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Abstract

In 1976, Wiegold asked if every finitely generated perfect group has weight 1. We introduce a new
property of groups, finitely annihilated, and show that this might be a possible approach to resolving
Wiegold’s problem. For finitely generated groups, we show that in several classes (finite, solvable, free),
being finitely annihilated is equivalent to having noncyclic abelianisation. However, we also construct
an infinite family of (finitely presented) finitely annihilated groups with cyclic abelianisation. We apply
our work to show that the weight of a nonperfect finite group, or a nonperfect finitely generated solvable
group, is the same as the weight of its abelianisation. This recovers the known partial results on the
Wiegold problem: a finite (or finitely generated solvable) perfect group has weight 1.
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1. Introduction

The weight of a group G, denoted w (G), is the smallest integer n such that G is
the normal closure of n elements. In 1976, Wiegold [12, Question 5.52] posed the
following problem, connecting groups of weight 1 with perfect groups (those with
trivial abelianisation):

Does every finitely generated perfect group have weight 1?

There has been little progress on this problem since it was first posed. In this
paper we try a new approach, by introducing a new property of groups (called finitely
annihilated), and connecting the problem with this new property.

Firstly, recall that a group is said to be residually finite if every nontrivial element
lies outside some (proper, normal) finite index subgroup. That is, the intersection of all
proper, normal, finite index subgroups is the trivial element. Residually finite groups
have been the subject of extensive study. They contain the class of fundamental groups
of 3-manifolds, shown by combining a result of Hempel [7] with Perelman’s solution
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[2] Finitely annihilated groups 405

to the geometrisation conjecture [14]. In the case of finitely presented groups, they
have solvable word problem [13] and are Hopfian [6]. However, what if we were to
invert this definition and consider what would happen if we insisted that each element
lies inside (rather than outside) some proper normal finite index subgroup? This forms
the basis for our new group property.

We say a group is finitely annihilated (abbreviated to F-A) if it is the set-theoretic
union of all its proper, normal, finite index subgroups. We use the term finitely
annihilated because the property is equivalent to the following: G is F-A if for every
element g ∈ G there are a finite nontrivial group H and a surjection φ : G� H with
φ(g) = e, that is, each element is annihilated in some nontrivial finite quotient. Clearly,
then, F-A groups must have (finite index) normal subgroups, and so cannot be simple.

Being F-A is independent of many well-studied group properties; that is, having one
of these properties neither implies nor precludes being F-A. Straightforward examples
of such properties include finite, solvable, Hopfian, abelian, hyperbolic, free and
solvable word problem. Such examples come about from the fact that, if H is an
F-A group, and G surjects onto H, then G is also F-A (Proposition 3.4). Thus, every
group G embeds into some F-A group (for example, G × C2 × C2), so showing that a
group G is F-A can be reduced to showing that G has some F-A quotient. Conversely,
using the fact that every finitely generated group embeds into a finitely generated group
with no finite index subgroups (Lemma 4.3), we see that every finitely generated group
embeds into a non-F-A group. So, F-A is a property that is far from being preserved by
subgroups. What we can deduce, however, is that finitely generated groups which are
not F-A must have cyclic (or trivial) abelianisation, as all finitely generated noncyclic
abelian groups are F-A (Lemma 5.6).

An algebraic property ρ of finitely presented groups is said to be Markov if there
exist two finitely presented groups G+,G− such that G+ has ρ, yet G− does not embed
in any finitely presented group with ρ. A property ρ is co-Markov if its complement
(that is, the property ‘not ρ’) is Markov. The preceding paragraph implies that F-A
is neither a Markov property nor a co-Markov property (Corollary 4.8). A standard
technique used to show that a group property is undecidable is to show that it is either
Markov or co-Markov [13]; such a strategy will not work for F-A groups. Whether
being F-A is a decidable property amongst finitely presented groups remains an open
problem. We note that a recent result by Bridson and Wilton [2] shows that having a
nontrivial finite quotient is not a decidable property amongst finitely presented groups.

A useful way to show that a group G is not F-A is to show that G is the normal
closure of a single element (that is, w (G) = 1). The converse does not hold though; in
Theorem 4.6 we construct a 3-generator finitely presented group which is neither F-A
nor of weight 1. So, F-A groups are not just the groups of weight greater than 1.

In our main technical result (Theorem 5.11) we prove that, if a finitely generated
group G is free, solvable or finite, then G is F-A if and only if Gab (the abelianisation
of G) is noncyclic. This result enables us to recover the only known partial results on
the Wiegold problem: every finite (or finitely generated solvable) perfect group has
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weight 1 (Corollary 5.18). This leads us to believe that understanding F-A groups
could eventually prove very useful in resolving the Wiegold problem.

It would be tempting to try and show that all finitely generated groups satisfy the
conclusions of Theorem 5.11 (that is, a finitely generated group G is F-A if and only
if Gab is noncyclic). However, we use a construction by Howie [8] to show that
for any triple of distinct primes p, q, r, the group Cp ∗ Cq ∗ Cr is F-A and yet has
cyclic (nontrivial) abelianisation (Theorem 5.15). It is an open questions as to whether
there exists a finitely generated F-A group with trivial abelianisation (that is, a finitely
generated perfect F-A group). If such a group exists then it must have weight greater
than 1, and so finding such a group would resolve the Wiegold problem in the negative.

2. Definitions

2.1. Notation. If P = 〈X | R〉 is a group presentation with generating set X and
relators R, then we denote by P the group presented by P; P is said to be a finite
presentation if both X and R are finite. If X is a set, then we denote by X−1 a set of
the same cardinality as X (considered an ‘inverse’ set to X). We write X∗ for the set of
finite words on X ∪ X−1, including the empty word ∅. If g1, . . . , gn are a collection of
elements of a group G, then we write 〈g1, . . . , gn〉 for the subgroup in G generated by
these elements, and 〈〈g1, . . . , gn〉〉

G for the normal closure of these elements in G. The
weight of G, w (G), is the smallest n such that G = 〈〈g1, . . . ,gn〉〉

G; to remove ambiguity,
we set w ({e}) := 0. If G is a group, then we write G′ for the derived subgroup of G,
and Gab := G/G′ for the abelianisation of G, where the commutator [x, y] is taken to
be xyx−1y−1; a group G is said to be perfect if Gab � {e}.

2.2. Definition of finitely annihilated groups. We now formally define finitely
annihilated groups, and hope that the reader will pick up the motivation for this by
comparing it with that of a residually finite group as discussed in the introduction.

Definition 2.1. Let G be a group. An element g ∈ G is said to be finitely annihilated
if there is a finite group Hg and a homomorphism φg : G → Hg such that φg(g) = e
and Im (φg) , {e}. We say a nontrivial group G is finitely annihilated (F-A) if all its
nontrivial elements are finitely annihilated. From hereon, we insist that the trivial
group is not F-A.

Note that we may drop the requirement that Im (φg) is nontrivial, and instead insist
that φg is a surjection to a nontrivial finite group H; this is clearly equivalent. The
following equivalence is useful in the study of such groups.

Lemma 2.2. A group G is F-A if and only if it is the union of all its proper, normal,
finite index subgroups.

We say a normal subgroup N C G is maximal normal if G/N is simple.

Proposition 2.3. A group G is F-A if and only if it is the union of all its maximal
normal, proper, finite index subgroups.
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Proof. Suppose G is F-A. Let N C G be proper and of finite index. Then the finite
group G/N is either simple (in which case N is maximal normal in G) or has a
maximal normal, proper subgroup whose preimage in G is maximal normal, proper,
and contains N. So, we can replace each such N by a maximal normal, proper, finite
index subgroup containing it. The converse is immediate. �

From hereon, we will usually find it convenient to use the covering by all maximal
normal, proper, finite index subgroups when working with F-A groups.

3. Properties of F-A groups

We note some necessary and sufficient conditions for a group to be F-A.

Proposition 3.1. Let G be a nontrivial group. Then G is F-A if and only if neither of
the following hold.

(1) G has weight 1.
(2) There is some g ∈ G such that G/〈〈g〉〉G has no proper finite index subgroups.

Proof. Suppose G is F-A. Then, for each g ∈ G, G/〈〈g〉〉G must have a nontrivial finite
quotient; thus, neither condition can hold. Conversely, if neither of the two conditions
hold, then for any g ∈ G we must have that G/〈〈g〉〉G is nontrivial and has a finite
quotient, so G is F-A. �

Proposition 3.2. Let G be a finitely generated group which is neither F-A nor of weight
1. Then G has an infinite simple quotient.

Proof. If w (G) > 1, then by Proposition 3.1 there exists g ∈ G with G/〈〈g〉〉G having
no proper finite index subgroups. So, either this is simple or itself has a proper
normal subgroup H1 of infinite index. Then this quotient by H1 is simple or has
a proper normal subgroup H2 of infinite index. Continuing in this manner we get
H1,H2, . . . . Each Hi has a preimage in G, call this H̃i, all normal in G. We note that
〈〈g〉〉G C H̃1 C H̃2 C . . . . But G is finitely generated, so, by Zorn’s lemma, the normal
subgroup H =

⋃
i∈N H̃i is necessarily of infinite index, and moreover G/H is simple. �

Corollary 3.3. Let G be a finitely generated group with no infinite simple quotients.
Then G is F-A if and only if w (G) > 1.

Being F-A is independent of many other group properties. For example, there
is no implication (in either direction) between being F-A and being any of finite,
residually finite or having solvable word problem. Moreover, being F-A is neither
a quasi-isometry invariant nor preserved by HNN extensions.

Looking at quotients is an important tool in understanding F-A groups, which we
do now.

Proposition 3.4. If G surjects onto an F-A group, then G must be F-A.
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Proof. The quotient G/H is F-A and thus can be written as G/H =
⋃

i∈I Ni, where
each Ni is proper, normal and of finite index. Let φ : G� G/H be the quotient map.
Then G = φ−1(

⋃
i∈I Ni) =

⋃
i∈I φ

−1(Ni). Moreover, each φ−1(Ni) is proper, normal and
of finite index in G, as φ is a surjection. Thus, G is F-A. �

That is, being F-A is preserved under reverse quotients. In particular, if A is an F-A
group, and G any group, then A ∗G and A ×G will also be F-A.

The following gives a useful set of sufficient conditions which ensure that being
finitely annihilated is preserved under quotients.

Proposition 3.5. Let G be a finitely generated F-A group and N C G. If G =
⋃

i∈I Ni is
a covering by proper, normal, finite index subgroups and N is contained in every Ni,
then G/N is F-A.

Proof. Take the quotient map f : G�G/N. Then f (Ni) = Ni/N will be normal and of
finite index in G/N, as f is a surjection. But since N C Ni by hypothesis, we have that
(G/N)/(Ni/N) � G/Ni and hence f (Ni) is also proper in G/N. So, we have

G/N = f (G) = f
(⋃

i∈I

Ni

)
=

⋃
i∈I

f (Ni)

and hence
⋃

i∈I f (Ni) is a proper, normal, finite index covering of G/N. �

We will make very frequent use of the above two results later on, when finding an
alternative characterisation of F-A groups.

Clearly, no nontrivial simple group is F-A. We now give a few explicit examples of
other groups which are (or are not) F-A.

Lemma 3.6. G = Cp ×Cp is F-A for any prime p.

Proof. G =
⋃

g∈G〈g〉 is a covering by proper, normal, finite index subgroups. �

We make very frequent use of the following lemma, which is immediate from the
above lemma and Proposition 3.4.

Lemma 3.7. Suppose a finitely generated group G surjects onto Cp ×Cp for some prime
p. Then G is F-A.

Lemma 3.8. Let X be a set. Then the free group on X, FX , is F-A if and only if |X| ≥ 2.

Proof. If |X| ≥ 2, then FX surjects onto C2 × C2; thus, FX is F-A by Lemma 3.7. If
|X| ≤ 1, then FX is cyclic and hence not F-A by Proposition 3.1. �

Proposition 3.9. A free product G ∗ S of a group S having no proper normal finite
index subgroups, and a group G of weight 1, is never F-A.

Proof. Since w (G) = 1, there exists g ∈ G such that 〈〈g〉〉G = G. Hence,
〈〈g〉〉G∗S = 〈〈G〉〉G∗S and so (G ∗ S )/〈〈g〉〉G∗S = (G ∗ S )/〈〈G〉〉G∗S � S . Suppose N
is a proper, normal, finite index subgroup of G ∗ S containing g. Then N
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contains 〈〈G〉〉G∗S and so

(G ∗ S )/N � ((G ∗ S )/〈〈G〉〉G∗S )/(N/〈〈G〉〉G∗S ) � S/(N/〈〈G〉〉G∗S ).

So, S has a proper, normal, finite index subgroup, which is impossible. �

4. Embeddings, constructions and decidability
We investigate the question of whether finitely presented F-A groups are

algorithmically recognisable. The following two results, originally due to Higman,
can be found in [15].

Theorem 4.1 (Higman [15, page 9]). Define the Higman group H by

H := 〈a, b, c, d | aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.

Let φ : H → G be a homomorphism to some group G. Then φ(a), φ(b), φ(c), φ(d) all
have finite order if and only if they are all trivial.

What interests us more is the following consequence.

Lemma 4.2. The Higman group H has no proper subgroup of finite index and is torsion-
free.

Proof. Let G ≤ H be a finite index subgroup. Then G has a subgroup K which is
normal in H and of finite index. So, we have the projection map φK : H → H/K,
where H/K is finite. The images of a, b, c, d under this map all have finite order and
thus are trivial by Theorem 4.1. But H/K is generated by these images and is thus
trivial. So, K = H and hence G = H. For the second part, note that the construction
of H (see [15]) is via a finite sequence of amalgamated products and HNN extensions,
beginning with free groups. Hence, it is torsion free. Hence, by the torsion theorem
for amalgamated products and HNN extensions (see [5, Theorem 6.2]), H is torsion
free. �

The author wishes to thank Rishi Vyas for his contribution to the proof of the
following lemma.

Lemma 4.3. Any finitely presented group G can be uniformly embedded into a
2-generator finitely presented group with no finite index subgroups.

Proof. Let G = 〈X|R〉 be any finitely presented group. We show that G embeds into
some finitely presented group which is not F-A. Take the free product of G with the
Higman group H, which has presentation

G ∗ H = 〈X, a, b, c, d | R, aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.

Now form the 2-generator finitely presented Adian–Rabin group (G ∗ H)(a) over the
word a (see [13, Lemma 3.6]). This group has no proper, finite index subgroups.
For suppose so; then it would have a proper, normal, finite index subgroup K. Then
(G ∗ H)(a)/K is finite, so, by Theorem 4.1, the image of a in this quotient is trivial.
But, by the Adian–Rabin relations, this means that the entire quotient is trivial. Hence,
K = (G ∗ H)(a). Finally, since a , e, we observe that G ↪→ G ∗ H ↪→ (G ∗ H)(a),
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where (G ∗ H)(a) is a group without any proper subgroups of finite index and thus
not F-A. �

Combining this with Proposition 3.1, we have the following theorem.

Theorem 4.4. Every finitely presented group G can be embedded (uniformly) into some
2-generator finitely presented group for which no element is finitely annihilated and
hence is not F-A.

We now give examples of groups which are neither F-A nor the normal closure of
one element. The additive nationals Q is an obvious example, as it has no finite index
subgroups. However, we construct a finitely presented example. To do this, we require
a partial result on the Kervaire conjecture, found as Theorem A in [10].

Theorem 4.5 (Klyachko [10, Theorem A]). Let G be torsion free and nontrivial. Then
the group G ∗ Z has weight at least 2.

The following result, showing that being F-A is not equivalent to being weight 1,
was inspired by a correspondence between the author and Mathieu Carette.

Theorem 4.6. There is a 3-generator finitely presentable group which is neither F-A
nor the normal closure of any one element.

Proof. Take the presentation H for the Higman group from Theorem 4.1 and form
the 2-generator finitely presented Adian–Rabin group (see [13, Lemma 3.6]) with
presentation H(a) (where a is one of the generators of H). An argument almost
identical to the proof of Lemma 4.3 shows that H(a) defines a finitely presented,
infinite group with no finite index subgroups; that this group is torsion free follows
from the torsion freeness of H and [5, Corollary 6.3]. Now form G := H(a) ∗ Z. Then
G is neither the normal closure of any single element (by Theorem 4.5) nor F-A (by
Proposition 3.9). �

We recall the definition of a Markov property.

Definition 4.7. An algebraic property of finitely presented groups ρ is a Markov
property if there exist two finitely presented groups G+,G− such that:

(1) G+ has the property ρ;
(2) G− does not have the property ρ, nor does it embed into any finitely presented

group with the property ρ.

It is a result by Adian and Rabin (see [13, Theorem 3.3]) that no Markov property
is algorithmically recognisable amongst finitely presented groups; this is usually the
way one shows a given property is algorithmically unrecognisable. However, as the
following corollary to Theorem 4.4 shows, this technique cannot be used here. We do
not know if being F-A is an algorithmically recognisable group property amongst all
finitely presented groups.

Corollary 4.8. Being F-A is neither a Markov property nor a co-Markov property.
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5. Classification and applications of F-A groups

In this section, we describe a straightforward method to determine if a group is F-A,
provided it lies in some particular collection of classes of groups.

The following result (see [4, Theorem 1]) suggests that there is a strong relationship
between being F-A and having noncyclic abelianisation.

Theorem 5.1 (Brodie–Chamberlain–Kappe [4, Theorem 1]). A group G has a
nontrivial finite covering by normal subgroups if and only if it has a quotient
isomorphic to an elementary p-group of rank 2 for some prime p.

Corollary 5.2. Let G be a group that can be expressed as the union of finitely many
proper, normal, finite index subgroups (and thus is F-A). Then G has a quotient
isomorphic to Cp ×Cp for some prime p.

We will eventually use the above result to characterise several classes of F-A groups
in Theorem 5.11. We begin with a characterisation of finite F-A groups. The following
lemma is immediate from the structure theorem for finitely generated abelian groups
(see [9, Section I, Theorem 2.1]).

Lemma 5.3. Let G be a finitely generated abelian group. Then G is noncyclic if and
only if it surjects onto Cp ×Cp for some prime p.

Proposition 5.4. Let G be a finitely generated group with only finitely many distinct
finite simple quotients. Then G is F-A if and only if Gab is noncyclic.

Proof. If Gab is noncyclic, then it surjects onto Cp × Cp for some prime p and hence
is F-A by Lemma 3.6. Conversely, if G is F-A, then it can be written as the union of
all its maximal normal, proper, finite index subgroups (Proposition 2.3). But as G is
finitely generated, it can only have finitely many subgroups of a given index. Since the
index of these maximal normal, proper, finite index subgroups is bounded, there can
only be finitely many of them. So, by Corollary 5.2, G� Cp × Cp for some prime p
and hence Gab is noncyclic. �

Corollary 5.5. A finite group G is F-A if and only if Gab is noncyclic.

Similarly, we can now characterise finitely generated solvable F-A groups.

Lemma 5.6. Let G be a finitely generated abelian group. Then G is F-A if and only if
it is noncyclic.

Proof. If G is cyclic, then it is not F-A by Theorem 3.1. Conversely, suppose G is
noncyclic. Then, by Lemma 5.3, G surjects onto Cp × Cp for some prime p and so is
F-A by Lemma 3.7. �

Lemma 5.7. Let G be a nontrivial finitely generated group whose finite simple quotients
are all abelian (and hence finite cyclic). Then G is F-A if and only if Gab is noncyclic.
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Proof. If every finite simple quotient of G is abelian, then G′ is a subgroup of every
maximal normal finite index subgroup of G. So, if G is F-A, then, by Proposition 3.5,
Gab is F-A and hence noncyclic by Lemma 5.6. Conversely, if Gab is noncyclic, then,
by Lemma 5.6, G is F-A. �

Proposition 5.8. Let G be a nontrivial finitely generated solvable group. Then G is
F-A if and only if Gab is noncyclic.

Proof. Any finite simple quotient of a solvable group will be abelian, so just apply
Lemma 5.7. �

The following lemma was observed in conjunction with Tharatorn Supasiti.

Lemma 5.9. Let m, n be coprime positive integers. Then w (Cm ∗ Cn) = 1 and hence
Cm ∗Cn is not F-A.

Proof. Let P = 〈a, b | am, bn〉 be a finite presentation for Cm ∗ Cn. Then P = 〈〈ab−1〉〉P,
as m, n are coprime. So, by Proposition 3.1, P is not F-A. �

Combining this with Proposition 3.4, we get the following proposition.

Proposition 5.10. Let G be a two-generator group, where the generators are torsion
and of coprime order. Then G is not F-A.

We summarise our characterisation results so far in the following theorem.

Theorem 5.11. If G is finitely generated and lies in at least one of the following classes,
then G is F-A if and only if Gab (the abelianisation of G) is noncyclic.

(1) Free (Proposition 3.8).
(2) Solvable (Proposition 5.8).
(3) Having only finitely many distinct finite simple quotients (Proposition 5.4).
(4) Two-generator, with the generators having finite coprime order

(Proposition 5.10).

We now turn our attention to the ‘coverings’ definition of F-A groups.

Proposition 5.12. Define the following two conditions for groups.

Cond 1: G is F-A if and only if Gab is noncyclic.
Cond 2: G can be covered by all its proper, normal, finite index subgroups if and only

if there exists a finite subcover.

Then a set S of finitely generated groups satisfies Cond 1 if and only if it satisfies
Cond 2.

Proof. Assume S satisfies Cond 1. Given a finitely generated group G which can
be expressed as the union of all its proper, normal, finite index subgroups, we thus
have that G is F-A. So, by hypothesis, Gab is noncyclic and so, by Lemma 5.3,
G surjects onto Cp × Cp for some prime p (say via the map f : G � Cp × Cp).
Take a finite covering Cp × Cp =

⋃n
i=1 Ni by proper, normal, finite index subgroups.
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Then G = f −1(Cp × Cp) = f −1(
⋃n

i=1 Ni) =
⋃n

i=1 f −1(Ni) is a finite covering by proper,
normal, finite index subgroups. The reverse direction is immediate. Thus, S satisfies
Cond 2.

Now assume S satisfies Cond 2. Let G be a finitely generated group. If Gab is
noncyclic, then, by Lemma 3.7, we have that G is F-A. Conversely, if G is F-A, then
by hypothesis G has a finite covering by proper, normal, finite index subgroups. So,
by Lemma 5.3, G surjects onto Cp ×Cp for some prime p and hence Gab is noncyclic.
Thus, S satisfies Cond 1. �

We are very interested in the sets of finitely generated groups which satisfy Cond 1
(equivalently, Cond 2). Using the following theorem from [8], we show that not all
sets of finitely generated groups satisfy this (this was pointed out to the author by Jack
Button).

Theorem 5.13 (Howie [8, Theorem 4.1]). Let w ∈ {x, y, z}∗ and define P := 〈x, y, z |
xp, yq, zr, w〉, where p, q, r are distinct primes and the exponent sums expx(w),
expy(w), expr(w) (sums of powers of all instances of x, y, z respectively in w) are
coprime to p, q, r, respectively. Then there exists a representation ρ : P→ SO(3) with
ρ(x), ρ(y), ρ(z) having orders precisely p, q, r, respectively.

Proposition 5.14. Let p, q, r be distinct primes. Then the group K � Cp ∗Cq ∗Cr with

presentation K := 〈x, y, z | xp, yq, zr〉 is F-A, but K
ab
�Cpqr is cyclic.

Proof. This closely follows the proof of [8, Corollary 4.2]. Take a word w ∈ {x, y, z}∗

and define P := 〈x, y, z | xp, yq, zr,w〉. Thus P � K/〈〈w〉〉K , with associated quotient map
h : K � P. If p divides expx(w), then P/〈〈y, z〉〉P � Cp and w is trivial in this quotient
Cp. A similar argument works when q divides expy(w) or r divides expz(w). Thus, w
is a finitely annihilated element of K in any of these three cases. What remains is the
case where expx(w), expy(w), expr(w) are each coprime to p, q, r, respectively. Now we
may apply Theorem 5.13 to show that there is a representation ρ : P→ SO(3) which
preserves the orders of x, y, z. But then the nontrivial image of ρ in SO(3) will be
residually finite, as it is a discrete subgroup of a linear group. So, since |ρ(x)| = p > 1,
there is a finite group H and a map f : Im (ρ)→ H with f (ρ(x)) , e. So, the map
f ◦ ρ ◦ h : K → H annihilates w and is a nontrivial map to a finite group. Thus, w is a
finitely annihilated element in this last case and so K is F-A. �

From this, we obtain a noncompactness result for coverings by proper normal finite
index subgroups.

Theorem 5.15. Let p,q, r be distinct primes. Then the group Cp ∗Cq ∗Cr is covered by
its (infinitely many) proper normal finite index subgroups, but has no finite subcover
by these.

It seems natural to now ask the following question.

Question 1. Does there exist a finitely generated, perfect, F-A group?
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We suspect the answer to the above question to be no. At this point it makes sense
to mention a closely related open problem in group theory, first posed by Wiegold
as Question 5.52 in [12]: ‘Is every finitely generated perfect group necessarily of
weight 1?’ If the answer to this is yes, then the answer to Question 1 would be no
(by Proposition 3.1).

We now apply some of our results to prove various facts about groups.

Theorem 5.16. Let n > 1 and G be a finitely generated group from a class given in
Theorem 5.11 such that G has no infinite simple quotients. Then w (G) = n if and only
if w (Gab ) = n, and w (G) ≤ 1 if and only if w (Gab ) ≤ 1.

Proof. We always have w (Gab ) ≤ w (G) since Gab = G/G′ is a quotient of G. Now
consider the case where G is in a class that is preserved under taking quotients (that
is, class 2 or 3). If w (Gab ) ≤ 1, then, since G belongs to a class from Theorem 5.11,
we have that G is not F-A. But G has no infinite simple quotients, so Corollary 3.3
shows that w (G) ≤ 1. If on the other hand w (Gab ) = n > 1, then take n elements
g1G′, . . . , gnG′ whose normal closure is all of G/G′. Setting K := G/〈〈g1, . . . , gn−1〉〉

G,
we see that w (Kab ) = 1 and hence w (K) = 1 by what we have just shown. So,
w (G) ≤ (n − 1) + 1 = n. But w (Gab ) = n, so w (G) ≥ n. Combining these gives that
w (G) = n = w (Gab ).

Finally, for the case where G is in class 1 or 4, the inequality follows from
elementary group theory. �

Since the class of finite groups is listed in Theorem 5.11, we have the following
immediate corollary, which is another way to resolve the Wiegold problem for finite
groups (already known in the literature, as a consequence of the main result by Kutzko
in [11]).

Corollary 5.17. Let n > 1 and let G be a finite or solvable group. Then w (G) = n if
and only if w (Gab ) = n, and w (G) ≤ 1 if and only if w (Gab ) ≤ 1.

Corollary 5.18. Nontrivial finite (or solvable) perfect groups have weight 1.

6. Generalisation: n-finitely annihilated

We can generalise the definition of being F-A groups in a similar way to the
generalisation of residually free groups to fully residually free groups (see [1]). Almost
all of our results for F-A groups carry over to our new definition in a natural way.

Definition 6.1 (cf. Definition 2.1). Let G be a group and n > 0. A collection of
n elements g1, . . . , gn ∈ G is said to be finitely annihilated if there is a nontrivial
finite group H and a surjective homomorphism φ : G� H such that φ(gi) = e for all
i = 1, . . . , n. We say a nontrivial group G is n-finitely annihilated (n-F-A) if every
collection of n elements in G is finitely annihilated. From hereon, we insist that the
trivial group is not n-F-A for any n.
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Using the following definition of Brodie from [3], we give an equivalent
interpretation of n-F-A groups, which is very useful in the study of such groups.

Definition 6.2. An n-covering of a group G is a collection of subgroups {Ni}i∈I over
an index set I such that, for any set of n elements {g1, . . . , gn} ⊆ G, there is some i ∈ I
with {g1, . . . , gn} ⊆ Ni.

So, an alternative equivalent interpretation of n-F-A is the following proposition.

Proposition 6.3 (cf. Proposition 2.3). A group G is n-F-A if and only if it has an
n-covering by maximal normal, proper, finite index subgroups.

It is then immediate that our definition of n-F-A groups really is a generalisation of
F-A groups, in the sense of the following lemma.

Lemma 6.4. Let G be n-F-A for some n. Then G is k-F-A for every k ≤ n.

We now go over our results for F-A groups, and draw analogies to n-F-A groups. We
state the most important of these, and provide proofs when not immediately obvious
from the F-A case (where no proof is given, see the analogous case for F-A groups;
the proof will be a straightforward adaptation).

Proposition 6.5 (cf. Proposition 3.1). Let G be a nontrivial group. Then G is n-F-A if
and only if neither of the following hold:

(1) w (G) ≤ n.
(2) There is some g1, . . . ,gn ∈G such that G/〈〈g1, . . . ,gn〉〉

G has no proper finite index
subgroups.

Just as in the F-A case, being n-F-A is preserved under reverse quotients.

Proposition 6.6 (cf. Proposition 3.4). Let G be a group for which there is some quotient
G/H which is n-F-A. Then G itself is n-F-A.

Moreover, whenever we take a suitable quotient, being n-F-A is preserved.

Proposition 6.7 (cf. Proposition 3.5). Let G be a finitely generated n-F-A group and
N C G. If G =

⋃
i∈I Ni is a proper n-covering by normal finite index subgroups, and N

is contained in every Ni, then G/N is n-F-A.

Proof. Take the quotient map f : G� G/N. Then f (Ni) = Ni/N will be normal and
finite index in G/N, as f is a surjection. But since N C Ni by hypothesis, we have that
(G/N)/(Ni/N) � G/Ni and hence f (Ni) is also proper in G/N. So, we have

G/N = f (G) = f
(⋃

i∈I

Ni

)
=

⋃
i∈I

f (Ni).

Moreover, if we take g1N, . . . , gnN ∈ G/N, then there is some j such that g1, . . . , gn ∈

N j and hence g1N, . . . , gnN ∈ NN j/N = N j/N = f (N j). So,
⋃

i∈I f (Ni) is an n-F-A
covering of G/N. �
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Lemma 6.8 (cf. Lemma 5.3). A finitely generated abelian group G has weight n if
and only if it surjects onto an elementary abelian p-group of weight n for some
prime p; Cn

p.

We now generalise the result by Brodie–Chamberlain–Kappe (Theorem 5.1) to the
case of n-coverings for finitely generated groups. This has been proved for general
groups by Brodie in [3, Theorem 2.6]. We provide a simple proof here for the finitely
generated case, and use it to prove the n-F-A analogue of our characterisation in
Theorem 5.11.

Theorem 6.9. A finitely generated group G has a finite proper n-covering
⋃k

i=1 Ni by
normal finite index subgroups if and only if w (Gab ) ≥ n + 1 (equivalently, if and only
if G surjects onto Cn+1

p for some prime p).

Proof. We need only prove the forward direction (the reverse is implied by
Proposition 6.6). We proceed by induction; the case n = 1 is true by Theorem 5.1.
Now suppose G =

⋃k
i=1 Ni exhibits the (n + 1)-F-A property. Then it also exhibits

the n-F-A property, so w (Gab ) ≥ n + 1. Take g ∈ G with gG′ in a generating set of
minimal size for Gab . As G is (n + 1)-F-A, then for all g1, . . . , gn there is an N j with
{g, g1, . . . , gn} ⊆ N j. So, G/〈〈g〉〉G is n-F-A and so has abelianisation of weight at least
n + 1. But then G has abelianisation of weight at least (n + 1) + 1 (as we annihilated
gG′, which was in a minimal generating set for Gab ), so the induction is complete. �

By combining the above two results, we deduce the following analogue of
Lemma 5.6.

Lemma 6.10 (cf. Lemma 5.6). Let G be a finitely generated abelian group. Then G is
n-F-A if and only if w (G) ≥ n + 1.

Many more of the results about F-A groups from Sections 4 and 5 can be generalised
to n-F-A groups, following the proofs of their F-A counterparts. Here we state (without
proof) the most useful of those; a characterisation of some n-F-A groups.

Theorem 6.11 (cf. Theorem 5.11). If G is finitely generated and lies in at least one of
the following classes, then G is n-F-A if and only if w (Gab ) ≥ n + 1.

(1) Free.
(2) Solvable.
(3) Having finitely many distinct finite simple quotients.

Acknowledgements

The author wishes to thank the graduate participants of the conference ‘Geometric
Group Theory’ (Poznan, June 2009) for their initial interest in this question, Rishi
Vyas for his many long and thoughtful discussions on the results contained in this
paper and Jack Button for sharing his extensive knowledge of existing results in group
theory.

https://doi.org/10.1017/S0004972714000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000355


[14] Finitely annihilated groups 417

References
[1] B. Baumslag, ‘Residually free groups’, Proc. Lond. Math. Soc. 17(3) (1967), 402–418.
[2] M. Bridson and H. Wilton, ‘The triviality problem for profinite completions’, (2014),

arXiv:1401.2273v1.
[3] M. A. Brodie, ‘Finite n-coverings of groups’, Arch. Math. 63 (1994), 385–392.
[4] M. A. Brodie, R. F. Chamberlain and L.-C. Kappe, ‘Finite coverings by normal subgroups’, Proc.

Amer. Math. Soc. 104(3) (1988), 669–674.
[5] M. Chiodo, ‘Finding non-trivial elements and splittings in groups’, J. Algebra 331 (2011),

271–284.
[6] P. de la Harpe, Topics in Geometric Group Theory (The University of Chicago Press, Chicago,

2000).
[7] J. Hempel, ‘Residual finiteness for 3-manifolds’, in: Combinatorial Group Theory and Topology,

Alta, Utah, 1984, Annals of Mathematics Studies, 111 (Princeton University Press, Princeton, NJ,
1987), 379–396.

[8] J. Howie, ‘A proof of the Scott–Wiegold conjecture on free products of cyclic groups’, J. Pure
Appl. Algebra 173(2) (2002), 167–176.

[9] T. Hungerford, Algebra (Springer, New York, 1974).
[10] A. A. Klyachko, ‘A funny property of sphere and equations over groups’, Comm. Algebra 21(7)

(1993), 2555–2575.
[11] P. Kutzko, ‘On groups of finite weight’, Proc. Amer. Math. Soc. 55(2) (1976), 279–280.
[12] V. D. Mazurov and E. I. Khukhro (eds.) The Kourovka Notebook (Siberian Division of Russian

Academy of Sciences, Institute of Mathematics, Novosibirsk, 2006).
[13] C. F. Miller III, ‘Decision problems for groups—survey and reflections’, in: Algorithms

and Classification in Combinatorial Group Theory, Mathematical Sciences Research Institute
Publications, 23 (eds. G. Baumslag and C. F. Miller III) (Springer, New York, 1992), 1–59.

[14] G. Perelman, ‘Ricci flow with surgery on three-manifolds’, (2003), arXiv:math/0303109v1.
[15] J. P. Serre, Trees (Springer, Berlin, 2003).

MAURICE CHIODO, Mathematics Department,
University of Neuchâtel, Rue Emile-Argand 11,
Neuchâtel 2000, Switzerland
e-mail: maurice.chiodo@unine.ch

https://doi.org/10.1017/S0004972714000355 Published online by Cambridge University Press

http://www.arxiv.org/abs/1401.2273v1
http://www.arxiv.org/abs/math/0303109v1
mailto:maurice.chiodo@unine.ch
https://doi.org/10.1017/S0004972714000355

	Introduction
	Definitions
	Notation
	Definition of finitely annihilated groups

	Properties of F-A groups
	Embeddings, constructions and decidability
	Classification and applications of F-A groups
	Generalisation: n-finitely annihilated
	References

