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On a Class of Fully Nonlinear Elliptic
Equations Containing Gradient Terms on
Compact Hermitian Manifolds

Rirong Yuan

Abstract. In this paper we study a class of second order fully nonlinear elliptic equations contain-
ing gradient terms on compact Hermitian manifolds and obtain a priori estimates under proper
assumptions close to optimal. The analysis developed here should be useful to deal with other Hes-
sian equations containing gradient terms in other contexts.

1 Introduction

In this paper we mainly focus on an equation containing gradient term of the form

bi(glu])"™ A w+ba(g[u])" A w® = y(glu])",

11 "
(1 g[u]:\/—_laau+)((',du)>0,

on a compact Hermitian manifold (M, w) of complex dimension n > 2, where b; and
b, are two nonnegative constants with b; + b, > 0, y is a smooth positive function on
M, x(z,0), (2,{) € T¢M, and is a smooth real (1,1)-form.

Suppose, in addition, that M has a smooth boundary oM and v is a smooth func-
tion on M := M U dM. Then we consider the Dirichlet problem of equation (1.1) with
the boundary value condition

(1.2) u=gonoM, ¢ecC”(IM).

When b, = 0, b; > 0, v is constant, and both w and y are Kahler, equation (1.1)
arises naturally in the geometric problem that was posed by Donaldson [11] and Chen
[8] in connection with the moment map and Mabuchi energy. The parabolic form,
say J-flow, has been extensively studied, [8,37,45,46]. Moreover, Song and Weinkove
[37] found a necessary and sufficient solvability condition that is close to condition
(1.7). This result was extended by some authors [14,23,38,39].

When y involves a gradient term, equation (1.1) differs from the standard equations
on the complex manifolds, [1,6-8,11,43,47]. The equations containing gradient terms
arise naturally in complex geometry and complex analysis, [15,18,25,35,44]. We refer
the readers to [32-34, 41] for some recent related works.
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Differentiating from the real setting, it turns out to be a rather challenging task to
derive a priori estimates for second derivatives for fully nonlinear elliptic equations
containing gradient terms in the complex setting. The underlying reason is the two
different types of complex derivatives. In our setting, the following structural condi-
tion of equation (1.1) plays a crucial role in overcoming this difficulty,

2
(1.3) liminf ];:/}1

[A|>o0 i

> po in{/\an:i%fl//Sf(/l)Ssgpw},
M

where f is the function in (2.1), Ay 2 A2 > -+ 2 Ay, |A| = /T AL T, = {A e R" : A; >
0}, and py is a positive constant.
We shall point out that for the generalized complex Monge-Ampére type equations

z bi(glu])"™* A " = y(g[u])"

with by > 0 and 3}_; by > 0, condition (1.3) cannot be satisfied if by > 0 for some
k > 2. Therefore, the main equation considered stops at the power n — 2, and other
terms of the form by (g[u])" % A w* are not considered in this paper.

A central issue to solving equation (1.1) is to derive a priori (real) second estimates
for admissible solutions. The estimates in this article rely heavily on the subsolution
u defined as follows.

Definition 1.1 (Subsolution) A function u € C*(M) is called a C-subsolution of
equation (1.1) if for any nonzero (1, 0)-form y, one obtains

(4)  lim [y(glw t,y])" - bi(alw ,y])"" A 0 - ba(g[u, £, y])" A 0?] > 0,

where g[u, t,y] = g[u] + tv/~1y Ay, g[u] = V=100u + x(z, du). Suppose in addition
to oM # @, we say u is an admissible subsolution of Dirichlet problems (1.1)-(1.2) if
it satisfies g[u] > 0 and

v(glu])" 2bi(g[u])" " Aw+by(g[u])"?Aw®  in M,
u=9 on oM.’

The C-subsolution introduced by Székelyhidi [40] turns out to be a suitable con-
dition to study certain Hessian equations on closed manifolds.

We state main results as follows. First, we shall present some notations used in this
paper. In a local coordinate (zy, ..., z, ), we write d; = aiz,-’gi 9

=,
Xi = x(z,du)(9:,9),

Xigk = Var(Xij) = Xije + Xij g, Yok + X za bk

Moreover, we assume y satisfies the following structural condition

(15) Xij:(a(ﬁ - O’ Xi}y(a?;; = 0’ Xij)?afp =0.
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Unlike the standard equation, deriving gradient estimates is extremely difficult
even for the complex Monge-Ampére equation containing du. In our setting, we ob-
serve that equation (1.1) satisfies condition (3.5), which can be used to derive directly
the gradient estimates.

Theorem 1.2 Suppose that (1.5) holds and there exists a subsolution u € C*(M) of
equation (1.1) in the sense of Definition 1.1. Then for any solution u € C*(M) n C'(M)
of equation (1.1) with g[u] > 0, there is a uniform constant C depending on |u|co 37,
and other known data under control, such that

max |Vu| < C(1+ max|Vul|).
M oM

Comparing to Székelyhidi [40], the bounds of gradient terms relax the restriction
to the construction of the barrier functions for second estimates. Moreover, condition
(1.3) guarantees we can control the bad terms arising from the gradient term contained
in equation (1.1). Hence, we prove the following a priori second estimates.

Theorem 1.3  Letu € C*(M) n C*(M) be a solution to equation (1.1) such that g[u]
is positive. Suppose, that (1.5) holds, and that at any fixed point z € M, where g5 = 0
andgi} = /\,8,] with Al > Az 22 An,

(1.6) 2| Relfaraig, H <P fp VB,
a>1
where p(1):T, - R™ is a positive continuous function with p(1) — 0 as [A| > +occ and
dl d2 bl 2b2
/1 = - - — 5 d = —’d = —
f) Z,.:Ai gjmj YT n(n-)

Then there is a uniform bounded positive constant C depending on |M|C1(M)) |W|cm(ﬁ)’
|| cr1 37)> and other data under control, such that supgz|Au| < C(1+ sup,y,|Aul),

provided that there exists a subsolution u € C*(M) of equation (1.1) in the sense of
Definition 1.1.

Condition (1.6) can be satisfied by many equations, for instance, the complex
Monge-Ampére type equation on an annulus in the Kahler cone studied by Guan
and Zhang [25,26].

Suppose that M is closed and there is a function u € C*(M) such that g[u] > 0
and

7)) ny(glu])"™ = (n=Dbi(g[u])"* A w = (n - 2)ba(g[u])" A w® >0,

i.e., u is a C-subsolution of equation (1.1). Then a uniform bound for |u|co(as) will
be obtained by a modified argument in [40], which is inspired by Blocki’s proof of
Yau’s zero-order estimates for complex Monge-Ampere equations on closed Kéhler
manifolds [2]. We also refer the reader to [47] for Yau’s original proof by Moser’s
iteration. Combining that proof with Theorem 1.3 and Theorem 1.2, equation (1.1)
becomes a uniform elliptic equation, so that we can use an argument in [22] to derive
a uniform bound on the real Hessian. Then one can use the Evans-Krylov theorem
[12,28] and Schauder theory to derive higher order regularities.
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To solve the equations on closed Hermitian manifolds via the continuity method,
it is rather difficult to verify condition (1.7) along the continuity path [38,39]. Indeed,
except for the function f satisfying lim;, o f(A1,..., A, +1) = +o0,forall A € T, itis
very difficult to solve general Hessian equations. We refer the reader to [40] for some
related open problems.

Therefore, our main result on a closed Hermitian manifold is the establishment of
the following a priori estimate.

Theorem 1.4 Let (M, w) be a closed Hermitian manifold and let u be a smooth so-
lution to equation (1.1). Suppose conditions (1.5), (1.6), and (1.7) hold. Then there are
uniform C* a priori estimates for u.

When n =2, by = 0, and b, = 1, condition (1.7) remains valid along the continuity
pathif g[v] > 0, so one can solve the complex Monge- Ampére equation (1.1) on closed
complex surfaces.

Corollary 1.5  Let (M, w) be a closed complex surface and let F be a smooth function
on M. Assume y = x(-,{, () satisfies x(-,0,0) > 0, and conditions (1.5) and (1.6) hold.
Then there is a unique smooth function u and a unique constant b such that

(alu))* = ¥,

g[u] >0, supu=0.
M

In contrast with the closed setting, the continuity method for the Dirichlet prob-
lem is much easier and is well understood. Next, we apply our estimates to treat the
Dirichlet problem on the annulus in the Kahler cone.

Let (S, &, 1, @, g) be a closed Sasakian manifold of dimension 2n —1 with Sasakian
structure (&, 1, ®, g), where £ is a Reeb field on S, ®(X) = V¢, # is the contact
1-form with 5(X) = g(&, X). Then the metric cone (C(S),g) = (S x R*, r*g + dr?)
is a Kahler manifold; here r is the coordinate on R*.

Inspired by the observations of Donaldson [10], Semmes [36], and Mabuchi [29]
in Kahler geometry, Guan and Zhang [25] discovered that the geodesic equation con-
necting two points in the space of Sasakian metrics can be reduced to a Dirichlet
problem of a homogeneous complex Monge- Ampére type equation containing radial
derivatives on an annulus of the Kéhler cone. Similar to the work of Chen [9] in the
Kéhler setting, Guan and Zhang dealt with the complex Monge-Ampere equation and
obtained some useful properties of the space of Sasakian metrics [26]. However, their
estimates depend on the assumption of basic data which is natural from the Sasakian
geometry point of view.

Observing that w = \/—100r also determines a Kihler metric on the Kihler cone
C(S) = S x R*, assumption (1.6) in Theorem 1.3 automatically holds for equation
(1.9). Hence the assumption of basic data can be removed for such (nondegenerate)
equations.
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Theorem 1.6  Suppose that there exists a function v € C*(M), M = S x [a, b], such
that K|r=a = (Paaz|r:b = @b, g[Z] >0 and

(1.8) [(n ~Dbi(g[v])" > r@w+ (n-2)by(g[v])" /\62] AV-16
AO—ny(g[v])" P AV-10 A0 <0in M,
where 0" = dr +~/—1ry, 0" =dr- V/=1ry. Then there is a unique smooth solution u to

(1L9) {bl(g[”])nl/\w+bz(9[u])"2/\602:1//(9[14])”, a[u] > 0in M,

u|r:a =Qa> u|r=h = @Pp,

where g[u] = ¥ + /-1 (r)(90u - %aér), ¢:[a,b] > R* is a positive and smooth
function, ¢4, ¢, € C*(S), v is a positive and smooth function on M, and ¥ is a smooth
and real (1,1)-form on M.

From Theorem 1.6, we know that the solvability of Dirichlet problem (1.9) is deter-
mined by the action of g[v] on the pullback contact bundle P* D€, where P: C(S) — S
is the natural projection.

Remark 1.7 We find that Lagrangian phase equation (hypercritical phase)

(1.10) f(A) = arctanA; =y, w:ﬁe((n—l)g,ng)

satisfies that there is a positive constant R, (that may depend on o) such that
S+ % <0and A f; < A;f;inTfori>1,A €0l Vo € [inf y,supy],
1 M 3
where A, is the largest eigenvalue, with

of o’ f
M2R, fi==> fij= , T7={AeT:f(A )
12 f aAI f] a/\laA] { € f( )> U}

This condition is a modification of the extra concavity condition (4.5) introduced in
[40]. Notice that equation (1.10) is not satisfied for the original extra concavity con-
dition and the related strong concavity condition in [13,14]. Moreover, we know that
f satisfies the conditions of Lemma 2.1 and the two conditions (1.3) and (3.5), so The-
orems 1.2 and 1.3 also hold for equation (1.10).

This paper is organized as follows. In Section 2 we present some notations and
useful lemmas. In Section 3 we directly derive gradient estimates by the Bernstein
method. In Section 4 we establish global a priori second order estimates for admissible
solutions. In Section 5 our main content is to derive boundary estimates for second
derivatives for solutions of Dirichlet problem (1.9) on an annulus of the Kahler cone.
Moreover, some admissible subsolutions are constructed under the assumption that
(1.8) holds.
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2 Preliminaries

We rewrite equation (1.1) as follows.

1) F({g;[u]}) = f(MaluD) = -v.

where A(g[u]) are the eigenvalues of g[u] with respect to w, and

dl d2 bl 2b2
/\ = — _—— d = 7)d = .
f Zi:A- Z/L-A] T n(n-1)

! i<j
Throughout this paper, we use derivatives with respect to the Chern connection vV

of g, and in local coordinates z = (z',...,z") we use notations such as
vi=Vav, v;j=VaVav, v:=VaVav,. ...
X 9 o J ozl o

Given a Hermitian matrix A = {ai;}, we write
0*F
da ijaa kI

Ay = 25 (a), ORI (a) = (A).
ij

We also write

95 = 95lul = uz+ x;5(z.du), g

)

= g7[u] = w5+ x;5(2 du).

One can verify the following lemma.

Lemma 2.1 Forany o € (supyy f,supy f), there is a kg > 0 depending on o such

that Y7, fi(A) 2 ko for A€ 0T :={A €T, : f(A) =0}

Building on the work of Guan [21], Székelyhidi [40] introduced the C-subsolution
satisfying (1.4) and proved some properties of the C-subsolution. Applying Székely-
hidi’s results to equation (2.1), one has the following lemma.

Lemma 2.2 ([40]) Suppose, in addition to n > 2, that there exists a subsolution
u € C2(M) in the sense of Definition 1.1. Then there exist positive constants R, & with
the following property. If|A| > Ry, then we have either

(i) Fij(gi] ~9;) 2 sZF"jgi} or
(i) Fii> e(Fqupg)gﬁ.

3 Gradient Estimates

Using the Bernstein method, we will prove Theorem 1.2 in this section.

Proof of Theorem 1.2 Our method is similar to that used in [3, 23]. We consider
¢ = Ae", n = Alu—u—infy;(u—u)], where Ais a positive constant to be determined.
Suppose that e?|Vu|? achieves its maximum at an interior p € M. Set W = |Vu/>.
We choose local holomorphic coordinates z = (zl, ...,2"), such that at p, 8i; = 0ij»

g;; = Aidij, FY = fi8ij. Then at p,
Wi Wil

W. WT
(3.1) W’+¢i:0, W’+¢7:0, V\;l " +¢7<0.
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In what follows the computations are done at p. We compute

W; = Zk:(ukiuz‘* Ukt )
= Z |ural” + ZZW(uﬁkuz) + ZRﬁkiul“E+ Zk: luz
Z l”l|2 Z‘Z l“1|2

Therefore,
(3.2) |[W;[* < |Vu|22k:|uk,-|2 —2|Vu|22k:9%e(uku@¢7).
Differentiating equation (2.1), one gets
Fi?(ui?k + Xif.g Hak + Xi;’zaugk) = -y - FﬁXﬁ,k'

Thus the crucial assumption (1.5) implies that

L(W) > Fliug? - C|Vu|(1+ ZF”) - ClvuP Y F7,
where £ is the linearized operator of equation (2.1)

Ly = Fijv.f + Fi})(ij( Vo + F"})(.—f vg forve C(M).

Next, ¢; = ¢1i,¢,; = ¢(|n:[* + 1,7). Using the Cauchy-Schwarz inequality and the
crucial assumption (1.5) again, one obtains

_ 1
207 Re(urup¢;) 2 2Re(gzurn;) - §|VU|2|’7i|2 - Clvul,
and

(3.3) £ = $Ln+ ¢F i,
where we use assumption (1.5). Then by (3.1), (3.2), (3.3), we have

(3.4) |vul? ( ZFliy, +L;1) - —|Vu|(1+ STF) - Clvul S F

C Clvu®
¢
We need to control the term of the right-hand side. Applying the Cauchy—Schwarz
inequality, one obtains ZZ%e(F”g”u 17) < 4|Vu|2F”|f1 |?+4Y Fiig? 9
We claim that there is a positive constant ¢y such that

ZF” < 29‘{e(F”g“u 17)-

(3.5) SFig <oo(1+ 3 F).
Recall that
ZFiig?;:l’ldl-F(H—l)dngii, ZFH dzzg” ”g]j"'dlZ(g”)z-
i j#i
If d = 0, then it is trivial. Suppose d, > 0. If d; > 0, 3, Adj\ +X 5 dl =y, then
= -1
5 Eigt <y D
1
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Let A< Ajfori=1,...,n.Ifd; =0, %,; dygiigh =y, f()) = - Yicj 1 +, then

Sfi ZiXipimy Ao 1 1

S DL S T T 2 o )
1 1 v

> = .
" (n-1)n? ; Aidj  (n-1)n%d,

We complete the proof of the claim.

By Lemma 2.1, " F'* > «, for some x, > 0. Suppose that || > Ry, where Ry is the
constant in Lemma 2.2. In Lemma 2.2(i), it holds that

AEKO( ZF”) ( 4co )(1+2F’7)—C(1+%)2Fﬁ£0.

1+ % ¢|Vu| |Vul?

This gives us a bound |Vu| < C, when A is chosen to be large.

In Lemma 2.2(ii), F* > eZPkk > eKo. By g”t// > F' one has g7 < (exo) 'y and
there is a positive a constant Cg, such that ) F”g“ < Cg,. By (3.4), one derives the
bound of |Vu| < C again.

If |A| < Ry, the proof is similar to that of (ii), and we omit it here. [ |

4 Global Second Estimates
In this section, we will derive global second order estimates for admissible solutions.

Proof of Theorem 1.3 'We use the method used in [40] to treat the third order terms
arising from nontrivial torsion tensors. Denote the eigenvalues of the matrix A =
{45} = {g"%j3) by (Ai,..., An), where g5 = s + x5 MM — Ris the largest
eigenvalue and A; > A, > --- > A, at each point, and g is the Hermitian metric. We
want to apply the maximum principle to H, i.e., H := 1,e?, where the test function ¢
is chosen later. Suppose H achieves its maximum at interior point py € M.

Since the eigenvalues of A need not be distinct at the point py, H may be only
continuous. To circumvent this difficulty we use a perturbation argument [40]. To do
this, we choose local coordinates z = (z, .. ., z, ) around py, such that at p,,

g7="0ip 8;5="0; i F7=0;f;.

Let B be a diagonal matrix B with real entries satisfying B} = 0, B" > 2B3, and such
that B" < B"~} < ... < B3 < 0 are small. Then we define the matrix A = A + B with
eigenvalues A = (A;, ..., A, ). At the origin, 1; = A, = g, A; = A; + Bl if i > 2 and the
eigenvalues of A define C2-functions near the origin.

Notice that H = /1~1e¢ achieves its maximum at the same point p, (we can assume
M(po) = A(po) > 1). In what follows, we use derivatives with respect to the Chern
connection of g and the computations will be given at the origin p,. Then we have

A Mg A
(4.1) CLE G =0, A”‘k | ”" + ¢, <0.
1
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By straightforward calculations, one obtains

(4.2) Mok = 8k — (B)i.

Moreover, (see [40])

- |6,7” + o5k
M= O + 2 e (B
pol A — )L

(BL)++
+ 2%e Z g1,71k )k glpk( )k
p>1 /\1 A

~ pgyrs .
+Ah o (BDk(BYg

where
~ 014016 ps
WP = (1= 0yp) === 4 (1= 81) =
b=, -2,

613 6117 (Srq

We need to estimate 1; — /i; near the origin pg for p > 1. Since I, € T’ c I, letting
B be sufficiently small, we can assume Y. A; > 0 (otherwise we are done). Then |A;] <
(n—=1)A; forall i, and so (A; — /\p)_l > (nA;)7%. As in [40], one obtains

~ 1
M z200 7+ —— = * +omkl*) = Co.
1Lk < B1ikk 2y ;('gp1k| lapkl”) — Co

We assume A; > Ry, where Ry is the constant in Lemma 2.2. Note that 0 < f;A; <y

fori=1,...,n.Iff; = Fii> ¢S F* > exg fori =1,...,n, then it immediately gives
abound A; = g;; < C. So we only need to consider the case

(9*_911)>82Fk1gk1 (1+2Fklgk1)

By straightforward calculations, one has
(43) Xz]k Xl] k X,’},(uuak + Xﬁ,za Uak
and
Xt = Xoar * Xis Uy +2g 9‘{6{ Tk }
iikk = Xitkk T Xin,o Rikart kk Xiike, ~ Xint, Tk
+ 2R X1 0, Okka) — 2R Wit o, (Kt — Thaki) + Xit 7 X )
+2Re{ 7 ¢ qtak} — 2R ¢ Ni g, Upa * Kitg, in,fﬁ”aﬁ} :

Differentiating equation (2.1) twice (using the covariant derivative), we have at pg

(4.4) PR = vt P g+ PP g g = v
It is easy to verify that
fi h=fi J fi .
4.5 +=— <0, i>1,
(45) fur s, PR

so we obtain

_Fi;,lm

1 p—
2 kk 2
1]1glm1 iIl| 2 Z I]F |gkil‘ >

1>1 1 k>1
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see Székelyhidi [40]. We shall point out that (4.5) is the extra concavity condition
introduced by Székelyhidi [40]. Then

kk kk ii
(46) F gﬁkk 2 Z F |<gk11|2 + F”(ullzz - ui;li) - 2%Q{F“Xﬁ,(‘,gﬁa}
k>1

- 29%{1;"";(1.;@““1} + 2Re{F gy ttai} — C— CA 3P

Recall that w77 — u;57 = Riﬁ;”pi = Rygpt,i

(4.1), (4.2), (4.3), and (4.6), we know that

+2£Re{T1, 111} +T Ilupq From

kk|A1k| welon i 17‘1:
(47) 0>L¢-F T k}):lF ¥ +2;e{ F7 “h}

2 o C s it
+ A—D%e{F”)(ﬁ,{a;uai} - /T|uot1| ZF” - C(1+ zF”),
1 1

Thus, the estimates of the differences |g,q,|*> — [Ayx|? for k > 2 are crucial; g,5, =
A+ Tk — XL, Hak + Xid g, Up1> where

_ 1 1
k= X~ Xtk X — Xip,gotak + Tt + (B
Thus

48) lgenl® 2 Murl® = e — xrm.g, akl* + 298e{ X, 7 (7 = pii g, Har) }

1 2 ~
+ 5| Z in)(pu/;1| +2%Re Z{AI,EXH,(,; upy fork>2.

Set ¢ = A2|Vu\2 +W¥(u—-u), Ay > 0, where ¥ shall satisfy ¥/ < 0 and ¥" > 0. From

(4.1) oneknows)t’ =-hop=-1 {A2(”;”,k+“ u) + ¥ (u—-u)y } and

%Zme{xl,Ein,(ﬁ up} > - %: 20Re{ W iz ¢, upn (1 — )}
1
= A (il + gy ) - 30|V |2xk1 ol

Let A; < =K', where K = 1+ sup,, |[Vu|* + sup,, |V (u - u)|*. Absorbing the terms

—|Tk - Xiic, Ukl + Z%Q{XLE(Tk ~ XL, “ock)} in (4.8) by

AN
6

(il + [z ),
for k > 2, one has

~ B 2
i ol = M) 1l e i upl® 1

4.9 > S AP (Jug ] +
&8 22 4 A2 2 (lel” + e )
|takl\ r% /\1k i
~c(1+ " )F |22k S F
29

- TlekERe{ Zin,(‘,”ﬁl(” - E)k}-
B
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By straightforward calculations and (4.4),
L9 = AL (ITuf’) + WL (u— ) + ¥F(u - w)if
and
(4.10) L(|vul® )>F”(|uk,| +ugl?) - (1+ZF”) —efid?
> gF”( |ugil® + |uk;|2) - C(1+ ZF”).

Note that both 29%{F’€Xﬁ)(u;ua,-} in (4.7) and sz|u,xk’/{1,k| in (4.9) can be absorbed
by ME (|ui] + |u45]?). Therefore by (4.7)-(4.10)

0> A2Fkk(|ulk|2 |uk|)+\I’L(u—u)+‘{’"F”|(u u)if

CFkk|/\1k |”tx1| ZF::_C(I_,’_ZFH)

_722111( E)%{Xkl (ﬁ”ﬁl(u “)k} tz 4/\2 ZF |Z)Ck1 (ﬂ”ﬂl

>

M k>1 B 1 k>1
where we use the fact that 0 < f; < and the constant A is small to control Fﬁl'\/“%ﬁ.
1
Next let us verify that equatlon (1 1) satisfies condltlon (13). If d, = 0,d; > 0,
fQA) ==Y % then fi\2 = i\l =di, Y f; = . Note that 3. 4+ = y. By the

Cauchy-Schwarz inequality, W <Y fi < d—lw ;thus (1.3) holds for d, = 0. Suppose
that d, > 0. Then

+ @, ﬁ/\%zﬁ—ﬁzﬁ—/\ﬂ"zﬂ,
mAi Xfio onfa o ony o ony

where we use f;A; <y fori=1,...,n. We complete the proof of the claim.
Let us control the bad terms containing Y5 x;1 (Up1 by the assumptions in (1.6).

Suppose that 5 [¥'ug | < A1. Then

flA% =d

253 R g g - )} > ~C T

B k>1

Otherwise 34 [P'up;| > Ay. If assumption (1.6) holds, then

A —
ZE* (uil + uz ) - =— Z > F¥RRe{ yui g, upn (1 - 1)}
12 M F s ¢
A v v s i
> T;Fﬁﬁlulﬁlz - C[¥'[p(A) X" FPPluyg| - CI¥'|p(A) 3" F' > = 3 F*,
B

provided that 1; > 1.
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Therefore the crucial assumptions in (1.6) imply that
0> 6Aszk(|u,k|2 s [2) + WL (1 — ) + W F (1 - )2

|”vt1| ZF” _ C(1+ ZF:‘?) X

absorbing some bad terms using the ﬁrst term and the third term of the right-hand
side of previous inequality. At py, identity (4.1) yields that

Aok

CFkkl/llk

Fkk| |—Fkk|A2(u,ku + Uz U )+ (- u)il
< ApVRF® (Jugi| + |tz ]) + [/ [FF¥| (1 = ).

Using the elementary inequality ax? — bx > —%a fora > 0,

- 5 - CZ\I/IZ -
s U
Y'F (1 —u)il* - CIY'|F"|(u—u)i| > - T S F
Choosing 0 < € «< 1 and A, large, we have
1 - s
(411) 0> gAszk(|u,-k|2 + |uiz|2) - CI |l'j1a1| ZF”
1

/ cry” i ii
+WL(u—u)- G STFT-Cy(1+ ) F).

Let ¥: [inf5;(u — u), +00) - R,

Ay
(1+x —infzp(u - u))N’

where A; > 1, N € N to be chosen later.

(4.12) Y(x) =

CN'| 1 exo
97 < 2 T4kg Then by (13), one

gets

o A ii
(4.13) 0> Z'ﬁ 1'(16;2%Z|ua1\—61)21~“

(m|‘y|—c2)( ZFﬁ)'

Note that in this computation A; denotes the largest eigenvalue of the perturbed
endomorphism A = A + B. At the origin p,, where we carry out the computation,
/\Nl coincides with the largest eigenvalue of A. However, at nearby points, it is a small
perturbation. We would take B — 0, and obtain the above differential inequality (4.13)
as well. This only holds in a viscosity sense because, if some eigenvalues coincide, the
largest eigenvalue of A may not be C? at the origin po.
16n C1

Case 1. Suppose ¥ |uq1| > A1, where Cy is the constant in (4.11). Then if we

choose A; > 1 such that
160n>C?
19| -100C, - ——L 50,

4.14 —
( ) 4(1 + Ko) P()Az
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the right-hand side of (4.13) is positive, which is a contradiction.

Case2. Y |ugl< 12(’)’—:’/\1. Fix the constants A;, A,, N in Case 1. Then by (4.13) and
(4.14) it follows that
EK0 1o iy _16n°Cl i i
0> ——|¥'|(1+ ) F")-——= > F'"-Cy(1+ ) F") >0,
2(1 + KO) ( Z ) P0A2 Z ( Z )
which is a contradiction. So H cannot achieve its maximal value at interior point.
Thus the proof of Theorem 1.3 is complete. ]

5 The Dirichlet Problem on an Annulus of the Kahler Cone

In this section we consider the Dirichlet problem (1.9) on an annulus in the Kéhler
cone.

We first construct an admissible subsolution of Dirichlet problem (1.9) under the
assumption that condition (1.8) holds. Set u = v + 2A(r — a)(r - b), A > 1, where v
is the function satisfying condition (1.8).

By a simple computation, we have
_ 3 V.

v-1(09- aarg) ((r=a)(r-b)) = -6" 9
and

olu] = o[v] + Ap(r)V-16" A 0",
where 0" = dr + \/—_1”7 and @ =dr— \/—_1r11. Hence for A > 1, one derives

y(olu])" > ba(alu])"™" A @+ ba(g[u])"* A in M,
ﬂ|r=u = (Pa)ﬂ|r:b = Qps
provided that condition (1.8) holds.
Next we derive a priori C’-estimates and gradient estimates on the boundary. Let
w be a C? solution to
1 ow
S0 (Agw - —

> Agr)+87%;;<0 inM,

(5.1)
w=¢ onodM,

where g(X,Y) = @(X,JY) for X, Y € Tg M, A is the standard Laplacian with respect
to the Levi-Civita connection. The solvability of (5.1) can be found in [42].
Let u € C2(M) be any solution of Dirichet problem (1.9) with g[u] > 0. Then
1 ou
Eﬁb(r)( Agu— =~

Therefore the maximum principle yields that

Agi’) + El'lyl; > 0.

u<u<winM, u=u=w=¢ondM.
Hence there is a positive constant C* depending only on u and w, such that

sup |u| + sup |Vu| < C*.
(5.2) . P
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Once one derives boundary estimates for second derivatives sup,,, |V?u| < C,
equation (1.9) becomes uniform elliptic. Then the existence and uniqueness of the ad-
missible solution of equation (1.9) can be proved by the standard continuity method
and the maximum principle.

Theorem 5.1  Suppose that (1.8) holds. Then for any admissible solution
ueC*(M)nC*(M)

to Dirichlet problem (1.9), we have sup,,,, |V*u| < C, where the constant C > 0 depends
on [ul g7y and other known data.

5.1 Background on Sasakian Geometry

Sasakian manifolds, which can be viewed as the odd dimensional counterparts of
Kéhler manifolds, are odd-dimensional Riemannian manifolds whose metric cone
(C(M),2) = (M x R*,r%g + dr*) admits a Kahler structure. These manifolds can
be used to construct new Einstein manifolds in geometry. Moreover, they play an
important role in the AdS/CFT correspondence in mathematical physics. We refer
the reader to [5,16,17,30,31] and the references therein for relevant work on Sasakian
geometry from mathematicians and physicists.

As in the Kahler setting, the Sasakian metric can be locally generated by a free
real function of 2(n — 1) variables. More precisely, for any p € S, there is a local
basic function & and a local coordinate chart (zl, o2 x) € C" ! xR on a small
neighborhood U around p such that

f:i, g=n®n+2hzdz'dz, n=dx-v-1(hjde - h:d7),

ox
o= S{VA(L VAR L) wdz - vA(L - VAR ) s ),
et 0z’ ox oz’ Tox
and DC is spanned by
X; = a‘+\/—_1]’lii, Xi: ?.—\/__Ul*»i, 1<i<n-1,
0zt ox oz' ' ox
where 2dz'dZ’ = dz' ® dZ/ + dZ/ @ dzi, h; = 24 h - = Oh Moreover, one can

921> Vij T ozioz
change the local coordinates to normal coordinates such that h;(p) = 0, h;5(p) = 8ij,

and d(h;5)|, = 0. The proof can be found in [19].

For the normal local coordinate chart (z!,...,z""},x) on a Sasakian manifold
(8,1, & @, g),set (21,-+,2"1,Z) on U x R* c C(S), where Z = r + \/~1x, and

1,0 10 — 1/ 0 10
%55V a) T s(g Vs

where h is the Sasakian potential function (which is basic). Then JX; = V-1X5, JX =
—V-1X; for i =1,..., n. The background information on Sasakian manifolds can be
found in [4].
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5.2 Proof of Theorem 5.1
Given any point p = (g,a) € Sx {a} (or p = (g,b) € S x {b}), set
p(z) =disty;(z,p) and Qs={zeM:p(z) <8}, 0<d<1,
and
o(p)=(r-a)ora(p)=(b-r), wherep=(4,r)eM,GeS.

To construct a barrier function, we we will follow Guan [20] and employ a barrier
function of the form

(5.3) v:u—g+0—azin050for0<80<<1,

where u € C*(M) is the admissible subsolution of Dirichlet problem (1.9). The fol-
lowing lemma was first proved in [20] for domains in C”.

Lemma 5.2  There are positive constants N, t, and c; such that for small 6y we have

(5.4) v>0and Lv < —(1+ Fijgij) in Vs, :={zeM:0 <8}

Proof By the maximum principle, # > u. Thus v > 0in Qg,, 0 < §¢ << 1. By Lemma
2.2, we divide the proof into two cases as follows.

Case I |]\| 2 Ry. IfL(u—-u) < —sFijgij for the positive constant € in Lemma 2.2,

then
EKo G
Lu-—u)<—(1+Fg-).
(u ﬂ)_ 2(1+K0)( + gl])
Then we have (5.4). On the other hand, it follows from Lemma 2.2 and Lemma 2.1
that

F > erquﬁfj > eKog .

Note that |[Vr| = 1 and £(u — u) < 0. Then

Lv=L(u-u) —2Fi7rir7£ —a(1+ ZFijgij).

Case 2: |A| < Ro, F'1 > 9?; and Y, F"?gﬁ < C. 'The proof is similar, and we omit it
here. -

Tangential-Normal derivatives The tangential-normal case will be proved by con-
structing barrier functions. This type of construction of barrier functions follows
from[20,24,27].

Given p = (g,a) € Sx {a} (or p=(q,b) € S x {b}), we can pick the local coordi-
nates 2’ = (z{,...,2,),2; = x; + V-1 > where 32; is the interior normal direction to

oM at p. Here we identify p with z’ = 0 and assume that §i}(0) = d;jand {guB(O)}
is diagonal for 1 < a, 8 < n — 1. We also use the notations f,; = x, k-1 = y} and

V= a%;v =0;V, vy, = g—;’i, Vi = 81-514/, ...,etc.Let D = i(% - m%), a<2n-1
The proof of the following lemma can be found in [20,22]. We omit the proof here.
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Lemma 5.3 There is a positive constant Cy depending on
Sgp |Vu|’ |¢|C2,1(M) > |X|C°’l(ﬁ) >
M
and other known data such that

L(D(u~9)) < Co(sup|Vy| + Fg5) + Fluyu,
M
The barrier function will be given as ¥ = Ayv + Ayp? + D(u — u) — (1, — ¢yr )%,
where A; > A, > 1and v is the function in (5.3), i.e., v = u —u — 0% + 0.

On one hand, by Lemma 5.2 and Lemma 5.3, we know that L¥ < 0in Q4,(6 < 1)
if A; > A, > 1. On the other hand,

D(u-u)=0, [uy —¢y|<agp  ondMnQs,
p=0,|D(u—-u)|<ap  onodQs~ oM.
Therefore, ¥ > 0 on 0Q4. By the maximum principle ¥ > 0 on Q4. Note that ¥(p) =
0. Then
(5.5) |V%Du(p)‘ <G,
where C is a positive constant depending on |u[¢: 37, |42 a7y 1920 37y V] 1 a1
and other known data.
Pure normal/pure tangential derivatives: Next, we need to consider boundary
estimates for pure normal derivatives and pure tangential derivatives. Since u —u =0

on dM, we can therefore write 4 — u = ho, in Vs := {z € M : 0(z) < &} for some
0< &< 1 Given p =(q,rp) € 0M, 1, = a or b at p. It follows that
oh 9o,

)
g(u_ﬂ) _504_ Ehy

(u- ﬂ)aﬁ = haﬁa + haaﬁ+ hﬁaa +ho,g,
(M _E)tatg = htatﬂo' + hta Uttg + htﬂo'ta + ho'tatﬂ.

For a, 3 < n -1, wehaveat p

o(u—-u o(u—-u
(5.6) (u-u)5= %raﬁ and (4 —u)1e, = %rmﬁ.
In particular, by (5.6), we have
(5.7) gaﬁ[u] = gag[g] atp, fori<a,f<n—1, suplus,l<Co.
aM

Here we use (5.2), and we obtain the uniform bound of second derivatives for pure
tangential. Finally, we shall show that g,7[u](p) < C.
We rewrite equation (1.9) as follows

[ny(g[u])"™" = (n=Dbi(g[u])"? Aw - (n—2)ba(g[u])" > A @*]
AV g[uldz™ A dZ" = (%),

where (#) does not have any terms containing \/~1g,7dz™ A dz'". Then it follows
from (5.5), (5.7), and (18) that g,[u] (p) has a uniform bound g,i[u](p) < C.
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