. Unfortunately, 
7] e ^*(U) with n < 0 does not imply that the above integral converges. 
We must choose n0 so that H17H being « 0-bounded implies that the 
coefficients of 17 in Fermi coordinates are integrable along the orbits of ax. 
Since the Fermi coordinate differentials are bounded below by Lemma 
1.2, an upper bound on ||T]|| implies a (much weaker) upper bound on the 
coefficients of 17. Consequently n0 exists and the theorem is proved. 

The assertion concerning the cohomology of stf*d(E) may be proved in a 
similar fashion. 

Remark 3.1. The example discussed in the introduct ion for T \ H shows 
that the cohomology of -srf*(E) for — n0 < n < 0 need not coincide with 
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either the absolute cohomology or the cohomology with compact support. 
Clearly if s = deg 7} then we may choose n0 = sp + e for any € > 0. We 
note that to prove Theorem 3.2 we really needed to compare only two 
Mayer-Vietoris sequences, not spectral sequences as in [6]. 

We now show how the considerations of this section give a new proof of 
Theorem 2.1. 

PROPOSITION 3.1. If the inclusion L:S/S
C(E) —-> s/s (E) is surjective then 

Theorem 2.1 holds. 

Proof. Let O and TJ be as in the statement of Theorem 2.1. Then we may 
find T <= sfs~p

x(E) and 1// e sts
c(E) such that: 

0 = \p + dr. 

But then we have by Stokes' Theorem (noting that 17 A T is integrable by 
Remark 2.1): 

L^A^=L* A xp. 

By a similar argument using Theorem 3.1 we may assume 17 is a pull-back 
T] = TT*V of a form ^ on JV. Since *> = 7*77 we see that ^ is necessarily closed 
and bounded. But an easy modification of a standard result in topology 
(see [4], Proposition 6.15 and use that supp \p and N have finite volume) 
shows that: 

JE >n*v A + = jN v A 77*«0-

A l s o 

77*;// = 77*0 + J77*T a n d J ^ d77*(T) A V = 0. 

Hence we obtain: 

J^ y A 77*W = JNV A 77*(0) 

and the proposition is proved. 

COROLLARY. Theorem 2.1 /zo/ds. 

Proof We have proved £ is surjective in Theorem 3.2. 

4. The theta correspondence and cohomology. We begin this section by 
recalling a cohomological version of the theta correspondence. Let G 
denote 0(p, q), U(p, q) or Sp(p, q) and G denote respectively the meta-
plectic covers of Spn(R), U(n, n) or SO*(4n). Let V denote the standard 
representation of G. Let K denote a maximal compact subgroup of G and 
K! a maximal subgroup of G'. We let z0 denote the point in D, the 
symmetric space of G, with isotropy K. We let U denote the symmetric 
space of G'. 
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Let O = 0(z, x) for z e Dy x e Vl\ be an element of 

(s/l(D) ®Sf(Vn))G°, 

the superscript G0 denoting G0-invariants where G0 denotes the identity 
component of G. Hence <É> may be regarded as a differential form on D 
taking values in the Schwartz spaceS?(Vn). Recall that G' acts onSf(Vn) 
via the oscillator representation co; see for example [14]. We now make two 
assumptions concerning <I>. First we assume $ is ^'-finite (where K acts 
by co). Second we assume O is closed as a differential form on D (all 
components of 0 relative to a basis ofS^(Vn) are closed forms on / ) ) . This 
second assumption is equivalent to saying $ is a cocycle in the standard 
complex used to calculate the continuous cohomology of G with values in 
S?(Vn). We may then define a function %(g', g) on G' X G by: 

e^(g\g) = 0(co(goo(gzo,x)). 

Here 0 is the theta distribution described in the introduction associated 
to a lattice L c V and an element x0 G Ln. Then 0$ is an /-form on 
M = T\D where T is the subgroup of G leaving the lattice L invariant. 
Also, OQ is an automorphic form in g' for the (arithmetic) subgroup 
Y' c G' which leaves 0 fixed; see Chapter II of [14]. We may use 0$ 
as the kernel of an integral transform A^ from automorphic forms on G' to 
closed differential /-forms on M. 

Of course the previous considerations are interesting only if there are 
examples of closed forms O with values inSf(Vn) as described above. In 
fact such forms exist in abundance; see [12]. Since we do not have space 
here to discuss the general theory we apply the integral formula of Section 
2 to the integral transform A^ for G = SO(p, q) and O as in [14], Chapter 
III, Section 1. In this case we may regard D is the set of negative ^-planes 
in V, [12], 1.1. By a negative g-plane in V we mean a subspace P c V 
of dimension q so that ( , ) restricted to P is negative definite. Let 
m = p -f q. 

We now recall the formula for this <I>. First we let a, denote the Lie 
algebra of G, f the Lie algebra of K and p the orthogonal complement of ! 
in Q under the Killing form of Q. Then by Frobenius reciprocity we have an 
isomorphism: 

F:(jtfl(D) ® Sf(Vn) )G° -> ( A V 0 S?(Vn) f°. 

Here the arrow F is evaluation at the negative g-plane z0 and we have 
identified Tz (D) and p. We will denote the image of an element 0 under 
the above arrow by <j>. We note that p is canonically isomorphic to 
z0 ® z0. Also K0 denotes the identity component of K. We change our 
notation from A ,̂ to A^ and from % to 0^. 
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We first construct an element 0>0 of (sf°(D) ® S?(Vn) f°. We let ( , ) 
be the standard form of signature (p, q) and ( , )z be the majorant 
(see [14], 1.1) corresponding to z0. We define a positive definite form 
( ( , ) ) on Vn by defining ( (x, y) ) to be the trace of the n by n matrix 
with /, y'-th entry (xi9 y)z . Here we have x = (xh x2, ...,xn) and 
y = (^i» ^2' • • • »>«) anc* xn }j a r e elements of V. We define the Gaussian 
<f>0 e ^(K")^° by the formula: 

<t>0(x) = <?-*«*.*» = n e - ^ ^ - v 
/ = i 

Then <J>0 transforms by a character under K\ the maximal compact 
subgroup of Mpn(R) covering U(n). 

We now look for a G0 invariant, K! semi-invariant, operator V such 
that: 

V:(J^*(JD) ® S(Vn) f° -» (J^* + / : (Z ) ) ® S ( 0 )G°. 

Using the isomorphism F it is sufficient to write down an operator V 
which is K0 invariant, K! semi-invariant and satisfies: 

V':(A*(z^ ® z0) ® S(Vn) f° -> (A*+m7(z^- ® z0) 0 S(KM) )*°. 

Such an operator will give rise to the desired operator V. 
We give a formula in coordinates for V. We choose a basis {ex, . . . , e• , 

^ + ! , . . . , em } compatible with the splitting 

such that ( , ) is in standard diagonal form relative to this basis. Then 
we let 

{XjjU = 1, 2, . . . , ra; j = 1, 2 , . . . , « } 

denote coordinates relative to the basis {ei ® cy} for F ® R. Here 
{cj, c2, . . . , c w } is the standard basis for R" and we write Vn = V ® R'7. 
We use the index convention that a, fi will stand for indices between 1 and 
p and JU, *> for those between/? -h 1 and m. We normalize the Riemannian 
metric on D to coincide on Tz (D) with the negative of the tensor product 
( , ) ® ( , ) restricted to z0 0 z0. For this metric 

{ea®efl:\ ^ a ^p,p + 1 ^ /x ^ / ? -f 4} 

is an orthonormal basis. Using the metric ea ® e gives rise to an element 
(ea ® e ) in T*{D) which we identify with the Maurer-Cartan form coa(l 

in p*. This is a AT-equivariant identification. 
We have operators d/dxtj, M(xtj) on 6f(Vn) where M(xt) denotes 

multiplication by x-. We also have operators A{œt) on A*(z0 ® z0) 
where 4̂(cozy) denotes exterior multiplication by cô . Then we define the 
Howe operator by: 
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/ _ 1 \«<7 w ™ P / i ± \ 

v = y r II n 2 t ^ - - M(xa;) ® ^(^). 
( 1} n n 2 n 

/ = 1 ji =p + 1 a = 1 

Finally, we define 

<t> = V> 0 Œ (Anq(z^ 0 z0) ®Sf(Vn) f°. 

In what follows we will need somewhat more information concerning 
the continuous cohomology class <j>. We may express <£ in terms of 
monomials co7 in the co 's according to: 

i 

In the case « = 1, it is important to know the coefficient <j>j (x) of 
w1/7 + 1 A . . . A <o1/7+^. We see that this coefficient is given by: 

V X ) =
 2^/2 ( 2 7 7^/2 / /^V /^(^h *)>fo(*) 

where H At) is the g-th Hermite polynomial given by: 

->dq 2 
Hq{t) = (-\)«e'--e->. 

We have now defined forms 0(z , x) on D for any x in Kw. When we are 
interested in the dependence on n we will denote the above form by <t>rt. 

We observe that the form Oj determines the form $w . Indeed, we have 
an isomorphism &>(V)®n to ^ ( F ' 7 ) sending / , 0 f2 0 . . . 0 / „ to 

ru 
We also have the n-th exterior power map. 

A«(zi ® z0) -> A " ^ 0 z0). 

Clearly both of these maps are A^-homomorphisms. Combining these two 
mappings we obtain a ^-homomorphism (of degree n)\ 

Aq(z^ 0 z0) 0 S(V) -> A^(z^" 0 z0) ® 5 ( K " ) 

and consequently a map of AT0-invariants to be denoted A : 

® (A*(z^ 0 z0) 0 S(V) )K« -> (A"g(zi 0 z0) 0 S(KW) )*(>. 

If g e G and z = gz0 we let ( , )z denote the majorant of ( , ) associated 
to z. Then we have: 

(x,y)z = (g~lx, g~xy)z. 
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We note the transformed Gaussian satisfies 

1 = 1 

We then have the following lemma whose proof is left to the reader. 

LEMMA 4.1. 

<&w(z, x) = $!(z, xx) A ^ ( z , x2) A . . .. A 4>,(z, x„). 

Notation. From the notation adopted above we see 0,(z, x ) is the 
g-form obtained by applying the partial Howe operator 

to the Gaussian in the variable x-. 

In Section 5 we will need a naturality property of the forms 0(z, x) 
under restriction. 

Let y be a vector in F of positive length and x another vector of positive 
length so that x = x' + x" with x' a multiple of j and (x", j>) = 0. Let 
Vv denote the orthogonal complement of y in V, Gy be the subgroup 
of G which fixes y, D the set of negative g-planes contained in VY and 
iy:Dy —» Z) the inclusion. We may consider the dual pair 

Mpn(R) X Gv c M^(R2" ® ^ ) . 

The theory of the previous section produces an element 

V„ e (^HDY)®y(Vy)f>. 

We then have the following lemma. 

LEMMA 4.2. 

/*$(z, x ) - ^0(x')$'(z, x , r) Ozote z <E Dy). 

We now summarize the main properties of O. We need some more 
notation. Let Gx denote the stabilizer of the span of x, G" the isotropy 
of x and G'x the subgroup of Gx acting trivially on the orthogonal 
complement of the span of x. We have: 

Gx = Gx X Gx' 

We now have the following proposition whose proof may be found in [12]. 
The reader should also be able to verify the following properties by direct 
calculation. 
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PROPOSITION 4.1. (i) <£(z, x) is a closed nq-form on D for every x in 
V\ _ 

(ii) 0(z, x) transforms under MU(n) according to the (\/det)m (see 
Chapter II of [14] ). 

(iii) 0(z, x) is invariant under the group G" (but not under Gx). 

We have now constructed the desired 0 and we consider the element 

0+ e st"\Y\D) ® C°°(MPn(R) ) 

defined by: 

e^, z) = 0(^)0) = 2UL- «few*, *)• 
Clearly, ^ defines a closed differential nq form o n M = T\D for a 

suitable congruence subgroup (again denoted F) of the integral points of 
0(p, q). The transformation law in g' is very subtle but is well-known, see 
[14], Chapter II. Since 0 is invariant under T': 

(i) e^y'g', z) = e^g', z) 
and since <j> transforms under K' like (\/dët)m we have: 

(H) e+ig'k', z') = [ vait(*') r ^ , z). 
The formulas (i) and (ii) imply that 8^ is a section of the line bundle £P 

over M = T'\ï)n (here J?7 is the ra-th power of the M/?„(R)-homogeneous 
line bundle with isotropy representation \/det). We use r to denote the 
coordinate in fj„. Then T = w + zv with w and v real « by « symmetric 
matrices and v positive definite. We define an element g'T e M/?A?(R), 
satisfying gT(i\n) = T, by the following formula: 

o V^-J 
Then we define ^( r , z) by the formula: 

^ ( T , z) = j ( g ; / l „ ) m / 2 ^ z ) = (det vrm%(g'T, z). 

We may use @^ as a kernel of an integral transform and we obtain an 
integral transform: 

A:Cg°(Af', Jgf) -+sfnq(M) 

given by: 

A(7) = (̂ , / ) 
where the inner product on the right is the hermitian L -inner product on 
C^(M\ ££) anti-linear in the second variable. We will often use the 
notation 8^(f) instead of A(f). 

Since 8^ is closed we also obtain a map: 
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C™{M\ &) -> Hnq(M, R). 

Now o^is a holomorphic line bundle. Holomorphic sections of 3? are 
classical Siegel modular forms; that is, holomorphic functions on \\n 

satisfying the transformation law: 

f((ar + b)(cr + d)'1) = det(cr + d)m/2f(r) 

for 

(c 3 e r c ^(z)-
We denote the holomorphic cusp-forms satisfying the above transfor­

mation law by Sm/2(T'). Since 0^ has moderate growth we can integrate a 
holomorphic cusp form against 0^ and obtain a lifting 

A computation of Casimir values yields the following theorem (see 
[12]). 

THEOREM 4.1. The lift of a holomorphic cusp form is a closed harmonic nq 
form on M. 

We have constructed a mapping from spaces of classical Siegel modular 
forms to closed harmonic forms on locally symmetric spaces of orthogonal 
groups. We want to relate the image of this map to the dual classes of 
special cycles which we have described in the introduction. 

We consider the pairing, denoted [ , ], between nq-iorms to with 
arbitrary support and compactly supported (p — n)q forms 17 given by: 

L* 
Now define the Siegel modular form O^iyi) for 17 compactly-supported of 
degree (p — n) as [TJ, 0^]. One finds easily that: 

iO^nXf) = fo,fy(/)] 
where the inner product on the left is the Petersson inner product on 
Sm/2(T'). Now consider the following two subspaces of the cohomology of 
degree (p — n)q with compact supports. The first, HB , is the space 
of all classes of closed compactly supported (p — n)q forms which are 
orthogonal under [, ] to the image of Sm/2(T'). The second, Hc cle, is the 
space of all classes of closed compactly supported (p — n)q forms with 
period zero on all the special cycles C^ with ft > 0. We now have the 
following theorem which is the main theorem of this paper. 

THEOREM 4.2. If n <. ml A then He = Hcyc\e-

https://doi.org/10.4153/CJM-1988-001-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-001-4


24 S. S. KUDLA AND J. J. MILLSON 

The theorem follows easily from a formula for certain Fourier 
coefficients of ^(77) which we now describe. 

By the transformation law for 6 we see that 6^ is periodic with respect to 
the lattice 1 ^ . Consequently ^(17) has a Fourier expansion with respect 
to the characters of 1 ^ . Let a^O^r]) ) denote the /?-th Fourier coefficient 
for ft an element of the dual lattice Lf of T^ (ft will be a symmetric n by n 
matrix with rational entries), a^ is a function of v where r = u + z'v. Then, 
for /? positive definite, we have the following formula, to be proved in the 
next section: 

(S) aftfijn) )(v) = e -lirtrpv k11-
We now show (S) implies the theorem. Clearly, it is enough to show 

H0 = #cycle-

This later equality we establish by proving two inclusions. 
We first establish Hc le c He . Accordingly, we assume 17 is orthogon­

al to the dual forms of the cycles Cp. Hence j c 77 = 0 for all cycles Cp 
with /? positive definite and accordingly aJOJji) ) = 0 for all such /?. But 
then any / in Sm/2(T') has Fourier coefficients disjoint from #̂ (17) and 
consequently we have 

fo, «•(/)] = (^(v%f) = 0. 
We now establish H9 c //cycle. We assume that d^q) is orthogonal to 

all holomorphic cusp forms. We introduce the Poincaré series (convergent 
provided n < (/? + q)/4): 

Pfir) = c 2J — — . 

TU\r j(y, T) 

Here c is a constant chosen so that 
(f,Pfi) = */*/) f o r / e Sm/2(T'). 

We recall that fp(r) is a holomorphic cusp form. 
We will also need the series: 

Pp(r, s) = c(s) Z, — ^ r ^ e t v(yr)\ 
r ^ \ r j(y, r) 

Here c(s) is chosen so that 

for / a holomorphic cusp form. Then assuming n < (/? + <7)/4 we 
have/7^(T, 5) is holomorphic in s in a vertical half-plane containing 0 and 

PfjJ: 0) = PpfjY 
Since Pp(r) is a holomorphic cusp form we have: 
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(tyvl Pfk^s) ) L=o = W+iv), Ptfr) ) = o. 
We now compute the first inner product directly. By the usual unfolding 
argument (valid for Re s sufficiently large) we obtain: 

( ^ ) , ^ ( M ) ) 

dv 
c(s) j[, e" W ' ( d e t vr^-^^a^Ji) ) 

c(s) L V L r ^ ( d e t v ) ' 
4 " t r #7 ,W l fy"/2+s-(w + l)/2_ 

(det v)1 

dv 

(« + l)/2 

(det vy .(« + D/2-

Here . ^ is a fundamental domain for T^ in f)/2 and 0)
n is the space of 

positive definite symmetric n by n matrices. 
The above integral formula coincides with (OJji), PS(T, s) ) a priori only 

for Re s large, but, by the principle of unique analytic continuation, it 
must coincide with (^(TJ), / ^ (T , S) ) in any region where they are both 
defined. The second integral has been computed in [17], Hilfsatz 37, and is 
convergent and non-zero provided Re s > n — m/2. This region includes 
zero under our assumption on n and m and consequently both the inner 
product and the integral are regular at s = 0. Evaluating the integral at 
s = 0 we obtain a non-zero constant c' and find: 

L71 
( W - Pf*T) ) = 0. 

Hence the period of 77 over Co is zero and the theorem is proved. 

5. The positive-definite Fourier coefficients of Q^i}). The purpose of this 
section is to prove the formula (S), that is the formula: 

0*0?) ) = e-2™*' jCfi v for P > 0. 

For any x in Vn we have defined groups GY, G[ and G" such that 
GY = G'v X G". We define Tv, Tx' and rx" by intersecting T. We assume 
henceforth that ( , ) restricted to the span of x is positive definite. Since we 
are also assuming that T is neat we find TY = T" (see for example the 
remark following Lemma 7.1 of [9] ). 

For x as above, we have defined Dx to be the set of negative ^-planes 
contained in the orthogonal complement of the span of x. Recall we are 
taking for D the set of negative ^-planes in V. We note that GY acts 
transitively on Dx and also GY acts transitively on Dx. We have defined CY 

by CY = TX\DX. We also define E = TX\D and denote the covering map 
D —> E by p. We may identify C with p(Dx). Cx is a totally geo-
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desic submanifold of E. We observe that the form 3>(z, x) is invariant 
under G", hence under Tx and consequently induces a form, also to be 
denoted <I>(z, x) on E. We assume that the base-point z0 of Section 4 is 
chosen to lie on Dx\ that is, u c z0 where w denotes the span of x. 

The critical observation for what follows is that the space E is, in a 
natural way, a vector bundle over Cx. Indeed, since Dx is totally geodesic 
and D is non-positively curved, there are no focal points of Dx in D (see 
the proof of Lemma Al in the appendix). Thus, the Riemannian 
exponential map of the total space of the normal bundle of Dx in D is a 
diffeomorphism. We obtain a vector bundle structure TT.D —> Dx as in 
Section 1. On passing to the quotient by 1̂  we obtain a vector bundle 
structure E —> Cx also to be denoted IT. We are now in the situation 
considered in Sections 1 and 2. 

In fact there is a great deal more structure here, the fibers of TT are also 
totally geodesic sub-symmetric spaces of D7 see [14], Chapter I. We will 
require considerably more notation. We let the rank of a fiber of IT (as a 
symmetric space) be /. We see / = min(fl, q). We let A be a split torus 
in the fiber of TT with Lie algebra 21 and we let r = (rx, r2, . • • , **/) 
be coordinates in 91. More precisely, we define 91 as follows. Choose 
an orthonormal basis (x\, x^9 • • • , x'n) for u. Let v = (u 0 z0) . Define 
hr:V-> Kby: 

hr(x) = 0 if x = x\ for / > / or = ep + i for / > / 

hr(xd = rtep+l for /' = /, 2, . . . , / 

/z,(^+/) = ^ / for / = 1, 2, . . . , /. 

Then 91 = {h/.r G R7}. We put ar = exp Ar. Note that /zr and ar are 
symmetric relative t o . ( , ) , . We say the split torus above is adapted to the 
partial frame {x\ . . . , xf

b ep + x, . . . , e ^_l}. We say a split torus A is 
adapted to the pair w, z0 if there exist orthonormal bases as above for u 
and z0 so that A may be put in the above form. 

We let pu denote the orthogonal projection on u (here "orthogonal" is 
interpreted as orthogonal for either ( , ) or ( . )z , each gives the same pu). 
We abbreviate the norm on V or on any tensor space of V associated to 
( , )z by || ||0. The symbol || || will, as usual, denote the pointwise norm 
associated to the Riemannian metric on D. Let fi0 be the smallest 
eigenvalue of the matrix ft where ft is the length of x. 

We wish to estimate | |0 | | along all split tori A so that A • z0 is normal to 
Dx. These are just the various split tori adapted to u and z0. They depend 
on the choice of partial frame and are permuted transitively by the 
compact group Gx X SO(z0). Of course $ is invariant under SO(z0) but it 
is not invariant under G'. 
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PROPOSITION 5.1. For any split torus A in G adapted to u and z0, any 
x G utl of length /3 and a e A there exists a positive constant CJ(J8) 
independent of a and the choice of x (of length ji) but depending on /? such 
that: 

| |*| |(z0 , a~xx) ^ Cx(fi)e-(lrfio/A)Mi 

Proof To prove the proposition we may work on D. We claim it is 
sufficient to prove the proposition for some split torus A adapted to u and 
z0. To see this assume the proposition is proved for some such torus A. 
Now let B be any other split torus adapted to the pair w, z0. Then there 
exists k G K such that k stabilizes u and such that kBk~ = A. Let b be 
in B. We claim we have: 

| |*| |(z0 , ZT1*) ^ Qifie-CWmbWl 

Indeed write b = k~xak with a G A. Then: 

||*|| (z0, b~Xx) = IÎ H (z0, k~xa~xkx) = ||*|| (z0, a~xkx). 

But kx has length /? if x does so: 

||*|| (z0,b~lx) ^ Cx(£)e-W»/A)m\ 

But ||<z||0 = ||è||0 and the claim is proved. 
We next claim we may assume u = span e where e = {ex, e2, . . . , en}. 

Let us denote this latter span by w. We may choose k e K0 SO that 
/cw == w. Suppose we have proved the above formula for w and a split 
torus B adapted to w, z0. Let x be an element of un of length /?. Then 
kx G M/1 and (kx, kx) = /?. We claim the above formula holds for x with 
/I = k~ Bk. By assumption we have: 

||*|| (z^kak~Xkx) ^ C0)e'^^mak'\ 

Hence: 

||*|| (z0,kax) ^ c,(i8)e"(^/4),,/Ml/c"1||o. 

Using the equivariance of * and the invariance of z0 and || ||0 we obtain 
the claim. 

The above reduction is convenient because we may now take A. to be the 
split torus adapted to the partial frame {ex, . . . , eb e„ + 1, . . . , e„+/}. We 
rename w by u. 

Clearly we have 

||*||2(z0, a~xx) = p(a, x)^(a'xxf 

where p is a polynomial in the entries of a with coefficients which are 
themselves polynomials in the x7 where 
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n 

X{ = 2a xijej-
j = \ 

The coefficient polynomials are universal in the sense that they depend 
only on <ï> and not on a or x. We observe that the set of all x e un of length 
/? is compact since ( , ) \u is positive definite. We replace each of these 
coefficient polynomials by the maximum value it takes on the set of all x 
in un of length /3. We let q be the resulting polynomial. Clearly we have for 
x G un of length j3\ 

||O||2(z0, a~]x) ^ q(a)<j>0(a-]x)2. 

But q(ar) is a polynomial in the chrl and shrt. Consequently for any c > 0, 
there exists a constant C(c) such that 

q(ar) ^ c(c)^cA"Vl+-"+cA2r '+5A2r ,+-"+5A2r / ). 

But 

-\\at\\l = ch2rx + . . . + ch2r, + sh\ + . . . + sh2rt + -(p + q) - I 

and we obtain 

p(a, x) ^ C(c, j8yl|fl,l«. 

We now estimate 

<}>0(a~]x) = e~ 

Clearly: 

n n 

\\a~Xx\\l = 2 (a-]xha-lx,)Zo = 2 (fl"2JC,, x, .)v 
/ = 1 7 = 1 

Now choose m G End w so that me, = xf. We extend m to be the identity 
i on w . We have: 

/; n 

2 (a~2xh xt) = 2 0~2me>z, meX 
i=\ / = i 

We note that the quadratic form q on u given by g(.x) = (mi, mx) is 
just the quadratic form corresponding to the matrix (3 and so 'mm = f3 
where we identify /? with an element of End u by using the basis 
{<?i, e2, . . • en}. We have: 

2J (CI me^ mel)i = 2^ (ma me{, ei)z 
/ = ! / = 1 
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= ti(pJma~2mPu) = to(tmpu<r2pum) 

= lx(rrimpua"2pu) ^ p0tr( pua~2pu). 

Putting a = ar we find: 

/ / / 
iv(pua~2pu) = 2 cA2^ + « - / = 2 c/z2r, + 2 s/z2/; + n - I 

= ^ ik l lo + « - ^ ( / > + <?)• 

We find: 

U^a~xx)\\ ^ C(fi)e-(^/2)M{ 

Combining this estimate with the previous estimate with e = 7r/?0/4 we 
find for a e A and all x in t/1 of length ft we have: 

\\<t>(z0,a~lx)\\ ^ C , ( /? )e~ ( ^ / 4 ) l l < 

With this the proposition is proved. 

COROLLARY. <3>(Z, X) is rapidly decreasing along the fibers of 

ir:Fe\D -> Te\De. 

Proof Given z in D we may send it to the fiber over z0 by an element of 
G'J. Since <£ is invariant under G"we see that it is sufficient to establish that 
||d>|| is rapidly decreasing along the fiber over z0. But if z e TT~ (Z0) we 
choose a split torus A adapted to u and z0 and an element ar ^ A such that 
z = tfrz0. Then the distance d(z, z0) from z to z0 (and hence from z to De) is 
given by: 

n 

d(z, z0)2 = 2 r2. 
/ = 1 

But we have: 

||*|| (flrz0, x) ^ c ^ - 1 7 2 ^ ' ^ 

The corollary is now obvious. 

We now apply the results of Section 2. 

PROPOSITION 5.2. Let cj> be a rapidly decreasing closed nq-form on E and r\ 
a bounded (p — n)q-form on E. Let 

K = l i be r *• 

Then: 
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JE " A * = K k % 

Proof. We apply Theorem 2.1 and observe that since <£> is invariant under 
G" we have 77*(<£) = K, a constant. 

COROLLARY. Le/ 0 = 2 p \ r Y* -̂ Then we have: 

Proof. The corollary follows from a routine unfolding argument, see 
[11], Lemma 2.1. 

We now study the integral for the /?-th Fourier coefficient of 0^0?) where 
y) is a compactly supported form on M. This integral is given by: 

Let 0Q(T, Z, j$) be the function defined by: 

6^ z, /?) = (det v ) - w / 4 Y <*WTMz, x). 
x^L" 

(x,x) = 2J3 

Here the superscript prime indicates that we sum only over those x 
congruent to x0 mod N. Then an argument identical to that of [11], page 
254, yields the following lemma. 

LEMMA 5.1. 

a ftp,) )(v) = j M r, A OjLiv, z, 0). 

We note that 0^(T, z, /?) is T invariant but is no longer F invariant. We 
now rewrite 0^(T, Z, /?) as follows. Recall that we have chosen a set of 
representatives <££ for the T-orbits of frames in Ln of length 2)8 which are 
congruent to x0 mod N. We define for JC <E #£: 

^( r , z, x) = (det v ) " m / 4 2 a)(g;)Y*^>(z, x). 
Y^r,\r 

We define: 

K( '̂' ̂  = iber < ^ ' ) < ^ *>" 
We define K'(T, X) for T = « + /v by the formula: 

3 2 S. S. KUDLA AND J. J. MILLSON 

Te(g) = * 
w . « w ™ that if e' = (e„ * „ . . . , *„-.) and * e G? and k <= X we 
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fl/KW )(v) = 2 L 1 A (det v r w / 4 2 co(g;v)y*<D(z, x) 
ie^ JM rx\r 

hence, by Propositions 5.1 and 5.2, (since 77 is compactly-supported on M, 
I|TJ|| is bounded on M and hence the pull-back of |to|| is bounded on E): 

Thus, to prove (S) it suffices to prove the following theorem. 

THEOREM 5.1. 

fc'(/v, x) = <T2wttf\ 

The previous formula is a local formula, it depends only on computing 
an integral at infinity. This integral was computed in [14], first for n = 1 
by a local computation, then global considerations were used to prove a 
product formula, the "Main Lemma" of [14], Chapter III, Section 3 
expressing /c's for general n and v diagonal as a product of K for the 
diagonal entries of v. The arguments in [14] reduce computing K'(IV, X) to 
computing K'(/1W, ea^) where e = (e]y e2, • • • , en) and a is the diagonal 
matrix with diagonal entries (JLIJ, JU2, . . . , ju,2). This calculation is indepen­
dent of the original discrete group P. In order to effect it we introduce a 
new discrete group T satisfying the hypotheses: 

(i) T is cocompact in G 
(ii) Te is cocompact in Ge for all / = 1, 2, . . . , n. 

Such groups T are easy to construct, see [14]. Thus we have reduced our 
problem to the case considered in [14]. However, we take this occasion to 
give full details for the necessary estimates for the main lemma of [14] 
(which were only sketched at the end of [14] ). We incorporate the 
necessary estimates into Lemma 5.1 (below). 

In order to state our lemma we recall the forms <!>n of Section 4 and 
the relation: 

<D„(z, e) = $!(z, ex) A $,(z, e2) A . . . A 4>,(z, e„). 

We define forms 0 / 7_ t and fi„_i by: 

<D„_,(z) = $,(2,*,) A . . . A*n_x(z, *„_,) 

and 

K\Kn 

We will see below that the series for Bw_ j is absolutely convergent, see (i) 
and (ii) below. 

We now introduce a family of partial Gaussian functions F€ on G 
depending on a parameter c > 0 by: 
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F(g) = e~c(llg lé>iHo+--- + il£ Villo). 

We observe that if é = (ev e2, . . . , en_x) and h e G"> and k e K we 
have: 

Ç(A'g*) = Ç(g). 

Remark 5.3. Here we have dropped the /x/s of [14]. The function F(g) of 
[14] which depends on the ju/s may be majorized by /^(g) for suitable c, just 
replace each /i, by 

fx0 = min{/i!, /X2, . . . ,/xM}. 

We leave the details to the reader. We will henceforth ignore the /i/s as 
they play no role in the following estimates. 

LEMMA 5.1. The family F€ satisfies the following: 
(i) There exists e and C so that 

II*, , - ,I l â CFt. 

(ii) The series 

2 y*F€(g) 

converges for all e > 0. 
(iii) h*F€ is a non-increasing function along normal geodesies to Dc for 

all € > 0 and h <= G . 

Proof To prove (i) we apply Proposition 5.1 noting 

n-\ 

2 \\aet\\l = | M £ 

to obtain that for any split torus A adapted to e\ z() and a e A we 
have: 

||0||(z(), a'xe') ^ c1^-,r/4(l|û",É?'l,» + - + l|û",c'»-',,«). 

We extend the inequality to all g by writing g = hk'ak with h e <7">, 
# G ^ , a fixed split torus, k <E K and A:' a rotation leaving fixed the 
orthogonal complement of span é'. Both sides are independent of h and k 
and k' just changes ^ to a new split torus A''. 

Since F€ is rapidly decreasing along the fibers of E = Te\D it follows 
that 

2 y*F( 
r,\r 

converges. But now observe that the inclusion of Te into T induces an 
embedding of Te\Te into I ^ \ I \ Hence the series 
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2 y*Fe 
Te\Kn 

is a sub-series of the above series and (ii) is proved. 
To prove the third statement let at be the element of G defined for t e R 

by: 

atet = et for i ¥" n or i ¥= p + 1 

aten = c/zte„ + shtep + x 

ate
P + \ = shten + cA^ + 1. 

Then at • z0 sweeps out a normal geodesic to De as t varies. More­
over, every normal geodesic is of the form h~xat • z0 for some h e Ge 

(observe that Ge acts transitively on normal unit spheres). But we have for 
h G Ge„: 

Fe(hatz0) = e-^» f lr ,^ilg + - + lk- ,K-il& 

We now make two observations. First we observe that since h ^ Ge WQ 
have 

(/*(?,, e j = 0 for/ = 1, 2, . . . , « - 1. 

Also we observe that if (x, en) = 0 then 

n«r'*iio ^ iwi2-
To see this write x = be +x + x' where at leaves x' fixed. Then 

a~lx = chtbep + x -f x' and Htf^-xllo = ch2tb2 + II-X'HQ. 

The statement (iii) is now immediate. 
COROLLARY. H ^ - J I is bounded on Te\D. 

Proof. We define a function T on Te\D by: 

^T= 2 y*F€. 

Then by (i) we have: 

IIQ„-,II ^ c r . 

Hence, it is sufficient to prove that T is bounded on Te\D. But T is 
nonincreasing along geodesies normal to De since each term in its defining 
series is by (iii). Hence, it is sufficient to prove that T is bounded on 
Te\De . But this is a compact space. The corollary is now proved. 

Appendix. Some standard estimates. In this appendix we prove Lemma 
1.2. We recall that we are assuming TV is totally geodesic. In this case, Dx is 
also totally geodesic and we may assume that the frame field Ex, . . . , Ek of 
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Section 1 is parallel along Dx. In this case we have for any point x 
and any /*, j : 

D, 

Vd/dv V; 'd/di 
'*yj 

0. 

Hence if y0 is a geodesic normal to N and emanating from x and T is the 
unit tangent to y0 then T(0) is a linear combination of the d/dyfs and we 
obtain: 

vr-dX: 
= 0 for 1, 2 , . 

Since, by [7], Corollary 2.3 we know rd/dy- is a Jacobi field for j = 1, 
2, . . . , k the estimates we need are a consequence of comparison theorems 
for lengths of Jacobi fields. To prove the lower bounds in Lemma 1.2 we 
compare D to hyperbolic m-space of curvature 

For convenience we restate Lemma 1.2. 
-P2. 

LEMMA A.l. Let yQ be a geodesic normal to N emanating from x ^ N 
which is parametrized by arc length. Then along y0 we have the estimates'. 

(a) 

(b) 

dx, 

ay, 

Yo('> 

Y„(0 ^ P 
àyj 

Proof. Suppose y0(t) = exp ti~ with ||£|| = 1. We rename £ by T0. We 
estimate d/dx and d/dy- along y0(/) by using the Rauch comparison 
theorems. 

We first use [5], 1.28, to estimate any Jacobi field V along y0 satisfying 
V(0) = 0. We apply 1.28 with M0 = D and M equal to hyperbolic n-space 
with constant curvature — p . We obtain the estimate: 

(*) | |K(/) | | â \\V'(0)\\shpt. 

We note that there are no points conjugate to x along y0 because D has 
non-positive curvature. We apply (*) with 

V(t) = rd/dy- YoO 

and note 

V'(0) = d/dyj\x. 

Hence: 

d 

\'dyj Yo(')| 

VII 

\d 
\dyj x\ 
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and 

\shpt 

dy, Yo«)l w 
= p\ 

dy\ 
oP* 

We next apply [5], 1.29, to estimate any Jacobi field along y0 satisfying 
F(0) = 0. We take M and M0 as before. We observe that the manifold N0 

of the hypothesis of their theorem coincides with Dx since Dx is totally 
geodesic. Since 7V0 is totally geodesic and D is non-positively curved there 
can be no focal points of N0 along y0. This can be proved by applying [20], 
Theorem 3.2 with (V, S) = (D, /),) and ('K, 'S) = (R"\ Rw) where Rm has 
the flat metric and R" is linearly embedded. We obtain the estimate 

(**) \\V(t)\\ ^ \\V(0)\\chpt£ | | F ( 0 ) | K 

We apply (**) with V(t) = d/dxj\y^t) and note 

K(0) = d/dx,\x. 

Hence, we obtain statement (a) of the lemma. 

In our application of Lemma 1.2 in Section 3 we also will assume that 
TV n U has compact closure. In that case it is sufficient to let C denote 
the bigger of the maximum value of the functions ||d/djc-|| and Hd/dx-H 
on N n U and the maximal value for \\VTd/dx|| and ||VTd/dv|| on 
v(N n £/), to obtain the following corollary. 

COROLLARY 1. There exists a constant C so that for any x 
have: 

U we 

1 d 1 1 
Id-XyW 

Id 1 II 

Î .UI 

pr(x) Ce 

^ Cepr{x\ 

By duality we obtain the following lower bounds on the coordinate 
differentials. 

COROLLARY 2. 

(a) | | ^ , | J | § Ce~prM 

(b) \\dy\J\ g Ce-pr^\ 

We now find upper bounds for the lengths of the coordinate 
differentials, or lower bounds for the lengths of the coordinate vector 
fields. 

LEMMA A.2. Let y be a geodesic normal to N emanating from x e N 
which is parametrized by arc length. Then along y we have the estimates: 
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(a) Wdx^W Si \\dxt\x\\ fori = 1 , 2 , . . . , n 

(b) ||^|y(0 | | â H^IJI forj=l,2,...,k. 

Proof. We again apply [5] but this time with M = D and M0 equal to R' 
with the flat metric. In the case V(0) = Owe obtain: 

d r) 
> 

u 
Y(Ol \dy, x\ 

We apply * with 

Vit) = r— 

and obtain: 

1 à 

h, 
y(t)\ 

All 
Id 

x\ 

The statement (b) of Lemma A2 follows: 
To prove the statement (a) we note that a Jacobi field V{t) in Euclidean 

space satisfying F(0) = 0 is a constant field. The value of the constant 
must be V(0) and the lemma follows. 

COROLLARY 1. In any standard coordinate patch we have: 

(a) ll^-H ^ C fori = 1,2,...,n 

(b) \\dyf\\ ^ C for l,2,...,k. 
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