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Abstract
The radiocarbon (14C) specific activity was measured in vegetation and atmosphere in Ramnicu Valcea, Romania.
On the sampling location operates a nuclear installation, namely “Experimental Pilot for Separation of Tritium and
Deuterium” (PESTD), a semi-industrial installation designed for the detritiation of heavy water moderator of
CANDU reactors and a 315 MW coal-fired thermoelectric power plant. Because one of the important releases of
PESTD is gaseous radioactive effluent, the baseline of radiocarbon was a must for the environmental program. On
the other hand, due to the Suess effect, a relative decrease of the radiocarbon-specific activity on a local scale is
expected as a result of the dilution of the carbon isotopic mixture by fossil carbon. All the measurements were done
by liquid scintillation counting and direct absorption method. It can be observed that the specific activity of 14C was
similar for both types of samples investigated. The variations encountered are generally within the limit of
uncertainty associated with the 14C. The average radiocarbon-specific activity recorded has the following values:
0.226 ± 0.016 Bq/gC for the vegetation and 0.228 ± 0.016 Bq/gC for the atmosphere. The results have a clear
decreasing trend, but due to local influence caused by the continuous production of fossil CO2, cannot be observed
14C seasonal variations. A strong correlation between radiocarbon activity in air and vegetation was highlighted.

Introduction

Radiocarbon (14C) is a common radionuclide in the environment. It is the only radioactive isotope of
carbon with a long half-life, 5700 ± 30 years (LNHB). Natural production of radiocarbon takes place at
high altitudes in the atmosphere due to the nuclear reaction of thermal neutrons, generated by cosmic
rays, with 14N nuclei (IRSN). 14C thus oxidizes to carbon dioxide and results in a flux of 14CO2 in the
troposphere where it is incorporated into plants through photosynthesis, as well as in the meteoric and
ocean waters through CO2 exchange reactions. This makes 14C an ideal tracer of carbon dioxide coming
from the combustion of fossil fuels (Rakowski 2011; Zazzeri 2023) or from other anthropogenic
activities such as the nuclear industry (Jean-Baptiste 2018; Kontul 2018).

Burning of fossil fuels causes the emission of carbon dioxide into the atmosphere. The isotopic
fingerprint of CO2 from fossil sources is slightly different from that from modern sources, mostly
because of the very long formation period of fossil fuels, which therefore do not contain radiocarbon.
This was first noted in the mid-1950s by the Austrian chemist Hans Suess (Suess 1955) who proved that
contemporary tree-sample radiocarbon activity was lower than in samples from the middle of the 19th
century before the Industrial Revolution, based on fossil fuels (coal, natural gas, petroleum). This is
called the Suess effect (Keeling 2017; Sonnerup 1999) and it is defined as a change in the ratio of the
atmospheric concentrations of heavy isotopes of carbon (13C and 14C) by the admixture of fossil-fuel-
derived CO2, which is depleted in 13CO2 and contains no 14CO2 (Tans 1979). There are studies in the
literature that have shown that atmosphericΔ14C (Stuiver 1977) decreased by about 20.0‰ between the
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years 1890 and 1950 from which 17.3‰ is attributed to the Suess effect and the rest is attributed to the
variation in the cosmic ray production of radiocarbon (Stuiver 1981). Even if 95% of the total carbon
dioxide from the burning of fossil fuels is produced in the Northern Hemisphere due to air-mass mixing
between the Northern and Southern Hemispheres, the Suess effect has a global character.

According to the literature, nuclear weapons testing in the 1950s and 1960s nearly doubled the
atmospheric radiocarbon. The level of bomb radiocarbon was about 100% above normal levels between
1963 and 1965. The level of bomb radiocarbon in the Northern Hemisphere reached a peak in 1963, and
in the Southern Hemisphere around 1965 (Currie et al. 2011; Hua and Barbetti 2007; Levin and Kromer
2004; Levin et al. 2010). Radiocarbon releases from nuclear facilities are of great interest because
radiocarbon is the most important radionuclide from the point of view of the radiation doses received by
the population due to the nuclear industry (UNSCEAR 2017). The radiocarbon produced by nuclear
facilities is released mostly in the form of gaseous discharges (IAEA 2004). Currently there is no
satisfactory technology for removing radiocarbon from effluents and its discharge, therefore
radiocarbon releases should be monitored.

The results presented in this paper represent radiocarbon activity in atmospheric carbon dioxide and
evergreen plants in Ramnicu Valcea, Romania. The aim has been to study the influence of a
thermoelectrical power plant on radiocarbon variation in the vegetation and atmosphere of the Govora
Industrial Area. This study is the continuation of the one previously carried out by the authors (Faurescu
2019) in which the radiocarbon level from the same location was compared with 14CO2 observations at
Jungfraujoch, a high-altitude research station in the Swiss Alps conducted to monitor the background
14CO2 level over Europe and to define the reference for regional estimates of fossil fuel CO2

(Hammer 2017).

Materials and methods

The sampling was done in the Govora industrial area placed about 10 km south of Ramnicu Valcea city,
Romania (Figure 1). This location has some particularities. The first particularity to take into account is
the fact that near the sampling location operates a nuclear installation, namely “Experimental Pilot for
Separation of Tritium and Deuterium” (PESTD) designed for the detritiation of heavy water moderator
of CANDU reactors. Until now, PESTD’s normal operation was with heavy water and tritiated water
below the exemption level approved by Romanian legislation. Heavy water reactors emit significant
amounts of tritiated water and 14C, the 14C being a by-product resulting primarily from neutron
activation of 17O from heavy water molecules. Because one of the important releases of PESTD is
gaseous radioactive effluent, the monitoring of atmospheric 14C was included in the environmental
monitoring program.

Another particularity is that the Govora industrial area operates a 315 MW coal-fired thermoelectric
power plant. Due to the Suess effect, a relative decrease of the 14C activity on a local scale is expected as
a result of the dilution of the carbon isotopic mixture by fossil carbon. To determine the thermoelectrical
power plant’s influence on environmental radiocarbon levels in the Govora industrial area, the
radiocarbon activity in the atmosphere and vegetation was determined by liquid scintillation counting
and the direct absorption method. The samples were collected for two years as follows: air samples
collected every two weeks by active absorption of CO2 into sodium hydroxide (NaOH 3M) with a
Raschig tube, and monthly evergreen vegetation (Thuja occidentalis L.) samples.

For the air samples, the sampling device used was made in our laboratory and it is similar to the one
developed by the Central Radiocarbon Laboratory affiliated with the Institute of Environmental Physics
of Heidelberg University (Hammer 2017). To ensure a fast and reliable method for radiocarbon
measurements in air the schematic set-up of the sampler (Figure 2) is as follows.

The air is pumped by an air pump with variable flow and passed through an air flow meter that allows
adjusting the flow of pumped air. To have enough CO2 to saturate the liquid scintillation cocktail as
described below, a sampled air volume of approximately 25 m3 is required. Therefore, for a sampling
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time of two weeks, this volume of air is reached if air is sampled with a flow rate of 75 L/hr. After the
flow meter, the air passes through a gas meter where the sampled air volume is monitored. Then, the air
passes through a gas-washing bottle to be humidified. This prevents the NaOH solution from being too
concentrated and solid deposits of sodium carbonate in the Raschig tube (Figure 3). The gas-washing
bottle is connected to the Raschig glass tube, where the atmospheric CO2 is absorbed by the NaOH
solution. The tube is rotated slowly by a motor so that the NaOH solution will be permanently renewed
on the Raschig rings. To provide a large surface area within the volume of the tube for interaction
between liquid and gas were used 6 mm × 6 mm × 1 mm borosilicate glass Raschig rings (Lenz
Laborglas GmbH, Cat. No. 5 1270 06).

For vegetation samples, evergreen vegetation samples were chosen i.e. thuja leaves (Thuja
occidentalis L.). Evergreen vegetation can photosynthesize through the winter as long as they are not
frozen and have access to water (Oquist 2003). Although maximum photosynthetic rates of evergreen
species decrease in winter, the photosynthetic ability is still maintained (Miyazawa 2005), and CO2

assimilation takes place. Since Romania has a temperate continental climate, the mean annual
temperature is 11°C in the south of the country and 8°C in the north of the country (MEW 2005). Even

Figure 2. The schematic set-up of the atmospheric CO2 sampler by active absorption.

Figure 1. Location of the sampling point in the Govora industrial area, Romania (adapted from
Google Earth).

Figure 3. (a) Raschig tube and (b) glass Raschig rings.
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so, the mean temperature in the winter period falls below –3°C, but below-zero periods are short, and
evergreen plants’ photosynthesis is stopped only in these periods.

Radiocarbon measurements were done by direct absorption method and liquid scintillation counting
(Leaney 1994; Varlam 2006). The method involves capturing carbon dioxide from the sample in the
scintillation cocktail as carbamate and measuring it in an ultra-low level liquid scintillation spectrometer
QuantulusTM 1220. The scintillation cocktail is homemade and contains CarbonTrap (Meridian
Biotechnologies Ltd), fluorescence substances PPO and bis-MSB (PerkinElmer), and solvents methanol
and toluene. Depending on the type of sample, carbon dioxide is obtained either by combustion as in the
case of vegetation samples, or by acidification with HCl in the case of the NaOH solution in which
atmospheric CO2 was captured. Before combustion, vegetation samples were dried to constant weight at
60ºC, ground, and 10 g of sample was pelletized. Combustion was done in an oxygen atmosphere (17
atm.) in a Parr 1121 combustion vessel (Moghissi 1975). It can accommodate samples weighing up to
10 grams using oxygen charging pressures up to 20 atm. The vessel is useful for determining trace
amounts of tritium, carbon-14, or heavy metals in vegetable matter. In the case of sodium hydroxide
solution, pure CO2 was obtained by acidification with HCl, and the pure CO2 was collected in a gas bag
(Supelco, product no. 24655). The direct absorption of CO2 into the scintillation cocktail was done by
bubbling according to the set-up described in the literature (Faurescu 2019). This setup contains a pump
for gas vehiculation, two purification traps containing an aqueous solution of AgNO3 to retain water
vapors and chloride, a flowmeter, and a bubbler with the scintillation cocktail. Gas bubbling for 10 min
with a flow rate of about 0.2 L/min through the scintillation cocktail was enough to ensure saturation of
amine with the CO2 as carbamate.

Next, the amount of CO2 captured in the scintillation cocktail is determined by weighing. The
mass of CO2 is the weight difference between the bubbler with the scintillation cocktail before and
after bubbling. For the measurement by liquid scintillation counting method, the entire scintillation
cocktail was transferred in 20-mL low-potassium glass vials (PerkinElmer, product no. 6000128)
and then counted using an ultra low-level liquid scintillation spectrometer, Quantulus 1220. The
counting efficiency was established with the internal method. This method involves the
measurement of a standard sample together with a background sample. The background sample
was prepared in a similar way as the unknown samples with CO2 obtained by acidification with HCl
from marble. Marble was chosen for a background because it does not contain radiocarbon due to
the very long time it takes to form. The standard sample is a background sample in which a standard
capsule with known activity (PerkinElmer, product no. 1210-122) was dissolved. The standard
sample, the background sample, and the unknown samples were counted for 10 cycles of
100 minutes (1000 min counting time). The counting efficiency at the best factor of merit was
around 65% with a background of around 2.3 CPM (counts per minute). A double check of the CO2

saturation of the scintillation cocktail was done by checking the spectral quench parameter of the
external standard, SQP€. We obtained the same SQP€ values around 630 ± 1%. Data acquisition
was performed by using WinQWindows workstation software, and for spectra processing 1224-534
EASY View software was used.

Results and discussion

Validation of LSC radiocarbon measurement of environmental samples was performed through an
intercomparison exercise. The 14C concentration were determined on five environmental samples (thuja
leaves, Thuja occidentalis L.) by liquid scintillation counting and accelerator mass spectrometry (AMS)
(Table 1). LSC measurements were performed at the National R&D Institute for Cryogenic and Isotopic
Technologies – ICSI Rm. Valcea and AMS measurements at the Horia Hulubei National Institute for
R&D in Physics and Nuclear Engineering (IFIN-HH). The results of the radiocarbon measurements are
reported in pMC according to Stuiver and Polach (Stuiver 1977). The δ13C ratio was measured by isotope
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ratio mass spectrometry on a Delta V IRMS on dried thuja leaves samples. The comparison of results was
performed with the ζ-test calculated according to the following equation:

ζ � AAMS � ALSC����������������������������
U2

AMS � U2
LSC

p

where AAMS is activity reported by ASM lab and ALSC activity reported by LSC lab and UAMS and ULSC

are the appropriate combined uncertainties with coverage factor k=1. Results for which the absolute
values of the ζ-test are less than 1.64 are in agreement. Results between 2.56 and 1.64 are questionable.

The results were satisfactory and showed that radiocarbon measurements by LSC provide reliable
values although the LSC uncertainties are much higher than that of the AMS measurements.

To establish the influence of the thermoelectrical power plant on environmental radiocarbon levels in
the Govora Industrial Area we measured the radiocarbon activity in the atmosphere and the thuja leaves
sampled from this location.

The results have a decreasing trend, but due to local influence caused by the continuous production of
fossil CO2, we cannot observe a seasonal variation. For the radiocarbon activity in the air samples, the
minimum value recorded was 0.211 ± 0.014 Bq/gC in a winter month, the maximum value of 0.233 ±
0.016 Bq/gC in a summer month, and an average value of 0.226 ± 0.016 Bq/gC. Similar values were
recorded for thuja leaves, sampled in the same period as air samples, with a minimum of 0.216 ± 0.014
Bq/gC, a maximum of 0.237 ± 0.018 Bq/gC, and an average of 0.228 ± 0.016 Bq/gC. The Pearson
correlation coefficient between the radiocarbon activity in air and the vegetation was 0.92 which
suggests a strong correlation between them. The R2 value of 0.842 indicates also a pretty good fit of the
estimated trendline values to the measured values (Figure 4, b).

Despite the good correlation between the radiocarbon activity in the atmosphere and thuja leaves
sampled in the same period, we wanted to see if the same correlation is maintained for a delay in the
assimilation of the radiocarbon concentration by the vegetation for one month, two months or three

Figure 4. Variation of radiocarbon activity in air and vegetation during (a) the observation period,
and (b) the correlation between radiocarbon activity in air and vegetation.

Table 1. Results obtained from the intercomparison exercise LSC–AMS

Sample
Δ

13C
(‰)

ALSC

(pMC)
ULSC

(pMC)
AAMS

(pMC)
UAMS

(pMC) ζ
1 –28.06 102.5 3.8 101.0 1.0 –0.46
2 –27.36 103.4 3.7 102.1 1.0 –0.34
3 –29.20 102.5 3.7 102.3 1.0 –0.05
4 –28.52 106.6 3.8 103.6 1.0 –0.73
5 –27.40 103.0 3.8 101.5 1.0 –0.38
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months. Figure 5 shows the correlations between radiocarbon activity in air and vegetation in the three
scenarios.

It can be observed that the correlation between the two parameters is getting worse as we consider
that the assimilation of 14CO2 in the vegetation takes place after one month, two months, or three
months. For a one-month delay, the Pearson correlation coefficient between the radiocarbon activity in
air and vegetation was 0.14 with an R2 value of 0.0189. For a two-month delay, the Pearson correlation
coefficient was 0.23 and R2 equal to 0.0543, while for a three-month delay, the Pearson correlation
coefficient was −0.10 and R2 equal to 0.0093.

Summary and conclusion

The presented study assesses the influence of a thermoelectrical power plant on environmental
radiocarbon levels in the Govora Industrial Area. Due to the Suess effect, a relative decrease of the 14C
activity on a local scale was expected as a result of the dilution of the carbon isotopic mixture by fossil
carbon. At the same time in the studied location, a nuclear facility designed for the detritiation of heavy
water from CANDU reactors operates. Atmospheric 14C is included in the environmental monitoring
program due to the gaseous radioactive effluents of this installation.

Figure 5. The correlation between radiocarbon activity in air and vegetation: (a) one month delay,
(b) two months delay, and (c) and three months delay.
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The sampling and preparation procedures presented have proven to be simple procedures both for
14CO2 sampling into sodium hydroxide solution and for sample preparation by direct absorption
method. The method involves capturing carbon dioxide from the sample in the scintillation cocktail and
measuring it in an ultra-low level liquid scintillation spectrometer. LSC radiocarbon measurement is less
expensive than other techniques but with the disadvantage of higher uncertainties compared with other
techniques like accelerator mass spectrometry.

The radiocarbon results in the atmosphere had a decreasing trend, but due to local influence caused
by the continuous production of fossil CO2, we cannot observe a seasonal variation. The average value
for the atmosphere was 0.226 ± 0.016 Bq/gC. 14C values for vegetation were in the same range as those
observed for the atmosphere. The minimums, maximums, and average of 14C activity encountered in the
air are found also in the vegetation.

A strong correlation between radiocarbon activity in air and vegetation was highlighted, with a
Pearson correlation coefficient of 0.92. A good fit of the estimated trendline values to the measured
values was highlighted also by an R2 value of 0.8419.

Despite this good correlation, we considered three scenarios to see if the same correlation is
maintained for a delay in the assimilation of 14CO2 in the vegetation of one month, two months, or three
months. The correlation between the activity of radiocarbon in the air and vegetation worsens for all
these scenarios, which demonstrates that the radiocarbon in the atmosphere is immediately assimilated
by the vegetation.
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