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On a Class of Fully Nonlinear Elliptic
Equations Containing Gradient Terms on
Compact Hermitian Manifolds

Rirong Yuan

Abstract. In this paper we study a class of second order fully nonlinear elliptic equations contain-
ing gradient terms on compact Hermitian manifolds and obtain a priori estimates under proper
assumptions close to optimal. _e analysis developed here should be useful to deal with other Hes-
sian equations containing gradient terms in other contexts.

1 Introduction

In this paper wemainly focus on an equation containing gradient term of the form

(1.1)
⎧⎪⎪
⎨
⎪⎪⎩

b1(g[u])n−1
∧ ω + b2(g[u])n−2

∧ ω2
= ψ(g[u])n ,

g[u] =
√
−1∂∂u + χ( ⋅ , du) > 0,

on a compact Hermitianmanifold (M ,ω) of complex dimension n ≥ 2,where b1 and
b2 are two nonnegative constants with b1 + b2 > 0, ψ is a smooth positive function on
M, χ(z, ζ), (z, ζ) ∈ T∗

CM, and is a smooth real (1, 1)-form.
Suppose, in addition, that M has a smooth boundary ∂M and ψ is a smooth func-

tion on M ∶= M ∪ ∂M. _en we consider the Dirichlet problem of equation (1.1) with
the boundary value condition

(1.2) u = φ on ∂M , φ ∈ C∞(∂M).

When b2 = 0, b1 > 0, ψ is constant, and both ω and χ are Kähler, equation (1.1)
arises naturally in the geometric problem thatwas posed byDonaldson [11] and Chen
[8] in connection with the moment map and Mabuchi energy. _e parabolic form,
say J-�ow, has been extensively studied, [8,37,45,46]. Moreover, Song andWeinkove
[37] found a necessary and suõcient solvability condition that is close to condition
(1.7). _is result was extended by some authors [14,23,38,39].

When χ involves a gradient term, equation (1.1) diòers from the standard equations
on the complexmanifolds, [1,6–8,11,43,47]. _e equations containing gradient terms
arise naturally in complex geometry and complex analysis, [15,18,25,35,44]. We refer
the readers to [32–34,41] for some recent related works.
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Diòerentiating from the real setting, it turns out to be a rather challenging task to
derive a priori estimates for second derivatives for fully nonlinear elliptic equations
containing gradient terms in the complex setting. _e underlying reason is the two
diòerent types of complex derivatives. In our setting, the following structural condi-
tion of equation (1.1) plays a crucial role in overcoming this diõculty,

(1.3) lim inf
∣λ∣→∞

f1λ2
1

∑ f i
> ρ0 in { λ ∈ Γn ∶ inf

M
ψ ≤ f (λ) ≤ sup

M
ψ} ,

where f is the function in (2.1), λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn , ∣λ∣ =
√
∑ λ2

i , Γn = {λ ∈ Rn ∶ λ i >
0}, and ρ0 is a positive constant.

We shall point out that for the generalized complexMonge–Ampère type equations
n
∑
k=1
bk(g[u])n−k

∧ ωk
= ψ(g[u])n

with bk ≥ 0 and ∑n
k=1 bk > 0, condition (1.3) cannot be satisûed if bk > 0 for some

k ≥ 2. _erefore, the main equation considered stops at the power n − 2, and other
terms of the form bk(g[u])n−k ∧ ωk are not considered in this paper.
A central issue to solving equation (1.1) is to derive a priori (real) second estimates

for admissible solutions. _e estimates in this article rely heavily on the subsolution
u deûned as follows.

Deûnition 1.1 (Subsolution) A function u ∈ C2(M) is called a C-subsolution of
equation (1.1) if for any nonzero (1, 0)-form γ, one obtains

(1.4) lim
t→+∞

[ψ(g[u, t, γ])n
− b1(g[u, t, γ])n−1

∧ ω − b2(g[u, t, γ])n−2
∧ ω2] > 0,

where g[u, t, γ] = g[u]+ t
√
−1γ∧ γ, g[u] =

√
−1∂∂u+ χ(z, du). Suppose in addition

to ∂M /= ∅, we say u is an admissible subsolution of Dirichlet problems (1.1)–(1.2) if
it satisûes g[u] > 0 and

ψ(g[u])n
≥b1(g[u])n−1

∧ ω + b2(g[u])n−2
∧ ω2 in M ,

u =φ on ∂M .
.

_e C-subsolution introduced by Székelyhidi [40] turns out to be a suitable con-
dition to study certain Hessian equations on closedmanifolds.

We statemain results as follows. First,we shall present some notations used in this
paper. In a local coordinate (z1 , . . . , zn), we write ∂ i =

∂
∂z i , ∂ i =

∂
∂z i ,

χ i j = χ(z, du)(∂ i , ∂ j),
χ i jk ∶= ∇∂k(χ i j) = χ i j,k + χ i j,ζαuαk + χ i j,ζαuαk ,

⋮

Moreover, we assume χ satisûes the following structural condition

(1.5) χ i j,ζα ζβ = 0, χ i j,ζα ζβ = 0, χ i j,ζα ζβ = 0.
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Unlike the standard equation, deriving gradient estimates is extremely diõcult
even for the complexMonge–Ampère equation containing du. In our setting, we ob-
serve that equation (1.1) satisûes condition (3.5), which can be used to derive directly
the gradient estimates.

_eorem 1.2 Suppose that (1.5) holds and there exists a subsolution u ∈ C2(M) of
equation (1.1) in the sense of Deûnition 1.1. _en for any solution u ∈ C3(M) ∩ C1(M)

of equation (1.1) with g[u] > 0, there is a uniform constant C depending on ∣u∣C0(M)
and other known data under control, such that

max
M

∣∇u∣ ≤ C(1 +max
∂M

∣∇u∣).

Comparing to Székelyhidi [40], the bounds of gradient terms relax the restriction
to the construction of the barrier functions for second estimates. Moreover, condition
(1.3) guaranteeswe can control the bad terms arising from the gradient term contained
in equation (1.1). Hence, we prove the following a priori second estimates.

_eorem 1.3 Let u ∈ C4(M) ∩ C2(M) be a solution to equation (1.1) such that g[u]
is positive. Suppose, that (1.5) holds, and that at any ûxed point z ∈ M, where g i j = δ i j
and gi j = λ iδ i j with λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn ,

(1.6) ∑
α>1

∣Re{ fα χα1,ζβ}∣ ≤ ρ(λ)λ1 fβ , ∀β,

where ρ(λ)∶ Γn → R+ is a positive continuous functionwith ρ(λ)→ 0 as ∣λ∣→ +∞ and

f (λ) = −∑
i

d1

λ i
−∑

i< j

d2

λ iλ j
, d1 =

b1
n
, d2 =

2b2

n(n − 1)
.

_en there is a uniform bounded positive constant C depending on ∣u∣C 1(M), ∣ψ∣C 1,1(M),
∣u∣C 1,1(M), and other data under control, such that supM ∣∆u∣ ≤ C(1 + sup∂M ∣∆u∣),
provided that there exists a subsolution u ∈ C2(M) of equation (1.1) in the sense of
Deûnition 1.1.

Condition (1.6) can be satisûed by many equations, for instance, the complex
Monge–Ampère type equation on an annulus in the Kähler cone studied by Guan
and Zhang [25,26].

Suppose that M is closed and there is a function u ∈ C2(M) such that g[u] > 0
and
(1.7) nψ(g[u])n−1

− (n − 1)b1(g[u])n−2
∧ ω − (n − 2)b2(g[u])n−3

∧ ω2
> 0,

i.e., u is a C-subsolution of equation (1.1). _en a uniform bound for ∣u∣C0(M) will
be obtained by a modiûed argument in [40], which is inspired by Blocki’s proof of
Yau’s zero-order estimates for complex Monge–Ampère equations on closed Kähler
manifolds [2]. We also refer the reader to [47] for Yau’s original proof by Moser’s
iteration. Combining that proof with _eorem 1.3 and _eorem 1.2, equation (1.1)
becomes a uniform elliptic equation, so thatwe can use an argument in [22] to derive
a uniform bound on the real Hessian. _en one can use the Evans–Krylov theorem
[12,28] and Schauder theory to derive higher order regularities.
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To solve the equations on closed Hermitian manifolds via the continuity method,
it is rather diõcult to verify condition (1.7) along the continuity path [38,39]. Indeed,
except for the function f satisfying limt→+∞ f (λ1 , . . . , λn + t) = +∞, for all λ ∈ Γ, it is
very diõcult to solve general Hessian equations. We refer the reader to [40] for some
related open problems.

_erefore, our main result on a closedHermitian manifold is the establishment of
the following a priori estimate.

_eorem 1.4 Let (M ,ω) be a closed Hermitian manifold and let u be a smooth so-
lution to equation (1.1). Suppose conditions (1.5), (1.6), and (1.7) hold. _en there are
uniform C∞ a priori estimates for u.

When n = 2, b1 = 0, and b2 = 1, condition (1.7) remains valid along the continuity
path if g[v] > 0, so one can solve the complexMonge–Ampère equation (1.1) on closed
complex surfaces.

Corollary 1.5 Let (M ,ω) be a closed complex surface and let F be a smooth function
on M. Assume χ = χ( ⋅ , ζ , ζ) satisûes χ( ⋅ , 0, 0) > 0, and conditions (1.5) and (1.6) hold.
_en there is a unique smooth function u and a unique constant b such that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(g[u])2
= eF+bω2 ,

g[u] > 0, sup
M

u = 0.

In contrast with the closed setting, the continuity method for the Dirichlet prob-
lem is much easier and is well understood. Next, we apply our estimates to treat the
Dirichlet problem on the annulus in the Kähler cone.

Let (S , ξ, η,Φ, g) be a closed Sasakianmanifold of dimension 2n− 1with Sasakian
structure (ξ, η,Φ, g), where ξ is a Reeb ûeld on S, Φ(X) = ∇X ξ, η is the contact
1-form with η(X) = g(ξ, X). _en themetric cone (C(S), g̃) = (S ×R+ , r2g + dr2)
is a Kähler manifold; here r is the coordinate on R+.

Inspired by the observations of Donaldson [10], Semmes [36], and Mabuchi [29]
in Kähler geometry,Guan and Zhang [25] discovered that the geodesic equation con-
necting two points in the space of Sasakian metrics can be reduced to a Dirichlet
problemof a homogeneous complexMonge–Ampère type equation containing radial
derivatives on an annulus of the Kähler cone. Similar to the work of Chen [9] in the
Kähler setting,Guan andZhangdealtwith the complexMonge–Ampère equation and
obtained some useful properties of the space of Sasakianmetrics [26]. However, their
estimates depend on the assumption of basic data which is natural from the Sasakian
geometry point of view.

Observing that ω =
√
−1∂∂r also determines a Kähler metric on the Kähler cone

C(S) = S × R+, assumption (1.6) in _eorem 1.3 automatically holds for equation
(1.9). Hence the assumption of basic data can be removed for such (nondegenerate)
equations.
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_eorem 1.6 Suppose that there exists a function v ∈ C2(M), M = S × [a, b], such
that v∣r=a = φa , v∣r=b = φb , g[v] > 0 and

(1.8) [(n − 1)b1(g[v])n−2
∧ ω + (n − 2)b2(g[v])n−3

∧ ω2
] ∧

√
−1θ

∧ θ − nψ(g[v])n−1
∧
√
−1θ ∧ θ < 0 in M ,

where θn = dr +
√
−1rη, θ

n
= dr −

√
−1rη. _en there is a unique smooth solution u to

(1.9)
⎧⎪⎪
⎨
⎪⎪⎩

b1(g[u])n−1
∧ ω + b2(g[u])n−2

∧ ω2
= ψ(g[u])n , g[u] > 0 in M ,

u∣r=a = φa , u∣r=b = φb ,

where g[u] = χ̃ +
√
−1ϕ(r)(∂∂u − ∂u

∂r ∂∂r), ϕ∶ [a, b] → R+ is a positive and smooth
function, φa , φb ∈ C∞(S), ψ is a positive and smooth function on M, and χ̃ is a smooth
and real (1, 1)-form on M.

From _eorem 1.6,we know that the solvability of Dirichlet problem (1.9) is deter-
mined by the action of g[v] on the pullback contact bundle P∗DC,where P∶C(S)→ S
is the natural projection.

Remark 1.7 We ûnd that Lagrangian phase equation (hypercritical phase)

(1.10) f (λ) =∑ arctan λ i = ψ, ψ∶M → ((n − 1)π
2
, n π

2
)

satisûes that there is a positive constant Ro (that may depend on σ) such that

f11 +
f1
λ1

≤ 0 and λ1 f1 ≤ λ i f i in Γ for i > 1, λ ∈ ∂Γσ ,∀σ ∈ [inf
M

ψ, sup
M

ψ],

where λ1 is the largest eigenvalue, with

λ1 ≥ Ro , f i =
∂ f
∂λ i

, f i j =
∂2 f

∂λ i∂λ j
, Γσ

= {λ ∈ Γ ∶ f (λ) > σ}.

_is condition is a modiûcation of the extra concavity condition (4.5) introduced in
[40]. Notice that equation (1.10) is not satisûed for the original extra concavity con-
dition and the related strong concavity condition in [13, 14]. Moreover, we know that
f satisûes the conditions of Lemma 2.1 and the two conditions (1.3) and (3.5), so _e-
orems 1.2 and 1.3 also hold for equation (1.10).

_is paper is organized as follows. In Section 2 we present some notations and
useful lemmas. In Section 3 we directly derive gradient estimates by the Bernstein
method. In Section 4we establish global a priori second order estimates for admissible
solutions. In Section 5 our main content is to derive boundary estimates for second
derivatives for solutions of Dirichlet problem (1.9) on an annulus of the Kähler cone.
Moreover, some admissible subsolutions are constructed under the assumption that
(1.8) holds.
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2 Preliminaries

We rewrite equation (1.1) as follows.
(2.1) F({gi j[u]}) = f ( λ(g[u])) = −ψ,

where λ(g[u]) are the eigenvalues of g[u] with respect to ω, and

f (λ) = −∑
i

d1

λ i
−∑

i< j

d2

λ iλ j
, d1 =

b1
n
, d2 =

2b2

n(n − 1)
.

_roughout this paper, we use derivativeswith respect to the Chern connection∇
of g, and in local coordinates z = (z1 , . . . , zn) we use notations such as

v i = ∇ ∂
∂z i
v , v i j = ∇ ∂

∂z j
∇ ∂

∂z i
v , v i j = ∇ ∂

∂z j
∇ ∂

∂z i
v , . . . .

Given aHermitian matrix A = {a i j}, we write

F i j
(A) = ∂F

∂a i j
(A), F i j,k l

(A) = ∂2F
∂a i j∂ak l

(A).

We also write
gi j = gi j[u] = u i j + χ i j(z, du), gi j = gi j[u] = u i j + χ i j(z, du).

One can verify the following lemma.

Lemma 2.1 For any σ ∈ (sup∂Γ f , supΓ f ), there is a κ0 > 0 depending on σ such
that∑n

i=1 f i(λ) ≥ κ0 for λ ∈ ∂Γσ
n ∶= {λ ∈ Γn ∶ f (λ) = σ}.

Building on the work ofGuan [21], Székelyhidi [40] introduced the C-subsolution
satisfying (1.4) and proved some properties of the C-subsolution. Applying Székely-
hidi’s results to equation (2.1), one has the following lemma.

Lemma 2.2 ([40]) Suppose, in addition to n ≥ 2, that there exists a subsolution
u ∈ C2(M) in the sense of Deûnition 1.1. _en there exist positive constants R0, ε with
the following property. If ∣λ∣ ≥ R0, then we have either
(i) F i j(gi j − gi j) ≥ ε∑ F

i j g i j or

(ii) F i j ≥ ε(F pq gpq)g i j .

3 Gradient Estimates

Using the Bernstein method, we will prove_eorem 1.2 in this section.

Proof of_eorem 1.2 Our method is similar to that used in [3, 23]. We consider
ϕ = Aeη , η = A[u−u− infM(u−u)], where A is a positive constant to be determined.

Suppose that eϕ ∣∇u∣2 achieves its maximum at an interior p ∈ M. Set W = ∣∇u∣2.
We choose local holomorphic coordinates z = (z1 , . . . , zn), such that at p, g i j = δ i j ,
gi j = λ iδ i j , F i j = f iδ i j . _en at p,

(3.1) Wi

W
+ ϕ i = 0,

Wi
W

+ ϕ i = 0,
Wi i
W

−
∣Wi ∣

2

W2 + ϕ i i ≤ 0.
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In what follows the computations are done at p. We compute
Wi =∑

k
(ukiuk + uku i k),

Wi i =∑
k

∣uki ∣
2
+ 2∑

k
Re(u i i kuk) +∑

k , l
R i i k lu luk +∑

k
∣u i k

−∑
l

T k
i lu l ∣

2
−∑

k
∣∑

l
T k

i lu l ∣
2 .

_erefore,
(3.2) ∣Wi ∣

2
≤ ∣∇u∣2∑

k
∣uki ∣

2
− 2∣∇u∣2∑

k
Re(uku i kϕ i).

Diòerentiating equation (2.1), one gets

F i i
(u i i k + χ i i ,ζαuαk + χ i i ,ζαuαk) = −ψk − F i i χ i i ,k .

_us the crucial assumption (1.5) implies that

L(W) ≥ F i i
∣uki ∣

2
− C∣∇u∣( 1 +∑ F i i

) − C∣∇u∣2∑ F i i ,

where L is the linearized operator of equation (2.1)

Lv = F i jv i j + F
i j χ i j,ζαvα + F

i j χ i j,ζαvα for v ∈ C2
(M).

Next, ϕ i = ϕη i , ϕ i i = ϕ(∣η i ∣
2 + η i i). Using the Cauchy–Schwarz inequality and the

crucial assumption (1.5) again, one obtains

2ϕ−1Re(uku i kϕ i) ≥ 2Re(gi kukη i) −
1
2
∣∇u∣2∣η i ∣

2
− C∣∇u∣2 ,

and
(3.3) Lϕ = ϕLη + ϕF i i

∣η i ∣
2 ,

where we use assumption (1.5). _en by (3.1), (3.2), (3.3), we have

(3.4) ∣∇u∣2( 1
2
F i i

∣η i ∣
2
+Lη) − C

ϕ
∣∇u∣( 1 +∑ F i i) − C∣∇u∣2∑ F i i

−
C∣∇u∣2

ϕ ∑ F i i
≤ −2Re(F i igi iu iη i).

We need to control the term of the right-hand side. Applying the Cauchy–Schwarz
inequality, one obtains −2∑Re(F i igi iu iη i) ≤

1
4 ∣∇u∣2F i i ∣η i ∣

2 + 4∑ F i ig2
i i .

We claim that there is a positive constant c0 such that

(3.5) ∑ F i ig2
i i ≤ c0( 1 +∑ F i i) .

Recall that

∑ F i ig2
i i = nd1 + (n − 1)d2∑

i
gi i , ∑ F i i

= d2∑
j/=i

gi igi ig j j
+ d1∑(gi i

)
2 .

If d2 = 0, then it is trivial. Suppose d2 > 0. If d1 > 0,∑i< j
d2

λ i λ j
+∑

d1
λ i
= ψ, then

∑ F i ig2
i i ≤ nd1 +

(n − 1)d2

d1
ψ.
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Let λς ≤ λ i for i = 1, . . . , n. If d1 = 0,∑i< j d2g
i ig j j = ψ, f (λ) = −∑i< j

d2
λ i λ j

, then

∑ f i
∑ f iλ2

i
=
∑i ∑ j/=i

1
λ2
i λ j

(n − 1)∑ 1
λ i

≥∑
i
∑
j/=i

1
(n − 1)n

λς

λ2
i λ j

≥
1

(n − 1)n∑j/=ς
1

λςλ j

≥
1

(n − 1)n2 ∑
i< j

1
λ iλ j

=
ψ

(n − 1)n2d2
.

We complete the proof of the claim.
By Lemma 2.1,∑ F i i ≥ κ0 for some κ0 > 0. Suppose that ∣λ∣ ≥ R0, where R0 is the

constant in Lemma 2.2. In Lemma 2.2(i), it holds that
Aεκ0
1 + κ0

( 1 +∑ F i i) − (
C

ϕ∣∇u∣
+

4c0
∣∇u∣2

)( 1 +∑ F i i) − C( 1 + 1
ϕ
)∑ F i i

≤ 0.

_is gives us a bound ∣∇u∣ ≤ C, when A is chosen to be large.
In Lemma 2.2(ii), F i i ≥ ε∑ Fkk ≥ εκ0. By gi iψ ≥ F i i one has gi i ≤ (εκ0)−1ψ and

there is a positive a constant CR0 such that ∑ F i igi i ≤ CR0 . By (3.4), one derives the
bound of ∣∇u∣ ≤ C again.

If ∣λ∣ < R0, the proof is similar to that of (ii), and we omit it here.

4 Global Second Estimates

In this section, we will derive global second order estimates for admissible solutions.

Proof of_eorem 1.3 We use themethod used in [40] to treat the third order terms
arising from nontrivial torsion tensors. Denote the eigenvalues of the matrix A =

{Ai
j} = {g iqg jq} by (λ1 , . . . , λn), where gi j = u i j + χ i j , λ1∶M → R is the largest

eigenvalue and λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn at each point, and g is the Hermitian metric. We
want to apply themaximum principle to H, i.e., H ∶= λ1eϕ , where the test function ϕ
is chosen later. Suppose H achieves its maximum at interior point p0 ∈ M.

Since the eigenvalues of A need not be distinct at the point p0, H may be only
continuous. To circumvent this diõculty we use a perturbation argument [40]. To do
this, we choose local coordinates z = (z1 , . . . , zn) around p0, such that at p0,

g i j = δ i j , gi j = δ i jλ i , F i j
= δ i j f i .

Let B be a diagonal matrix Bp
q with real entries satisfying B1

1 = 0, Bn
n > 2B2

2, and such
that Bn

n < Bn−1
n−1 < ⋅ ⋅ ⋅ < B2

2 < 0 are small. _en we deûne the matrix Ã = A + B with
eigenvalues λ̃ = (λ̃1 , . . . , λ̃n). At the origin, λ̃1 = λ1 = g11, λ̃ i = λ i + B i

i if i ≥ 2 and the
eigenvalues of Ã deûne C2-functions near the origin.

Notice that H̃ = λ̃1eϕ achieves its maximum at the same point p0 (we can assume
λ1(p0) = λ̃1(p0) > 1). In what follows, we use derivatives with respect to the Chern
connection of g and the computations will be given at the origin p0. _en we have

(4.1)
λ̃1 ,k
λ1

+ ϕk = 0,
λ̃1 ,kk
λ1

−
∣λ̃1 ,k ∣

2

λ2
1

+ ϕkk ≤ 0.
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By straightforward calculations, one obtains

(4.2) λ̃1 ,k = g11k − (B1
1)k .

Moreover, (see [40])

λ̃1 ,kk = g11kk +∑
p>1

∣gp1k ∣
2 + ∣g1pk ∣

2

λ̃1 − λ̃p
− (B1

1)kk

+ 2Re∑
p>1

gp1k(B1
p)k + g1pk(B

p
1 )k

λ̃1 − λ̃p
+ λ̃1

pq ,rs
(Bp

q)k(Br
s)k ,

where

λ̃pq ,rs
1 = (1 − δ1p)

δ1qδ1rδps

λ̃1 − λ̃p
+ (1 − δ1r)

δ1sδ1pδrq
λ̃1 − λ̃r

.

We need to estimate λ̃1 − λ̃p near the origin p0 for p > 1. Since Γn ⊆ Γ ⊂ Γ1, letting
B be suõciently small, we can assume∑ λ̃ i > 0 (otherwise we are done). _en ∣λ̃ i ∣ ≤

(n − 1)λ̃1 for all i, and so (λ̃1 − λ̃p)
−1 ≥ (nλ̃1)

−1. As in [40], one obtains

λ̃1 ,kk ≥ g11kk +
1

2nλ1
∑
p>1

(∣gp1k ∣
2
+ ∣g1pk ∣

2
) − C0 .

We assume λ1 ≥ R0,where R0 is the constant in Lemma 2.2. Note that 0 < f iλ i ≤ ψ
for i = 1, . . . , n. If f i = F i i ≥ ε∑ Fkk ≥ εκ0 for i = 1, . . . , n, then it immediately gives
a bound λ1 = g11 ≤ C. So we only need to consider the case

F i j(gi j − gi j) ≥ ε∑ Fk l gk l ≥
κ0ε

1 + κ0
( 1 +∑ Fk l gk l) .

By straightforward calculations, one has

(4.3) χ i jk = χ i j,k + χ i j,ζαuαk + χ i j,ζαuαk

and
χ i i kk = χ i i ,kk + χ i i ,ζαRkkα lu l + 2gkkRe{ χ i i ,kζk − χ i i ,ζαT

k
kα}

+ 2Re{ χ i i ,ζαgkkα} − 2Re{ χ i i ,ζα(χ i i ,α − T l
kα χ l k) + χ i i ,kζα χαk}

+ 2Re{ χ i i ,ζα kuαk} − 2Re{χ i i ,ζα χkk ,ζβuβα + χ i i ,ζα χkk ,ζβuαβ} .

Diòerentiating equation (2.1) twice (using the covariant derivative), we have at p0

(4.4) Fkkgkk l = −ψ l , Fkkgkk11 + F
i j, lmgi j1glm1 = −ψ11 .

It is easy to verify that

(4.5) f11 +
f1
λ1

≤ 0, f1 − f i
λ i − λ1

≥
f i
λ1
, i > 1,

so we obtain

−F i j, lmgi j1glm1 ≥∑
i>1

f1 − f i
λ i − λ1

∣gi11∣
2
≥∑

k>1

1
λ1
Fkk

∣gk11∣
2;
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see Székelyhidi [40]. We shall point out that (4.5) is the extra concavity condition
introduced by Székelyhidi [40]. _en

(4.6) Fkkg11kk ≥∑
k>1

1
λ1
Fkk

∣gk11∣
2
+ F i i

(u11i i − u i i11) − 2Re{F i i χ i i ,ζαg11α}

− 2Re{F i i χ i i ,ζα 1uα1} + 2Re{F i i χ11,ζα iuα i} − C − Cλ1∑ F i i .

Recall that u11i i − u i i11 = R i i1pup1 − R11i pup1 + 2Re{T
j
1iu i j1} + T p

i1T
q
i1upq . From

(4.1), (4.2), (4.3), and (4.6), we know that

(4.7) 0 ≥ Lϕ − Fkk ∣λ̃1,k ∣
2

λ2
1

+∑
k>1
Fkk ∣gk11∣

2

λ2
1

+ 2Re{F i iT
1
1i
λ̃1, i

λ1
}

+
2
λ1
Re{F i i χ11,ζα iuα i} −

C
λ1

∣uα1∣∑ F i i
− C( 1 +∑ F i i) .

_us, the estimates of the diòerences ∣gk11∣
2 − ∣λ̃1,k ∣

2 for k ≥ 2 are crucial; gk11 =

λ̃1,k + τk − χ11,ζαuαk + χk1,ζβuβ1, where

τk ∶= χk1,1 − χ11,k + χk1,ζαuα1 − χ11,ζαuαk + T l
k1u l 1 + (B1

1)k .

_us

(4.8) ∣gk11∣
2
≥ ∣λ̃1,k ∣

2
− ∣τk − χ11,ζαuαk ∣

2
+ 2Re{ λ̃1,k(τk − χ11,ζαuαk)}

+
1
2
∣∑
β
χk1,ζβuβ1∣

2
+ 2Re∑

β
{λ̃1,k χk1,ζβuβ1} for k ≥ 2.

Set ϕ = A2∣∇u∣2 + Ψ(u − u), A2 > 0, where Ψ shall satisfy Ψ′ < 0 and Ψ′′ > 0. From
(4.1) one knows λ̃1,k = −λ1ϕk = −λ1{A2(u iu i k + u iu i k) +Ψ′(u − u)k} and

∑
β

2Re{ λ̃1,k χk1,ζβuβ1} ≥ −∑
β

2λ1Re{Ψ′χk1,ζβuβ1(u − u)k}

−
1
3
A2λ2

1 (∣u ik ∣
2
+ ∣u i k ∣

2
) − 3nA2∣∇u∣2∣∑

β
χk1,ζβuβ1∣

2 .

Let A2 ≤
1

12n K
−1, where K = 1+ supM ∣∇u∣2 + supM ∣∇(u − u)∣2. Absorbing the terms

−∣τk − χ11,ζαuαk ∣
2 + 2Re{ λ̃1,k(τk − χ11,ζαuαk)} in (4.8) by

A2λ2
1

6
(∣uki ∣

2
+ ∣uk i ∣

2
),

for k ≥ 2, one has

(4.9) Fkk (∣gk11∣
2 − ∣λ̃1,k ∣

2)

λ2
1

≥
1
4
Fkk

∣∑β χk1,ζβuβ1∣
2

λ2
1

−
1
2
A2Fkk (∣u ik ∣

2
+ ∣u i k ∣

2)

− C( 1 + ∣uαk ∣
λ1

)Fkk
∣
λ̃1,k

λ1
∣ − C∑ F i i

−
2Ψ′

λ1
FkkRe{∑

β
χk1,ζβuβ1(u − u)k} .
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By straightforward calculations and (4.4),

Lϕ = A2L(∣∇u∣2) +Ψ′L(u − u) +Ψ′′F i i
∣(u − u)i ∣

2

and

(4.10) L(∣∇u∣2) ≥ F i i( ∣uki ∣
2
+ ∣uk i ∣

2) − Cє( 1 +∑ F i i) − є f iλ2
i

≥
7
8
F i i( ∣uki ∣

2
+ ∣uk i ∣

2) − C( 1 +∑ F i i) .

Note that both 2Re{F i i χ11,ζα iuα i} in (4.7) and Fkk ∣uαk λ̃1,k ∣ in (4.9) can be absorbed
by λ1F i i(∣uki ∣

2 + ∣uk i ∣
2). _erefore by (4.7)–(4.10)

0 ≥ 1
4
A2Fkk

(∣u ik ∣
2
+ ∣u i k ∣

2
) +Ψ′L(u − u) +Ψ′′F i i

∣(u − u)i ∣
2

− CFkk
∣
λ̃1,k

λ1
∣ − C ∣uα1∣

λ1
∑ F i i

− C( 1 +∑ F i i)

−
2Ψ′

λ1
∑
k>1
∑
β
FkkRe{ χk1,ζβuβ1(u − u)k} +

1
4λ2

1
∑
k>1
Fkk ∣∑

β
χk1,ζβuβ1∣

2 ,

wherewe use the fact that 0 < f1 ≤ ψ
λ1
and the constantA2 is small to control−F 11 ∣̃λ1,1 ∣

2

λ2
1

.
Next let us verify that equation (1.1) satisûes condition (1.3). If d2 = 0, d1 > 0,

f (λ) = −∑
d1
λ i
, then f iλ2

i = f1λ2
1 = d1, ∑ f i = ∑ d1

λ2
i
. Note that ∑ d1

λ i
= ψ. By the

Cauchy–Schwarz inequality, 1
nd1

ψ2 ≤ ∑ f i ≤ 1
d1
ψ2; thus (1.3) holds for d2 = 0. Suppose

that d2 > 0. _en

f1λ2
1 = d1 +∑

j>1

d2

λ j
, f1λ2

1

∑ f i
≥
f1λ2

1

n fn
≥
f1λ2

1 λn

nψ
≥
d2

nψ
,

where we use f iλ i ≤ ψ for i = 1, . . . , n. We complete the proof of the claim.
Let us control the bad terms containing ∑β χk1,ζβuβ1 by the assumptions in (1.6).

Suppose that∑β ∣Ψ′uβ1∣ ≤ λ1. _en

−
2Ψ′

λ1
∑
β
∑
k>1
FkkRe{ χk1,ζβuβ1(u − u)k} ≥ −C∑ F i i .

Otherwise∑β ∣Ψ′uβ1∣ ≥ λ1. If assumption (1.6) holds, then

A2

12
Fkk

(∣u ik ∣
2
+ ∣u i k ∣

2
) −

2Ψ′

λ1
∑
β
∑
k>1
FkkRe{ χk1,ζβuβ1(u − u)k}

≥
A2

12
Fββ ∣u1β ∣

2
− C∣Ψ′

∣ρ(λ)∑
β
Fββ ∣u1β ∣ − C∣Ψ′

∣ρ(λ)∑ F i i
≥ −∑ F i i ,

provided that λ1 ≫ 1.
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_erefore the crucial assumptions in (1.6) imply that

0 ≥ 1
6
A2Fkk

(∣u ik ∣
2
+ ∣u i k ∣

2
) +Ψ′L(u − u) +Ψ′′F i i

∣(u − u)i ∣
2

− CFkk
∣
λ̃1,k

λ1
∣ − C ∣uα1∣

λ1
∑ F i i

− C( 1 +∑ F i i) ,

absorbing some bad terms using the ûrst term and the third term of the right-hand
side of previous inequality. At p0, identity (4.1) yields that

Fkk
∣
λ̃1,k

λ1
∣ = Fkk

∣A2(u iku i + u i ku i) +Ψ′
(u − u)k ∣

≤ A2
√

KFkk
(∣u ik ∣ + ∣u i k ∣) + ∣Ψ′

∣Fkk
∣(u − u)k ∣.

Using the elementary inequality ax2 − bx ≥ − b
2

4a for a > 0,

Ψ′′F i i
∣(u − u)i ∣

2
− C∣Ψ′

∣F i i
∣(u − u)i ∣ ≥ −

C2Ψ′2

4Ψ′′
∑ F i i .

Choosing 0 < є ≪ 1 and λ1 large, we have

(4.11) 0 ≥ 1
8
A2Fkk

(∣u ik ∣
2
+ ∣u i k ∣

2
) − CI

∣uα1∣
λ1
∑ F i i

+Ψ′L(u − u) − C
2Ψ′2

4Ψ′′
∑ F i i

− C2( 1 +∑ F i i) .

Let Ψ∶ [infM(u − u),+∞)→ R,

(4.12) Ψ(x) = A1

(1 + x − infM(u − u))N ,

where A1 ≥ 1,N ∈ N to be chosen later.
We ûrst choose N in (4.12) large such that 0 < C2

∣Ψ′∣
4Ψ′′ ≪ 1

2
εκ0
1+κ0

. _en by (1.3), one
gets

(4.13) 0 ≥ ∑ ∣uα1∣
λ1

(
A2

16n2
ρ0
λ1
∑ ∣uα1∣ − CI)∑ F i i

+ (
εκ0

2(1 + κ0)
∣Ψ′

∣ − C2)( 1 +∑ F i i) .

Note that in this computation λ̃1 denotes the largest eigenvalue of the perturbed
endomorphism Ã = A + B. At the origin p0, where we carry out the computation,
λ̃1 coincides with the largest eigenvalue of A. However, at nearby points, it is a small
perturbation. Wewould take B → 0, and obtain the above diòerential inequality (4.13)
as well. _is only holds in a viscosity sense because, if some eigenvalues coincide, the
largest eigenvalue of Amay not be C2 at the origin p0.
Case 1. Suppose ∑ ∣uα1∣ > 16n2CI

ρ0A2
λ1, where CI is the constant in (4.11). _en if we

choose A1 ≫ 1 such that

(4.14) εκ0
4(1 + κ0)

∣Ψ′
∣ − 100C2 −

160n2C2
I

ρ0A2
> 0,
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the right-hand side of (4.13) is positive, which is a contradiction.
Case 2. ∑ ∣uα1∣ ≤ 16n2CI

ρ0A2
λ1. Fix the constants A1 ,A2 ,N inCase 1. _en by (4.13) and

(4.14) it follows that

0 ≥ εκ0
2(1 + κ0)

∣Ψ′
∣( 1 +∑ F i i) −

16n2C2
I

ρ0A2
∑ F i i

− C2( 1 +∑ F i i) > 0,

which is a contradiction. So H̃ cannot achieve its maximal value at interior point.
_us the proof of_eorem 1.3 is complete.

5 The Dirichlet Problem on an Annulus of the Kähler Cone

In this section we consider the Dirichlet problem (1.9) on an annulus in the Kähler
cone.

We ûrst construct an admissible subsolution of Dirichlet problem (1.9) under the
assumption that condition (1.8) holds. Set u = v + 2A(r − a)(r − b), A≫ 1, where v
is the function satisfying condition (1.8).
By a simple computation, we have

√
−1(∂∂ − ∂∂r ∂

∂r
)((r − a)(r − b)) =

√
−1
2

θn
∧ θ

n

and

g[u] = g[v] + Aϕ(r)
√
−1θn

∧ θ
n
,

where θn = dr +
√
−1rη and θ

n
= dr −

√
−1rη. Hence for A≫ 1, one derives

⎧⎪⎪
⎨
⎪⎪⎩

ψ(g[u])n
≥ b1(g[u])n−1

∧ ω + b2(g[u])n−2
∧ ω2 in M ,

u∣r=a = φa , u∣r=b = φb ,

provided that condition (1.8) holds.
Next we derive a priori C0-estimates and gradient estimates on the boundary. Let

w be a C2 solution to

(5.1)
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2
ϕ(r)(∆gw −

∂w
∂r
∆gr) + g i j χ̃ i j ≤ 0 in M ,

w = φ on ∂M ,

where g(X ,Y) = ω(X , JY) for X ,Y ∈ TRM, ∆g is the standard Laplacianwith respect
to the Levi–Civita connection. _e solvability of (5.1) can be found in [42].

Let u ∈ C2(M) be any solution of Dirichet problem (1.9) with g[u] > 0. _en
1
2
ϕ(r)(∆gu −

∂u
∂r
∆gr) + g i j χ̃ i j > 0.

_erefore themaximum principle yields that

u ≤ u ≤ w in M , u = u = w = φ on ∂M .

Hence there is a positive constant C∗ depending only on u and w, such that

(5.2) sup
M

∣u∣ + sup
∂M

∣∇u∣ ≤ C∗ .
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Once one derives boundary estimates for second derivatives sup∂M ∣∇2u∣ ≤ C,
equation (1.9) becomes uniform elliptic. _en the existence and uniqueness of the ad-
missible solution of equation (1.9) can be proved by the standard continuity method
and themaximum principle.

_eorem 5.1 Suppose that (1.8) holds. _en for any admissible solution

u ∈ C3
(M) ∩ C2

(M)

toDirichlet problem (1.9), we have sup∂M ∣∇2u∣ ≤ C, where the constant C > 0 depends
on ∣u∣C 1(M) and other known data.

5.1 Background on Sasakian Geometry

Sasakian manifolds, which can be viewed as the odd dimensional counterparts of
Kähler manifolds, are odd-dimensional Riemannian manifolds whose metric cone
(C(M), g̃) = (M × R+ , r2g + dr2) admits a Kähler structure. _ese manifolds can
be used to construct new Einstein manifolds in geometry. Moreover, they play an
important role in the AdS/CFT correspondence in mathematical physics. We refer
the reader to [5, 16, 17,30,31] and the references therein for relevant work on Sasakian
geometry from mathematicians and physicists.
As in the Kähler setting, the Sasakian metric can be locally generated by a free

real function of 2(n − 1) variables. More precisely, for any p ∈ S, there is a local
basic function h and a local coordinate chart (z1 , . . . , zn−1 , x) ∈ Cn−1 ×R on a small
neighborhood U around p such that

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ξ = ∂
∂x
, g = η ⊗ η + 2h i jdz

idz j , η = dx −
√
−1(h jdz j

− h jdz
j
),

Φ =
n−1

∑
i=1

{
√
−1( ∂

∂z i +
√
−1h i

∂
∂x

) ⊗ dz i
−
√
−1( ∂

∂z i −
√
−1h i

∂
∂x

) ⊗ dz i
} ,

andDC is spanned by

X i =
∂

∂z i +
√
−1h i

∂
∂x
, X i =

∂
∂z i −

√
−1h i

∂
∂x
, 1 ≤ i ≤ n − 1,

where 2dz idz j
= dz i ⊗ dz j

+ dz j
⊗ dz i , h i =

∂h
∂z i , h i j =

∂2h
∂z i ∂z j . Moreover, one can

change the local coordinates to normal coordinates such that h i(p) = 0, h i j(p) = δ i j ,
and d(h i j)∣p = 0. _e proof can be found in [19].
For the normal local coordinate chart (z1 , . . . , zn−1 , x) on a Sasakian manifold

(S , η, ξ, Φ, g), set (z1 , ⋅ ⋅ ⋅ , zn−1 , z̃) on U ×R+ ⊂ C(S), where z̃ = r +
√
−1x, and

Xn =
1
2
(

∂
∂r

−
√
−1 1

r
∂
∂x

) , Xn =
1
2
(

∂
∂r

+
√
−1 1

r
∂
∂x

) ,

where h is the Sasakian potential function (which is basic). _en JX i =
√
−1X i , JX i =

−
√
−1X i for i = 1, . . . , n. _e background information on Sasakian manifolds can be

found in [4].
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5.2 Proof of Theorem 5.1

Given any point p = (q, a) ∈ S × {a} (or p = (q, b) ∈ S × {b}), set

ρ(z) ∶= distM(z, p) and Ωδ = {z ∈ M ∶ ρ(z) < δ}, 0 < δ ≪ 1,

and

σ(p̂) = (r − a) or σ(p̂) = (b − r), where p̂ = (q̂, r) ∈ M , q̂ ∈ S .

To construct a barrier function, we we will follow Guan [20] and employ a barrier
function of the form

(5.3) v = u − u + σ − σ 2 in Ωδ0 for 0 < δ0 ≪ 1,

where u ∈ C2(M) is the admissible subsolution of Dirichlet problem (1.9). _e fol-
lowing lemma was ûrst proved in [20] for domains in Cn .

Lemma 5.2 _ere are positive constants N , t, and c1 such that for small δ0 we have

(5.4) v ≥ 0 and Lv ≤ −c1(1 + F i j g i j) in Vδ0 ∶= {z ∈ M ∶ σ < δ}.

Proof By themaximum principle, u ≥ u. _us v ≥ 0 in Ωδ0 , 0 < δ0 ≪ 1. By Lemma
2.2, we divide the proof into two cases as follows.
Case 1: ∣λ∣ ≥ R0. If L(u − u) ≤ −εF i j g i j for the positive constant ε in Lemma 2.2,
then

L(u − u) ≤ − εκ0
2(1 + κ0)

( 1 + F i j g i j) .

_en we have (5.4). On the other hand, it follows from Lemma 2.2 and Lemma 2.1
that

F i j
≥ εF pq g pq g

i j
≥ εκ0g i j .

Note that ∣∇r∣ = 1
2 and L(u − u) ≤ 0. _en

Lv = L(u − u) − 2F i jr ir j ≤ −c1( 1 +∑ F i j g i j) .

Case 2: ∣λ∣ < R0, F i j ≥ θg i j and ∑ F i j g i j ≤ C. _e proof is similar, and we omit it
here.

Tangential-Normal derivatives _e tangential-normal case will be proved by con-
structing barrier functions. _is type of construction of barrier functions follows
from[20,24,27].

Given p = (q, a) ∈ S × {a} (or p = (q, b) ∈ S × {b}), we can pick the local coordi-
nates z′ = (z′1 , . . . , z′n), z′j = x′j +

√
−1y′j , where ∂

∂x′n
is the interior normal direction to

∂M at p. Here we identify p with z′ = 0 and assume that g i j(0) = δ i j and {gαβ(0)}
is diagonal for 1 ≤ α, β ≤ n − 1. We also use the notations t2k = x′k , t2k−1 = y′k and
v i =

∂
∂z′i

v = ∂ iv, vt i =
∂v
∂t i , v i j = ∂ i∂ jv, . . . , etc. Let D = ±( ∂

∂tα − rtα ∂
∂r ), α ≤ 2n − 1.

_e proof of the following lemma can be found in [20,22]. We omit the proof here.
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Lemma 5.3 _ere is a positive constant C0 depending on
sup
M

∣∇u∣, ∣φ∣C2,1(M) , ∣χ∣C0,1(M) ,

and other known data such that
L(D(u − φ)) ≤ C0(sup

M
∣∇ψ∣ + F i j g i j) + F

i juy′n iuy′n j .

_e barrier function will be given as Ψ = A1v + A2ρ2 + D(u − u) − (uy′n − φy′n)
2,

where A1 ≫ A2 ≫ 1 and v is the function in (5.3), i.e., v = u − u − σ 2 + σ .
On one hand, by Lemma 5.2 and Lemma 5.3, we know thatLΨ ≤ 0 in Ωδ0 (δ ≪ 1)

if A1 ≫ A2 ≫ 1. On the other hand,
⎧⎪⎪
⎨
⎪⎪⎩

D(u − u) = 0, ∣uy′n − φy′n ∣ ≤ a0ρ on ∂M ∩Ωδ ,
ρ = δ, ∣D(u − u)∣ ≤ a0 on ∂Ωδ ∖ ∂M .

_erefore, Ψ ≥ 0 on ∂Ωδ . By themaximum principle Ψ ≥ 0 on Ωδ . Note that Ψ(p) =
0. _en
(5.5) ∣∇ ∂

∂r
Du(p)∣ ≤ C ,

where C is a positive constant depending on ∣u∣C 1(M), ∣u∣C2(M), ∣φ∣C2,1(M), ∣ψ∣C 1,1(M),
and other known data.

Pure normal/pure tangential derivatives: Next, we need to consider boundary
estimates for pure normal derivatives and pure tangential derivatives. Since u −u = 0
on ∂M, we can therefore write u − u = ĥσ , in Vδ ∶= {z ∈ M ∶ σ(z) < δ} for some
0 < δ ≪ 1. Given p = (q, rp) ∈ ∂M, rp = a or b at p. It follows that

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂r

(u − u) = ∂ĥ
∂r

σ + ∂σ
∂r

ĥ,

(u − u)αβ = ĥαβσ + ĥασβ + ĥβσα + ĥσαβ ,

(u − u)tα tβ = ĥtα tβ σ + ĥtα σtβ + ĥtβ σtα + ĥσtα tβ .

For α, β ≤ n − 1, we have at p

(5.6) (u − u)αβ =
∂(u − u)

∂r
rαβ and (u − u)tα tβ =

∂(u − u)
∂r

rtα tβ .

In particular, by (5.6), we have
(5.7) gαβ[u] = gαβ[u] at p, for 1 ≤ α, β ≤ n − 1, sup

∂M
∣utα tβ ∣ ≤ Ca .

Here we use (5.2), and we obtain the uniform bound of second derivatives for pure
tangential. Finally, we shall show that gnn[u](p) ≤ C.

We rewrite equation (1.9) as follows

[nψ(g[u])n−1
− (n − 1)b1(g[u])n−2

∧ ω − (n − 2)b2(g[u])n−3
∧ ω2

]

∧
√
−1gnn[u]dz′n ∧ dz′n = (∗),

where (∗) does not have any terms containing
√
−1gnndz′n ∧ dz′n . _en it follows

from (5.5), (5.7), and (1.8) that gnn[u](p) has a uniform bound gnn[u](p) ≤ C.
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