
J. Functional Programming 11 (1): 1–2, January 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

1

Special Issue on Functional Programming and
Computational Complexity

Editorial

This issue of the Journal of Functional Programming is dedicated to work presented at

the Workshop on Implicit Computational Complexity in Programming Languages,

affiliated with the 1998 meeting of the International Conference on Functional

Programming in Baltimore.

Several machine-independent approaches to computational complexity have been

developed in recent years; they establish a correspondence linking computational

complexity to conceptual and structural measures of complexity of declarative

programs and of formulas, proofs and models of formal theories. Examples include

descriptive complexity of finite models, restrictions on induction in arithmetic and

related first order theories, complexity of set-existence principles in higher order

logic, and specifications in linear logic. We refer to these approaches collectively as

Implicit Computational Complexity. This line of research provides a framework for

a streamlined incorporation of computational complexity into areas such as formal

methods in software development, programming language theory, and database

theory.

A fruitful thread in implicit computational complexity is based on exploring the

computational complexity consequences of introducing various syntactic control

mechanisms in functional programming, including restrictions (akin to static typing)

on scoping, data re-use (via linear modalities), and iteration (via ramification of

data). These forms of control, separately and in combination, can certify bounds

on the time and space resources used by programs. In fact, all results in this area

establish that each restriction considered yields precisely a major computational

complexity class. The complexity classes thus obtained range from very restricted

ones, such as NC and Alternating logarithmic time, through the central classes Poly-

Time and Poly-Space, to broad classes such as the Elementary and the Primitive

Recursive functions.

Considerable effort has been invested in recent years to relax as much as possible

the structural restrictions considered, allowing for more flexible programming and

proof styles, while still guaranteeing the same resource bounds. Notably, more

flexible control forms have been developed for certifying that functional programs

execute in Poly-Time.

The 1998 workshop covered both the theoretical foundations of the field and steps

toward using its results in various implemented systems, for example in controlling

https://doi.org/10.1017/S0956796801009030 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801009030


2 Editorial

the computational complexity of programs extracted from constructive proofs. The

five papers included in this issue nicely represent this dual concern of theory and

practice. As they are going to print, we should note that the field of Implicit

Computational Complexity continues to thrive: successful workshops dedicated to

it were affiliated with both the LICS’99 and LICS’00 conferences. Special issues, of

Information and Computation dedicated to the former, and of Theoretical Computer

Science to the latter, are in preparation.

edited by

Daniel Leivant

Dept. of Computer Science

Indiana University

and Bob Constable

Dept. of Computer Science

Cornell University

https://doi.org/10.1017/S0956796801009030 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801009030

