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The electromagnetic current and its properties

1.1 Introduction

The theory of the weak interactions, better known as the electroweak theory, was
developed in two stages. In the first stage, a phenomenological interaction was in-
troduced and was extended when additional experimental results became available.
At that stage a large number of observations could be accounted for by empirical
rules. There still remained the desire to develop a basic theory that was finite and
renormalizable. This was achieved in the second stage by combining the electro-
magnetic and weak interactions into a gauge theory – the electroweak theory.

The effective current–current interaction was introduced by Fermi in 1934,

Heff = − GF√
2

Jµ(x)Jµ†(x), (1.1)

and was responsible for charged-current weak interactions of leptons and hadrons.
The current was originally introduced, in analogy to electrodynamics, for the inter-
action of the electron with its neutrino and also for the neutron–proton transition

Jµ(x) = �νeγµ(1 − γ5)�e + �pγµ(1 − γ5)�n + �νµ
γµ(1 − γ5)�µ + · · ·.

(1.2)

Here the �s are the fields of the fermions and the γ s are the Dirac γ -matrices in the
notation of Bjorken and Drell (1965). The shortcoming of this theory is known as
the unitarity problem and shows up in many reactions. For example, for the reaction

νµ + e− −→ νe + µ−

we can calculate the cross section, which to lowest order is

σtot(νµe− → νeµ
−) = G2

Fs

π
(1.3)

3

https://doi.org/10.1017/9781009402378.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.002


4 The electromagnetic current and its properties

with s = 4E2
cm, where terms proportional to the masses of the leptons have been

omitted at high energies. Because of the point coupling in (1.1) only the lowest
partial wave (angular momentum zero) can contribute to the scattering amplitude.
Then conservation of probability (unitarity) in quantum mechanics requires (see
Problems 1 and 2 at the end of Chapter 2)

σ l=0
inelastic ≤ π

2E2
cm

(1.4)

for any scattering process. From (1.3) and (1.4) we find that the theory is consistent
with unitarity only for

Ecm ≤
(

π
√

2

4GF

)1
2

= 309 GeV. (1.5)

Thus the theory is incomplete.
On the other hand, why should we believe the first-order-term result for such high

energies? It is not a matter of belief but an unfortunate fact of life that we cannot
calculate higher-order contributions. The theory, which is based on the Hamilto-
nian (1.1), is non-renormalizable and does not allow a well-defined perturbation
expansion.

At this point we fall back upon the most successful field theory at our disposal:
quantum electrodynamics (QED). We describe in this chapter its salient features
and we try to develop in Part II of this book, in analogy to QED, a gauge theory of
weak and electromagnetic interactions. In fact the second stage in the development
of the weak interactions is to construct a well-defined and renormalizable theory.

We start with the Dirac Lagrangian for an electron interacting with the electro-
magnetic field,

L = �

(
iγ µ ∂

∂xµ
+ eγ µ Aµ − m

)
� − 1

4
Fµν Fµν. (1.6)

We think of � as the electron field whose current

jµ = �(x)γµ�(x) (1.7)

interacts with the electromagnetic field

LF = �(iγ µ∂µ − m)� + ejµ Aµ. (1.8)

The interaction term e�γµ� Aµ fixes the vertex and the electron propagator is the
inverse of the kinetic term.
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ieγµ

i

p−m + iε

Figure 1.1. The photon–fermion vertex and the propagator.

Finally, the last term in (1.6) gives the interaction between photons and involves
the electromagnetic field tensor

Fµν = ∂ Aν

∂xµ
− ∂ Aµ

∂xν
. (1.9)

Gauge invariance forbids a term m2
γ Aµ Aµ that would give a mass to the photon.

QED has been one of the most precise and successful theories in all of physics and
has been tested to a few parts per million.

As mentioned above, the electromagnetic current describes the interaction of the
photon with a charged fermion. The current is a local operator

jµ(x) = �l(x)γµ�l(x), (1.10)

where �l(x) is the field for the lepton l and γµ is a Dirac matrix. The current jµ(x)
is a generalization of the classical concept of a current as it appears in Maxwell’s
theory. In classical electrodynamics jµ(x) is a four-vector with components

jµ(x) =
[
cρ(x), �j(x) = ρ(x)�v

]
= ρ(x)

[
c, �v ]

, (1.11)

with ρ(x) denoting the charge density, the vector �j(x) the charge flow, c the speed
of light, and �v the velocity of the charge density. The total charge of a particle is
given by the integral

c Q =
∫

d3x j0(x). (1.12)

The current in (1.11) is an operator that transforms like a four-vector. The fields
occurring above are also operators that create and destroy localized particle states.
They satisfy canonical commutation relations, which quantize the theory. The com-
putational methods of QED can be found in many books given in the references.
We shall assume that the reader is familiar with the methods of quantum electro-
dynamics.
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1.2 The current for hadronic states

The electromagnetic current for a proton is more complicated since protons are not
point-like particles, but have a measurable physical size formed by the cloud of
pions and other hadrons which surrounds them. As a first attempt one would write
the electromagnetic current for a proton in terms of free fields,

Jµ = �p′(x)γµ�p(x) = u(p′)γµu(p)ei(p′−p)x. (1.13)

This form is ruled out immediately because it describes a point particle with unit
charge and a Dirac magnetic moment. It obviously fails for the case of a proton,
which has size and an anomalous magnetic moment. This implies a charge distri-
bution and requires additional terms on the right-hand side.

One therefore expects a more general structure, which is introduced by con-
sidering the hadronic current as a vector operator that satisfies general symmetry
principles. We begin by considering the interaction of the electromagnetic field
Aµ(x) with protons. The matrix element contains the term

〈p′|Jµ(x)e−iqx|p〉. (1.14)

Under translations in space and time Jµ(x) transforms as

Jµ(x) = ei p̂x Jµ(0)e−i p̂x , (1.15)

where p̂ is the operator of the four-momentum; thus (1.14) reduces to∫
d4x〈p′|Jµ(0)|p〉e−i(q+p−p′)x = ū(p′)Oµ(p′, p)u(p)

∫
d4x e−i(q+p−p′)x ,

(1.16)
with Oµ containing terms with γ -matrices, the antisymmetric tensor εµναβ , and
momenta. The spinors u(p) and u(p′) are solutions of the free Dirac equation.
These are the requirements of Lorentz invariance.

Two other properties are

(i) gauge invariance, which translates into

qµ〈p′|Jµ(0)|p〉 = qµū(p′)0µu(p) = 0; (1.17)

(ii) Hermiticity of the current

〈p′|Jµ(0)|p〉∗ = 〈p|Jµ(0)|p′〉,
(1.18)[

ū(p′)0µu(p)
]+ = ū(p)0µu(p′),

from which it follows that

O+
µ = γ0 Oµγ0. (1.19)
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The above requirements limit the types of Dirac matrices and momenta which
are included in the operator Oµ. The first subset of operators is{

�µ = pµ + p′
µ, qµ = p′

µ − pµ, γµ, iσµνqν, σµν�
ν
}
, (1.20)

which appear in matrix elements of the vector current. In addition to the above
operators, there are also others that contain γ5 or the antisymmetric tensor. They
are produced by higher-order weak or new interactions and their contributions to
electromagnetic matrix elements are small. For completeness we include them here
and discuss some properties in the next section. The second subset of matrices
contains γ5, {

�µγ5, qµγ5, γµγ5, σµνqνγ5
}
, (1.21)

and the third the antisymmetric tensor,{
εµν αβσαβ�ν, εµν αβσαβqν, εµν αβγµγ5qα�β, εµν αβγνqα�β

}
. (1.22)

These terms are odd under parity transformations. Matrix elements of these opera-
tors are not all linearly independent. For instance, matrix elements of the last three
terms in (1.22) are reduced, by judicious use of γ -matrix identities and the Dirac
equation, to matrix elements of the second set (Nowakowski et al., 2005).

The Gordon decomposition formula

ū(p′)γ µu(p) = ū(p′)
(

p′µ + pµ

2m
+ iσµνqν

2m

)
u(p) (1.23)

eliminates one term in the first subset. Similarly, the term σµν�
ν can be replaced

by ū(p′)qµu(p). Thus the matrix element of the vector current has the general
form

ū(p′)
(

γµF1(q2) + iσµνqν

2m
F2(q2) + qµF3(q2)

)
u(p). (1.24)

Gauge invariance gives an additional condition,

F3(q2) = 0. (1.25)

The functions Fi with i = 1, 2, 3 are Lorentz scalars and their argument must
remain unchanged under the replacement pµ → pµ + kµ and p′

µ → p′
µ + kµ with

kµ an arbitrary four-vector; consequently they are functions of q2 = (p′ − p)2,
which justifies the argument introduced in Eq. (1.24). We can use the Hermiticity
condition as written in (1.19) to assure that the form factors are real functions.
In summary, symmetry principles restrict the number and properties of the form
factors. Some other consequences of symmetries are discussed in Chapter 2 and
the problems given there.
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What is the physical meaning of form factors? As the name indicates, they
describe the structure or configuration of particles. Let us begin with an electron in
the Dirac theory. To lowest order of electrodynamics F1(0) = 1 and F2(0) = 0. On
replacing next the γµ term with the help of the Gordon decomposition, the coupling
of the electron to the electromagnetic field Aµ(x) is written as

e�̄f(x)γµ Aµ(x)�i (x) = e�̄f(x)

(
pµ + p′

µ

2m
+ iσµνqν

2m

)
�i (x)Aµ(x). (1.26)

The non-relativistic limit produces two terms. The first term, from the sum of
momenta,

eū(p′)u(p)A0(x) (1.27)

couples the charge density to the scalar potential because the ratio of the three-
momentum to the mass becomes very small. The second term couples the magnetic
moment to an external magnetic field. Considering a constant magnetic field �B and
its potential Aµ(x), the interaction in configuration space is

e

2m
�̄f(x)σµν�i (x)

∂ Aµ(x)

∂xν
= �̄A,f(x)

e

2m
�σ · �B �A,i , (1.28)

where �A are the upper components of the spinors (see Problem 2.5). The magnetic
field is introduced as the rotation of the vector potential. Defining the magnetic
moment as

�µ = −g
e

2m
�S with �S = �σ

2
, (1.29)

we obtain for the electron the gyromagnetic ratio g = 2. Thus a Dirac electron has
an intrinsic magnetic moment with the natural value of 2, which can be modified
by radiative corrections.

Although we have started to derive a current for extended fermions, the results of
this derivation in the form of Eqs. (1.27) and (1.29) are also valid for “point-like”
particles, when higher-order electromagnetic corrections are taken into account.
Indeed, the Lagrangian given in (1.6) will induce correction terms compatible with
the symmetries of the Lagrangian. We see from (1.23) and (1.24) that F2 will also
contribute to the magnetic moment via µ = 1

2 [F1(0) + F2(0)]. Both for the electron
and for the muon, the magnetic moments have been measured very accurately. They
have also been calculated theoretically and the agreement is very good. For the
electron

1

2
(g − 2)e = 0.001 159 652 209 (31), (1.30)

with the number in parentheses denoting the experimental accuracy. Very accurate
results exist also for the muons. The deviation from the value of 2 comes from
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radiative corrections, which in quantum electrodynamics have been calculated pre-
cisely (Kinoshita, 1990).

The situation is very different for protons and neutrons. The experimental values
are

F1(0) = 1 and F2(0) = 1.79 for the proton, (1.31)

F1(0) = 0 and F2(0) = −1.91 for the neutron. (1.32)

The changes come from the strong interactions and cannot yet be calculated.
They are called the anomalous magnetic moments and have been measured in
electron–hadron-scattering experiments. In addition to their values at q2 = 0, the
form factors have been measured over extended regions of the momentum-transfer
squared and were found to decrease rapidly with q2. This behavior indicates the
existence of a charge distribution of virtual particles around the proton and the
neutron, with the charge density decreasing rapidly with increasing radius. The
motion of the particles creates magnetic fields, which are manifested in the values
of the magnetic moments.

1.3 Parity-violating form factors

For completeness we include additional couplings of the photon induced by weak
interactions inside the vertex. Omitting this section will not affect the study of the
following chapters.

The electromagnetic force is not the only force between particles. For instance,
the presence of weak terms changes the general structure of the electromagnetic
matrix elements. The interaction of a photon with a particle does not mean that
the whole process is electromagnetic, since higher-order corrections must also
include the weak interactions. Conceptually it is easy to include these effects in the
electromagnetic current, by dropping the restrictions that the current is invariant
under the discrete symmetries charge conjugation C, parity P, and time-reversal
T. Imposing Lorentz invariance, gauge invariance, and Hermiticity means that one
must include two additional form factors (F3 and F4) and the electromagnetic
current takes a more general form,

ū(p′)0µu(p) = ū(p′)

[
γµF1(q2) + i

σµνqν

2m
F2(q2) + i

εµναβσ αβqν

4m
F3(q2)

+
(

qµ − q2

2m
γµ

)
γ5 F4(q2)

]
u(p). (1.33)

We know from classical electrodynamics and quantum mechanics that the fields
transform under parity P and time-reversal T as shown in Table 1.1.
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Table 1.1

�B P→ �B
�B T→ − �B
�E P→ − �E
�E T→ �E
�σ P→ �σ
�σ T→ −�σ

From Table 1.1 we can infer immediately that �σ · �B, an interaction defining
the second form factor F2(q2), conserves parity and time-reversal. Similarly, the
non-relativistic reduction of all form factors including F3(q2) and F4(q2) is given
by

Hint ∝ eA0 − µ�σ · �B − d �σ · �E − a

[
�σ ·

(
�∇ × �B − ∂ �E

∂t

)]
, (1.34)

with F1(0) = e (charge), [F1(0) + F2(0)] /(2m) = µ (magnetic dipole moment),
F3(0)/(2m) = d (electric dipole moment), and F4(0) ∝ a is called the anapole
moment (Zeldovich, 1958). It is evident that the presence of F3 leads to a parity-
and time-reversal-violating interaction. Physical phenomena that exhibit violation
of time-reversal are very scarce. Therefore, the observation of d �= 0 will be a
physical breakthrough. Up to now only upper limits for d have been established for
electrons and nucleons.

The fourth form factor F4(q2) is even under time-reversal but violates parity. It is
frequently omitted from discussions of the electromagnetic form factors, because
it is an off-shell form factor, in the sense that its interaction with an on-shell photon
vanishes. This is easily seen because q2 = 0 and εµqµ = 0 for on-shell photons.
In addition, this form factor can appear only in matter with currents producing the
electromagnetic fields, because for classical fields the expression �∇ × �B − ∂ �E/∂t ,
which appears in the anapole interaction, vanishes (Maxwell equation in vacuum) in
the absence of a current. Finally, for neutral fermions, which do not carry any global
quantum numbers, like Majorana neutrinos, only the anapole form factor is possible.
For a more detailed treatment of the form factors I recommend Nowakowski et al.
(2005).
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