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Abstract 

Objective: While associations of ultra-processed food (UPF) consumption with adverse health 

outcomes are accruing, its environmental and food biodiversity impacts remain underexplored. 

This study examines associations between UPF consumption and dietary greenhouse gas 

emissions (GHGe), land use, and food biodiversity. 

Design: Prospective cohort study. Linear mixed models estimated associations between UPF 

intake (grams/day and kcal/day) and GHGe (kg CO₂-equivalents/day), land use (m²/day), and 

dietary species richness (DSR). Substitution analyses assessed the impact of replacing UPFs with 

unprocessed or minimally processed foods. 

Participants: 368,733 participants in the European Prospective Investigation into Cancer and 

Nutrition (EPIC) study. 

Setting: Europe 

Results: Stronger associations were found for UPF consumption in relation with GHGe and land 

use compared to unprocessed or minimally processed food consumption. Substituting UPFs with 

unprocessed or minimally processed foods was associated with lower GHGe (8.9%; 95%CI: -

9.0; -8.9) and land use (9.3%; -9.5; -9.2) when considering consumption by gram per day and 

higher GHGe (2.6%; 95% CI: 2.5: 2.6) and land use (1.2%; 1.0; 1.3) when considering 

consumption in kilocalories per day. Substituting UPF by unprocessed or minimally processed 

foods led to negligible differences in DSR, both for consumption in grams (-0.1%; -0.2; -0.1) and 

kilocalories (1.0%; 1.0; 1.1). 

Conclusion: UPF consumption was strongly associated with GHGe and land use as compared to 

unprocessed or minimally processed food consumption, while associations with food 

biodiversity were marginal. Substituting UPFs with unprocessed or minimally processed foods 

resulted in differing directions of associations with environmental impacts, depending on 

whether substitutions were weight- or calorie-based.  
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1. Introduction 

The food system’s environment impact has become a pressing concern due to its contributions to 

greenhouse gas emissions (GHGe), land use, and biodiversity loss
1
. Intensive agricultural 

practices, especially monocultures like maize, wheat, and soy, degrade ecosystems and narrow 

crop diversity. Ultra-processed foods (UPFs), composed largely of ingredients produced from 

these high yield crops and livestock, have been indicated to have a negative impact on the 

environment due to their contribution to limited crop diversity and increased vulnerability to 

environmental pressures
2
. In addition, many UPFs are characterized by hyperpalatability, low 

satiety potential, and heavy marketing that can encourage overconsumption, leading to excessive 

food production and associated environmental pressures, while also contributing to significant 

public health challenges
3,4

. 

UPFs have been linked to negative health outcomes such as obesity, cardiovascular diseases, 

depressive symptoms, and certain cancers
5
. Consequently, countries like Mexico have 

incorporated recommendations to limit UPF consumption in dietary guidelines
6
. However, the 

environmental impacts of UPFs have received less attention, and the potential implications of 

substituting UPFs with unprocessed or minimally processed foods remain underexplored. With 

diets shifting toward greater UPF consumption globally, understanding their impact on the 

environment is critical, particularly in terms of GHGe, land use, and preservation of food 

biodiversity
7–9

. This convergence suggests that UPF-driven overconsumption represents a shared 

pathophysiological mechanism underlying both human and environmental health. The same 

hyperpalatable formulations, low satiety signals, and marketing strategies that promote excessive 

energy intake, could simultaneously drive increased food demand and production, amplifying 

environmental pressures. This dual pathway through overconsumption represents a novel 

framework for understanding how food processing impacts both human and planetary health 

through a common mechanism. 

This study examined the relationship between dietary intake across food processing levels and 

environmental outcomes—specifically GHGe, land use, and food biodiversity—and evaluates 

the potential impact of substituting minimally processed foods for UPFs among adults in the 

European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 
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2. Methods 

2.1. The EPIC cohort 

The EPIC cohort is a large multicentre cohort examining the links between metabolic, lifestyle, 

and environmental factors of cancer and chronic diseases. Between 1991 and 2000, over 500,000 

participants aged 25–70 were recruited across 23 centres in 10 European countries: Denmark, 

France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the United 

Kingdom. Dietary intake at enrolment was assessed using validated, country-specific 

questionnaires capturing habitual consumption over the past 12 months
10

. In order to study 

associations in a disease-free population participants with missing dietary data, extreme energy 

intake-to-requirement ratios, lack of follow-up, or prevalent diseases at baseline were excluded. 

Due to administrative constraints, cohorts from Greece, Norway, and Sweden were excluded, 

resulting in 368,733 participants (Supplemental Figure 1). 

2.2. Dietary Assessment 

In the 1990s, participants' usual food intake over the previous 12 months was assessed at 

baseline with country-specific dietary questionnaires. Depending on the study centre, 

quantitative dietary questionnaires, semi-quantitative food-frequency questionnaires, or a 

combination of semi-quantitative food-frequency questionnaires and 7-day food records were 

used. Data on frequencies, portion sizes, or intakes in grams per day were stored in a central 

IARC database
10

. Post-harmonization of dietary data was conducted, following standardized 

procedures (e.g., disaggregating recipes into ingredients), to obtain a standardized food list for 

which the level of detail is comparable between countries. The EPIC food composition database 

comprises more than 11,000 food and beverage items reflecting the specificities of each country. 

2.3. Exposure - Nova classification 

Standardized EPIC food items were categorized by processing level using the Nova 

classification: Nova 1 (unprocessed or minimally processed foods, e.g., fruits, vegetables), Nova 

2 (processed culinary ingredients, e.g., oils, sugar), Nova 3 (processed foods, e.g., cheese, bread), 

and Nova 4 (UPFs, e.g., soft drinks, flavoured yoghurts). Since the Nova classification system 

was developed after the EPIC dietary data collection, there was some uncertainty in classifying 

certain food items according to their level of food processing. Therefore, three classification 
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scenarios were developed to address this uncertainty, a lower, middle, and upper-bound scenario. 

This study used the most probable, middle-bound scenario
11

. Dietary contribution from each 

Nova class was expressed in both grams and kcal per day, as grams reflect absolute 

consumption, while kcal accounts for energy density, providing complementary insights into 

environmental impacts. 

2.4. Outcomes - Environmental impacts and food biodiversity 

Environmental outcomes were assessed using the SHARP indicators database, which estimates 

GHGe and land use from life cycle assessment data encompassing production, packaging, 

transport, and preparation
12

. Food items were matched between the EPIC and SHARP databases 

using EFSA’s FoodEx2 base-term codes
13

. Diet-related GHGe and land use were computed for 

each individual by summing the amounts for all foods consumed; GHGe was expressed as kg 

CO2-equivalents per day and land use as m² per day
12,13

. Food biodiversity was quantified using 

dietary species richness (DSR), defined as the count of unique biological species consumed 

across foods, beverages, and mixed dishes
14

. Composite foods were decomposed into ingredients 

using standard recipes and foods consumed “never or less than once per month” were not 

considered in the DSR computation.
14

 

2.5. Study covariates 

Sociodemographic and anthropometric covariates included in the models were: age at 

recruitment, body mass index height, sex, educational level, smoking status at baseline, physical 

activity using the Cambridge index, and alcohol intake. 

2.6. Statistical analysis 

Consumption of the Nova classes (gram/day or kcal/day) was modelled as continuous variables. 

Multivariable mixed linear models with random intercepts for study centres and adjustment for 

sociodemographic and anthropometric variables were fitted to assess associations between Nova 

class consumption, GHGe, land use, and DSR. Additive models assessed associations of the 

additional consumption of a Nova class. For this, weight- and energy-based all-component 

models were constructed, mutually adjusting for each Nova class, to account for the total weight 

or energy intake
15
. Additionally, substitution analyses were performed, using the ‘leave-one-out’ 

method estimated associations of replacing a specific amount of Nova 4 with Nova 1, by keeping 
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total intake constant
16

. For instance, the substitution of Nova 4 by Nova 1 in GHGe can be 

parameterised as: 

          
 
         

 
         

 
         

 
                        

                      

Here,  1 represents the relative estimate for replacing a quantity of Nova 4 with an equivalent 

amount of Nova 1, keeping the total intake constant. 

Estimates were expressed as: 1) a 1-standard deviation (SD) increment in consumption of a Nova 

class, or 2) a 10% increase from the mean absolute total dietary intake. To interpret the results as 

percentage differences, these estimates were divided by the mean value of the respective 

outcome measure. 

Sensitivity analyses included baseline models only mutually adjusted for each Nova class and 

main models further adjusted for the Mediterranean diet score (0–18 points)
17

. Statistical 

analyses were performed in RStudio (v4.0.4.1) with two-sided testing, and P-values <0.05 were 

considered statistically significant. 

3. Results 

3.1. Sample characteristics 

This study included 368,733 participants from the EPIC cohort, of whom 259,268 (70.3%) were 

females. The mean (SD) age at recruitment was 51.3 (9.9) years, and the average BMI was 25.4 

(4.3) kg/m² at baseline. On average, participants consumed 364 gram (278) or 672.9 kcal (412.0) 

of UPFs daily, representing 12.9% (8.5) of total intake by weight and 30.5% (15.3) by energy. 

Mean dietary GHGe and land use were 5.3 (1.82) kg CO₂-equivalents per day and 6.9 (2.6) m² 

per day, respectively. Average DSR was 68.2 (15.2) species per year (Table 1). 

3.2. Associations between Nova class consumptions and GHGe, land use and food 

biodiversity 
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Figure 1 illustrates the percentage difference relative to the mean of GHGe, land use, and DSR 

associated with higher consumption of each Nova class. A 1-SD increment in consumption of 

each Nova class, either in gram or kcal per day, was associated with significantly higher GHGe, 

land use, and DSR, with Nova 4 consumption being more strongly associated with GHGe and 

land use compared to Nova 1. To illustrate, a 1-SD increment of Nova 4 consumption in kcal per 

day was related to 15.8% (95%CI: 15.8; 16.0) higher GHGe, 16.9% (16.9; 17.1) higher land use, 

and 1.0% (0.9;1.1) higher DSR, while for Nova 1 this was 13.8% (13.8; 14.0) for GHGe, 12.8% 

(12.7; 14.0) for land use. Similar findings were reported for consumption of the different Nova 

classes in grams/day. Strengths of associations differed within Nova 4 subgroups, with animal-

based products showing the strongest positive associations with GHGe and land use, while plant-

based alternatives and savoury snacks showed the weakest associations (Supplemental table 1). 

3.3. Substitution of ultra-processed with unprocessed or minimally processed foods 

10% of the mean total intake in grams per day substitution of Nova 4 substitution with Nova 1 

was associated with 8.9% (95%CI: -9.0; -8.9) lower GHGe and 9.3% (-9.5; -9.2) lower land use 

(Figure 1). However, such a substitution was related to marginally lower DSR (-0.1%; -0.2; -

0.1). Conversely, a Nova 4 substitution with Nova 1, 10% of the mean total intake in kcal per 
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day, was associated with higher GHGe (2.6%; 2.5: 2.6), land use (1.2%; 1.0; 1.3), and DSR 

(1.0%; 1.0; 1.1) (Figure 1). 

Sensitivity analysis confirmed our main findings (data not shown). 

4. Discussion 

This study found that higher UPF consumption was more strongly associated with increased 

dietary GHGe and land use compared to unprocessed or minimally processed foods. For DSR, 

associations were shown to be marginal. Energy-based substitution of UPFs with unprocessed or 

minimally processed foods were associated with higher environmental impacts, whereas weight-

based substitutions were associated with lower environmental impacts. 

These discrepancies likely stem from the higher energy density of UPFs. Energy-based 

substitutions require larger quantities of unprocessed or minimally processed foods to achieve 

isocaloric substitutions, potentially increasing environmental impacts
18

. Research suggests that 

individuals consuming diets high in unprocessed or minimally processed foods tend to have 

lower energy intake compared to those with UPF-rich diets, meaning isocaloric substitution may 

not fully capture these differences
19

. In contrast, weight-based substitutions, which emphasize 

food weight rather than caloric equivalence, show environmental benefits that align with UPFs' 

well-documented tendency to promote overconsumption through their hyper palatability, low 

satiety, softer textures requiring less chewing, widespread availability, and lower cost per calorie, 

which could lead to excessive energy intake, contributing to rising obesity rates
3,4,19

. Such 

overconsumption drives higher demand for foods, amplifying environmental impacts further. 

Additionally, while low-impact plant-based UPFs have lower environmental footprints, animal-

based UPFs remain highly impactful, underlining the importance of considering UPF 

subgroups
20,21

. These findings support the hypothesis that overconsumption serves as a critical 

link between UPF consumption and environmental harm, paralleling established mechanisms for 

UPF-associated health risks. 

Additionally, negligible DSR differences were observed when substituting UPFs with 

unprocessed or minimal foods, diverging from findings in Brazilian diets where UPFs involved 

fewer species
8
. This discrepancy may reflect methodological differences: the Brazilian study 

examined species diversity within UPF products at the food system level, while our analysis 

assessed how individual dietary patterns relate to overall species consumption. 
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Our findings suggest that food biodiversity operates independently from processing level in 

individual diets. Substituting UPFs with unprocessed foods may not increase species diversity if 

individuals simply as individuals might simply consume larger quantities of the same limited set 

of species they already consume. Therefore, reducing UPF consumption alone may be 

insufficient to improve dietary biodiversity without concurrent efforts to promote species 

diversification. Alternatively, UPF-driven overconsumption may increase total food intake, 

maintaining dietary species richness through higher consumption volumes rather than dietary 

diversification. 

Limited observational evidence on UPFs’ environmental impacts exists, with most insights 

coming from life cycle assessments
22

. In a French cohort study, it was found that UPFs 

accounted for 19% of energy intake in the diet and contributed to 24% of greenhouse gas 

emissions (GHGe), 23% of land use, and 26% of energy demand. These highlight the significant 

environmental burden associated with diets rich in UPFs, with higher contributions from post-

farm stages, in particular processing regarding energy demand
23

. A longitudinal study showed 

reducing UPF consumption lowered GHGe and energy demand, but increased water use
24

. Our 

study is unique in its large, diverse European cohort, allowing a comprehensive assessment of 

food processing levels and substitution effects. 

Several limitations must be acknowledged. The EPIC cohort may differ substantially from 

current European populations. UPF intake has risen dramatically—from approximately one-third 

of energy intake in our cohort to over half in recent studies, due to changes in food environments 

and consumption patterns
25

. Although educational attainment has increased across EU member 

states, this has not corresponded with expected reductions in UPF consumption, suggesting 

altered socioeconomic determinants of dietary choices
26

. The shift toward sedentary lifestyles 

correlates with increased convenience food reliance, while younger populations exhibit greater 

price sensitivity toward UPF products
27,28

. These transitions suggest our cohort likely 

underestimates the environmental impacts of contemporary European diets. Misclassification 

within the Nova system and reliance on SHARP database estimates, which lack country 

specificity and farming method variations, may introduce error. Additionally, many UPF-specific 

ingredients (e.g., additives) lack environmental impact assessments, and UPFs typically rely on 

more intensively produced commodity ingredients than non-UPFs, differences our analysis 

cannot fully capture. These errors might attenuate the true associations due to non-differential 
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measurement error. Variations in dietary assessment methods and the number of items included 

between centres could also affect DSR, and taxonomic limitations hinder further analysis of food 

biodiversity. The questionnaires did not distinguish between homemade and industrially 

processed foods, which could overlook ingredient differences leading to varying environmental 

impacts. Lastly, this study compared individuals rather than actual substitutions, and context-

specific factors such as preparation time, cost, and food safety may influence dietary shifts and 

willingness to make substitutions
29,30

. For instance, while unprocessed or minimally processed 

foods are often more nutrient-dense, UPFs offer greater accessibility and food safety
31

. 

In conclusion, UPF consumption was more strongly associated with GHGe and land use as 

compared to unprocessed or minimally processed food consumption, while associations with 

food biodiversity were marginal. Substituting UPFs with unprocessed or minimally processed 

foods resulted in differing directions of associations with environmental impacts, depending on 

whether substitutions were weight- or calorie-based.   
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Table 1. Baseline characteristics of 368,733 middle-aged adults enrolled in the European 

Prospective Investigation into Cancer and Nutrition (EPIC) study. 

 Mean (SD) / N (%) 

Nova 4 (% gram per day) 12.93 (8.52)  

Nova 3 (% gram per day) 14.28 (10.56) 

Nova 2 (% gram per day) 1.23 (1.06)  

Nova 1 (% gram per day) 71.56 (12.50) 

Nova 4 (% kcal per day) 30.55 (15.3)  

Nova 3 (% kcal per day) 25.81 (12.04) 

Nova 2 (% kcal per day) 7.95 (6.23) 

Nova 1 (% kcal per day) 35.70 (10.62) 

Dietary greenhouse gas emissions (kg CO2 equivalents 

per day) 
5.30 (1.82) 

Dietary land use (m
2
 per day) 6.86 (2.62) 

DSR (count of unique species consumed per year) 68.22 (15.22) 

Age at recruitment (years) 51.29 (9.90) 

Body mass index (kg per m
2
) 25.35 (4.25) 

Height (cm) 165.67 (8.92) 

Sex  

Male 109,465 (29.7%) 

Female 259,268 (70.3%) 

Country  

Denmark 55,014 (14.9%) 

France 67,920 (18.4%) 

Germany 49,352 (13.4%) 

Italy 44,547 (12.1%) 

Spain 39,990 (10.8%) 

The Netherlands 36,538 (9.9%) 

United Kingdom 75,372 (20.4%) 

Education level  
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None or primary school completed 102,198 (27.7%) 

Technical/professional school 80,266 (21.8%) 

Secondary school 75,288 (20.4%) 

Longer education (including university degree) 94,312 (25.6%) 

Unknown 16,669 (4.5%) 

Smoking status  

Never 184,435 (50.0%) 

Current 99,923 (27.1%) 

Former 78,175 (21.2%) 

Unknown 6,200 (1.7%) 

Cambridge physical activity index  

Inactive 76,776 (20.8%) 

Moderately inactive 125,817 (34.1%) 

Moderately active 88,476 (24.0%) 

Active 70,923 (19.2%) 

Unknown 6,741 (1.8%) 

Alcohol intake  

Non-drinker 44,761 (12.1%) 

> 0 to 6 gram per day 96,866 (26.3%) 

> 6 to 12 gram per day 96,048 (26.0%) 

> 12 to 24 gram per day 64,086 (17.4%) 

> 24 gram per day 66,972 (18.2%) 

DSR, dietary species richness. Nova 1, unprocessed or minimally processed foods. Nova 2, 

processed culinary ingredients. Nova 3, processed foods. Nova 4, ultra-processed foods 
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