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Helicoidal particles and swimmers in a flow at
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In this paper, we consider the dynamics of a helicoidal object, which can be either a
passive particle or an active swimmer, with an arbitrary shape in a linear background
flow at low Reynolds number, and derive a generalized version of the Jeffery equations
for the angular dynamics of the object, including a new constant from the chirality
of the object as well as the Bretherton constant. The new constant appears from
the inhomogeneous chirality distribution along the axis of the helicoidal symmetry,
whereas the overall chirality of the object contributes to the drift velocity. Further
investigations are made for an object in a simple shear flow, and it is found that
the chirality effects generate non-closed trajectories of the director vector which
will be stably directed parallel or anti-parallel to the background vorticity vector
depending on the sign of the chirality. A bacterial swimmer is considered as an
example of a helicoidal object, and we calculate the values of the constants in the
generalized Jeffery equations for a typical morphology of Escherichia coli. Our
results provide useful expressions for the studies of microparticles and biological
fluids, and emphasize the significance of the symmetry of an object on its motion at
low Reynolds number.

Key words: micro-organism dynamics

1. Introduction

When we observe fluid flow, we sometimes perceive its motion via the motions
of objects immersed in the fluid, e.g. bubbles in a stream, clouds in the sky and
tracer particles in flow visualizations. The motions of a spherical microparticle under
a background flow are governed by Stokes’ law (Stokes 1851; Maxey & Riley 1983).
In the physical and biological world, however, particles immersed in a fluid are not
always spheres.

The simplest shape among non-spherical particles would be a spheroid, which
possesses an axis of continuous rotational symmetry, and the motions of such a
particle in simple shear flow under the assumption of negligible inertia have been
analytically solved (Jeffery 1922). In particular, the director vector of a spheroid
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traces a closed orbit, which is known as the Jeffery orbit, and the equations for
the time evolution of the director vector are referred to as the Jeffery equations
(Crowdy 2016). These angular dynamics have been widely used in the research of
fluid mechanics, including studies of the rheology of suspension (Hinch & Leal 1972;
Petrie 1999; Mueller, Llwwelln & Mader 2010) and particle motions in turbulence
(Voth & Soldati 2017).

The analytic results of these studies are very useful, and thus spheroidal swimmers
have been used for models of micro-organisms and other self-propelling particles or
swimmers, such as bioconvection (Pedley & Kessler 1992; Bearon, Hazel & Thron
2011), swimmer–swimmer and swimmer–wall hydrodynamic interactions (Spagnolie &
Lauga 2012), and swimmers in background flow (Zöttl & Stark 2013; Kantsler et al.
2014; Ishimoto 2017; Clifton, Bearon & Bees 2018; Walker et al. 2018).

The closed orbit of the particle director vector was first obtained by Jeffery
(1922) for a spheroid in a simple shear, and Bretherton (1962) later extended these
results and found that the motion of an arbitrary body of revolution in a shear is
identical to that of a spheroid, with his explanations further reinforced by Brenner
(1964b), who did not use the word axisymmetry for the body of revolution. From
the hydrodynamics point of view, a body of revolution is not only the object whose
motions are specified by the direction of the axis of symmetry, but also an object
in a class of symmetry known as helicoidal symmetry, which is defined by the
invariance of the hydrodynamic resistance tensors under the π/2-rotation around an
axis (Brenner 1964a,b). We call the object with this symmetry a helicoidal object.

A helix is well described as a helicoidal object. The use of helicoidal symmetry
has been introduced as a unidirectional approximation for the motion of rigid helices
by Chen & Zhang (2011) and as an axisymmetric propulsion in terms of bacterial
swimming by Ishimoto (2019) and Ishimoto & Lauga (2019). Chen & Zhang (2011)
performed numerical computations and found that the variation in the components of
resistive matrices remains less than 1 % during one cycle of the rotation of a helix
with a bacterial morphology. The validity of the symmetric reduction is also provided
by Kim & Rae (1991) who studied a rigid helix in a shear flow and compared the
computations from the slender-body theory with the azimuthal average approximation.

The motions of a chiral object such as a helix in a background flow have been
intensively studied in the last decade, and the coupling between the chirality and
the external fluid flow has been found to generate an additional drift force, which
enables us to sort the objects by the use of flow in a microdevice (Doi & Makino
2005; Makino & Doi 2005; Marcos et al. 2009; Eichhorn 2010; Chen & Zhang 2011;
Aristov, Eichhorn & Bechinger 2013; Hermans et al. 2015; Ro, Yi & Kim 2016).
This hydrodynamic coupling for a chiral object also leads to biased locomotion of the
bacteria in a shear flow (Marcos et al. 2012) and preferential rotation of a particle in
three-dimensional homogeneous isotropic turbulence (Kramel et al. 2015).

Extensions of the Jeffery orbits have also been made for chiral objects by Chen &
Zhang (2011), who studied the motion of a chiral rod-like object such as DNA and
chiral disk hexamers and proved that the director dynamics are identical to the Jeffery
orbit but with additional drift motion. The symmetry class of ‘isotropic helicoids’,
which possess a triaxial helicoidal symmetry, has also been studied, and the director
dynamics are the same as that of a simple sphere (Gustavsson & Biferale 2016).

Kramel et al. (2015) studied a chiral rod-like object with two connected helices of
opposite chirality, and they found the preferential rotation of a helicoidal particle
in three-dimensional homogeneous isotropic turbulence. They also proposed a
mathematical model that explains the biased orientation, considering additional
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rotational dynamics induced by the chirality-related hydrodynamic coupling. However,
note that the chirality effects were empirically introduced, and their particles possessed
additional fore–aft symmetry. Marcos et al. (2012) studied the locomotion of bacteria
in a shear flow. Bacteria can swim with a helical filamentous appendage, known as
a flagellum, rotated by a molecular motor at the base end of the flagellum. They
found that the bacterium tends to swim toward the background vorticity vector via
the hydrodynamic torque originating from the coupling between the bacterial flagellar
chirality and the background flow. These studies have shown the breakdown of the
Jeffery-type closed orbit by chirality. However, to the best of the author’s knowledge,
no general theories have been provided for the dynamics of chiral objects and
swimmers that provide a biased orientation in a background flow.

The aim of this paper is thus to provide an equation for the director vector of
a chiral object, considering a general shape with a particular symmetry – helicoidal
symmetry – and theoretically demonstrate how the biased orientation emerges. We also
consider a self-propelling bacterial swimmer as an example of a general helicoidal
object. However, the theoretical results of this paper are, of course, not limited to a
bacterial swimmer but applicable to any type of particle and swimmer under the same
symmetrical group.

The contents of the remainder of this paper are as follows. In § 2, we discuss our
problem setting and the general formulation of the motion of an object immersed
in a linear background flow. We also introduce helicoidal symmetry and discuss
the reduction of the degrees of freedom with additional symmetry. In § 3, we solve
the general equations of motion and derive the equations of motion for the director
vector d,

ḋ=Ω∞ × d+ β(I − dd) · E∞ · d+ α[(I − dd) · E∞ · d] × d, (1.1)

where Ω∞ and E∞ are the vorticity vector and the rate-of-strain tensor of the
background flow, respectively, and I is the identity tensor. The first two terms of
the right-hand side of (1.1) are identical to the Jeffery equation. The constant β
reflects the shape of the object and is known as the Bretherton constant (Kim &
Karrila 2005). The last term appears from the chirality of the object and α is a
new constant; thus, equation (1.1) can be referred to as a generalized version of the
Jeffery equations. We also derive the drift velocity and consider the dynamics of a
helicoidal object with an additional symmetry to discuss how the Jeffery orbits should
be extended. Section 4 is devoted to a detailed analysis for the case of a simple shear,
and the extended version of the Jeffery orbits for a helicoidal object will be discussed.
In § 5, we consider a model bacterial swimmer as an example of a helicoidal object
to consider the biased locomotion of an bacterial swimmer in a shear flow before
proceeding to § 6, where additional discussions and future perspectives will be made.

2. Hydrodynamics and symmetry
2.1. Problem setting

We consider the dynamics of a microscale object under a linear shear background flow.
Owing to the small size of the object, the fluid velocity field, u, is well described by
the Stokes equation,

µ∇2u=∇p, (2.1)

where the fluid velocity obeys the incompressible condition, ∇ · u = 0, and p is the
pressure field and µ is the viscosity constant.
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FIGURE 1. Schematic of an object with an arbitrary shape under a linear shear flow. We
consider the laboratory-fixed reference frame {ei}, and the body-fixed frame {êi} whose
origin is denoted by x0. The matrix R represents the rotation from the laboratory frame
to the body-fixed frame. The vector r represents the relative position to the origin x0. The
linear and angular velocities of the object are U and Ω , respectively. The background
linear flow field is indicated by u∞.

The no-slip boundary condition is imposed on the surface of the object, S, where
the fluid velocity coincides with the velocity of the object v. We allow the object to
self-propel by deformation, and then the velocity of the object is decomposed into the
linear and angular velocities, U and Ω and the deformation velocity, u′ (Yariv 2006;
Ishimoto & Yamada 2012). We introduce the two right-handed coordinate frames, the
laboratory frame {ei} (i = 1, 2, 3) and the body-fixed frame {êi} (i = 1, 2, 3) whose
origin is denoted by x0 (figure 1). Thus the no-slip boundary condition on S reads as

u(x)=U+Ω × r+ u′ on S, (2.2)

where r= x− x0. The linear velocity, U, is defined by U = dx0/dt, and the angular
velocity, Ω , is defined by using the rotation from the reference frame to the body-fixed
frame as dR/dt =Ω × R, where R is the rotation matrix from the laboratory frame
to the body-fixed frame.

The background flow field, u∞, is given in the absence of the object, and we assume
a linear flow, which satisfies the Stokes equations. The fluid velocity around the object
immersed in the fluid approaches the background flow in the far field, which gives
another boundary condition for the Stokes equation (2.1):

u(x)→ u∞ =U∞ +Ω∞ × r+ r · E∞, as x→∞. (2.3)

Here, U∞ is the background linear velocity, and Ω∞ is the background angular
velocity, which is obtained from the antisymmetric part of the velocity gradient
tensor (following Brenner (1964b), we define G = ∇u∞ as Gij = ∂u∞j /∂xi, although
the nabla operator is usually defined so that [∇a]ij = ∂ai/∂xj for a vector a. The
rest of the manuscript, however, is not affected by the change in this definition);
G = ∇u∞ · E∞ is the rate-of-strain tensor from the background flow, corresponding
to the symmetric part of the velocity gradient tensor, E∞ = (G + GT)/2, with the
superscript, T, representing the transpose of a tensor.

The dynamics of the object with an arbitrary shape in a background shear flow are
obtained by the force and torque balance equations due to the negligible inertia at low
Reynolds number. From the linearity of the Stokes equations, the force and torque on
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the object are written in the form (Brenner 1964b; Kim & Karrila 2005)

F= K · (U−U∞)+ CT
· (Ω −Ω∞)+ Γ : E∞ +Fprop, (2.4)

M= C · (U−U∞)+ Q · (Ω −Ω∞) + Λ : E∞ +Mprop. (2.5)

The symmetric tensors, K and Q, are known as the translational and rotational tensors,
respectively, and the coupling (pseudo-)tensor, C, is not symmetric in general. The
third-rank tensors, Γ and Λ, are known as the shear-force tensor and shear-torque
(pseudo-)tensor, respectively. The double dot product Γ :E∞ is defined as [Γ :E∞]i=
ΓijkE∞kj , where the repeated indices are summed over j, k ∈ {1, 2, 3}. These tensors are
all dependent only on the shape of the object. Note that Γ and Λ can be defined
without loss of generality so that they are symmetric with respect to the exchange of
the second and third indices, i.e., Γijk=Γikj and Λijk=Λikj, as the rate-of-strain tensor
is symmetric. We will use a ‘transpose’ symbol for the exchange of the second and
third indices for a third-rank tensor, which allows us to express (2.6) simply as

Γ = Γ T and Λ=ΛT. (2.6a,b)

The last terms in (2.4) and (2.5), denoted by Fprop and Mprop, respectively, correspond
to the propulsive force and torque generated by the deformation of the object.

For explicit forms of the tensors and propulsive force and torque, we introduce a
local hydrodynamic force on the surface of the object, f̂ (x), which is generated by a
rigid motion whose velocity is given by û(x)= Û + Ω̂ × r. Due to the linearity, the
surface force can be decomposed into f̂ =Σ · Û+Π · Ω̂ (Pozrikidis 1992), where Σ
and Π are the second-rank tensors known as translational and rotational surface force
resistance tensors and are functions of the instantaneous object shape as other second-
and third-rank tensors.

The decomposition enables us to express the propulsive force and torque (Yariv
2006; Ishimoto & Yamada 2012) by

Fprop =

∫
S

u′ ·Σ dS and Mprop =

∫
S

u′ ·Π dS. (2.7a,b)

The resistance tensors, K , C, Q, Γ and Λ, are also expressed by the translational
and rotational surface force resistance tensors, and the explicit forms are summarized
in appendix A. To specify the tensorial values that depend on the shape, we need
six degrees of freedom for each symmetric tensor, K and Q, and nine degrees of
freedom for the non-symmetric tensor C. Similarly, noting the relation (2.6) and the
incompressibility relation I : E∞ = 0, where I is the identity tensor, 15 parameters
represent each of the third-rank tensors Γ and Λ since the traceless condition of
E∞ leads to a further three gauge degrees of freedom which can be set to zero (see
Brenner (1964b) for a detailed discussions). In turn, we need 51 degrees of freedom
to be specified to derive the equations of motion for a particular object.

2.2. Helicoidal symmetry
We then follow the symmetric arguments by Brenner (1964a,b) to reduce the
degrees of freedom in the resistance tensors and categorize the motions of the
object, following the spirit of the hydrokinetic symmetry theory in late 19th century
developed for an object in an inviscid flow (Kirchhoff 1869; Kelvin 1871; Lamor
1884; Lamb 1932).
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ê1

ê2
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FIGURE 2. Schematics of objects with helicoidal symmetry. (a) A propeller with four
symmetric blades is attached at one end of a rod. The object is symmetric in a plane
including the axis of the helicoidal symmetry, and the motion is identical to that of a
‘body of revolution’. (b) An asymmetric, chiral four-bladed propeller is attached at one
end of a rod. (c) Asymmetric four-bladed propellers with opposite chirality are attached
at the ends of a rod. The object is symmetric in a plane perpendicular to the axis of the
helicoidal symmetry. (d) Asymmetric four-bladed propellers with the same chirality are
attached at the ends of a rod. The object is symmetric under a π-rotation around the axis
perpendicular to the axis of the helicoidal symmetry. The same four classes of symmetry
are shown for a bacterial swimmer in figure 3.

Let us impose the so-called helicoidal symmetry (Brenner 1964a,b) on the shape of
the object. This symmetry assumes that the resistance tensors, K ,C,Q, Γ and Λ, are
unchanged under the rotation of a coordinate system through a right angle around an
axis. We choose the axis of symmetry as ê1 for the body-fixed coordinates (figure 2),
and we write ê1 = d. Note that the hydrokinetic symmetry is a discrete symmetry, as
the invariance of the tensors are considered under a finite angle of rotation, not an
infinitesimal angle. Fries, Einarsson & Mehlig (2017) further discuss the motions of
particles with discrete symmetry.

In figure 2, some example objects with helicoidal symmetry are illustrated. These
objects consist of a rod and four-bladed propellers, whose blades are asymmetric
and thus chiral except for the ones used in figure 2(a). The objects in figure 2(c,d)
possess two propellers at both ends of a rod, but the chiralities of the propellers
are opposite. The symmetry of the object in figure 2(b) is minimal for a helicoidal
object, as the other three objects in figure 2 possess an extra symmetry; the object
(a) has reflectional symmetry in the ê1–ê2 plane, the object (c) also has reflectional
symmetry in a plane perpendicular to the ê1 axis, and the object (d) has π-rotational
symmetry around the ê3 axis (or, equivalently, the ê2 axis).

Such a reduction of motions has been frequently used for a bacterial swimmer that
rotates a helicoidal flagellum for self-propulsion (Purcell 1977; Lauga et al. 2006).
A helix does not rigorously possess helicoidal symmetry, but the time average over
the rotation around the axis of the helix enables us to describe the dynamics with
helicoidal symmetry.

The helicoidal symmetry also requires the condition that the propulsive force and
torque, Fprop and Mprop, are both aligned to the director vector, d, since these vectors
should be invariant under a π/2-rotation around d. This expression is reasonable as
a time-averaged value for a self-propelling object with a helical flagellum such as a
bacterium if the flagellum is attached normal to the cell surface (Chwang & Wu 1971;
Purcell 1977; Lauga et al. 2006).
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For a helicoidal swimmer, we therefore obtain Fprop= F0d and Mprop=M0d, where
F0 and M0 are, in general, time dependent. An example swimmer is a squirmer, which
is propelled by the tangential surface slipping velocity, and non-zero propulsive torque
can be generated by the swirling velocity modes (Ishimoto & Gaffney 2013; Pak &
Lauga 2014; Pedley, Brumley & Goldstein 2016). The shape of the squirmer should
not necessarily be a sphere but an arbitrary shape under helicoidal symmetry.

More generally, if we describe the propulsive force and torque by the time average
over the deformation period, and Fprop and Mprop are both aligned to the director vector
d, we can discuss the motions in the same manner. This description is validated if
the time scale of the deformation of the self-propelling particle is sufficiently faster
than the time scales of the change of its orientation by the background shear flow.
This slow background flow condition would usually be satisfied when one focuses on
the rheotactic response of a microswimmer; otherwise, the microswimmer would be
swept away by the background flow (Hill et al. 2007; Kaya & Kose 2012; Marcos
et al. 2012; Kantsler et al. 2014; Ishimoto & Gaffney 2015; Uspal et al. 2015).
A direct comparison was made for model mono-flagellated microswimmers such as a
mammalian sperm cell and Leishmania (Walker et al. 2018). Numerical simulations
showed that the orientation of a swimmer with a spheroidal cell body and a planar
sinusoidal flagellar waveform follows a Jeffery orbit within an error of the order
of 10−2, which suggests that the phase-averaged descriptions over the beat could be
widely used for microswimmer dynamics in a flow.

Figure 3 shows that the same four types of helicoidal objects with different
symmetries for theoretical model bacteria, as shown in figure 2. The model in
figure 3(a) consists of a rigid spheroidal cell body and a rod-like flagellum such as
in a simplified model without spinning motions (Spagnolie & Lauga 2012; Riley, Das
& Lauga 2018); this is a non-chiral body of revolution and possesses a reflectional
symmetry to a plane containing the axis of helicoidal symmetry. A more realistic
simple model is a spheroidal cell body with a helical flagellum, and the cell will
spin around the axis of the flagellum as it swims toward the axis (figure 3b). The
model in figure 3(c) has two flagella with different chiralities, where ‘L’ stands for
a left-handed helix and ‘R’ stands for a right-handed helix. This model is symmetric
in a plane perpendicular to the axis of the helicoidal symmetry, ê1, as in the model
in figure 3(c). In figure 3(d), a model with two flagella of the same chirality is
shown, and this is another example of a helicoidal object with additional π-rotational
symmetry around the axis perpendicular to ê1 as in the model in figure 3(d).

Although we will discuss the bacterial swimmer in a later section, we first start with
an arbitrary object with helicoidal symmetry to derive the equations of the dynamics
in a linear background shear flow. Following the discussions of Brenner (1964a,b)
and Happel & Brenner (1983), we may reduce the number of parameters within the
resistance tensors from 51 to 13, and the explicit form of the representation with
respect to the body-fixed frame is obtained as

K =K1dd+K2(I − dd), Q=Q1dd+Q2(I − dd),
C =C1dd+C2(I − dd)+C23(ê2ê3 − ê3ê2),

}
(2.8)

and

Γ = Γ1ddd+
Γ2

2
[(I − dd)d+ {(I − dd)d}T]

+
Γ3

2
[(ê2ê3 − ê3ê2)d+ {(ê2ê3 − ê3ê2)d}T], (2.9)
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L L L

R(c)(a)

(d)(b)

L

ê1

FIGURE 3. Schematics of models with helicoidal symmetry. The four symmetries are
shown as in the four types of objects in figure 2. (a) A spheroidal cell body with a slender
rod, which is a body of revolution with no chirality effects. (b) A spheroidal cell body
with a left-handed helical flagellum. (c) A spheroidal cell body with right-handed and
left-handed helical flagella. This object possesses an additional reflectional symmetry in a
plane perpendicular to the axis of helicoidal symmetry, ê1. (d) A spheroidal cell body with
two left-handed helical flagella. This object possesses an additional π-rotational symmetry
around the axis perpendicular to ê1.

Λ=Λ1ddd+
Λ2

2
[(I − dd)d+ {(I − dd)d}T]

+
Λ3

2
[(ê2ê3 − ê3ê2)d+ {(ê2ê3 − ê3ê2)d}T], (2.10)

where the transpose of a triad indicates the exchange of the second and third indices
as introduced before. The scalars K1, K2,Q1 and Q2 are all negative, but C23 can be
positive, negative or zero depending on the origin of the body-fixed frame. Here, C1
and C2 can take both signs, reflecting the chirality of the object, and they become zero
when the object is non-chiral. The representations of Γ and Λ follow the expressions
in Brenner (1964b), but there is a slight difference for the scalars, which become
identical, after replacement such that Γ1 = φ

(0)
1 + 2φ(0)2 and Λ1 = τ

(0)
1 + 2τ (0)2 , and

Γi = 2φ(0)i and Λi = 2τ (0)i , for i= 2, 3. The expressions in Chen & Zhang (2011) are
apparently similar, but they further reduce the representation assuming an additional
π-rotational symmetry about an axis perpendicular to d, which corresponds to the
symmetry illustrated in figure 2(d).

The helicoidal symmetry with an additional reflectional symmetry with respect to
the plane containing the d axis, as illustrated in figure 2(a), loses the chiral effects,
and we have the scalars Γ3 = Λ1 = Λ2 = 0, in addition to the scalars C1 = C2 = 0.
Thus the symmetry of this type is identical to a body of revolution, such as a spheroid,
whose motions in a simple shear are characterized by a single parameter known as the
Bretherton constant. The generalized helicoidal symmetry, which imposes invariance
under the rotation of an arbitrary fixed angle θ around d, is also identical to that for
a body of revolution if the reflectional symmetry in the plane containing the d axis is
further added (Brenner 1964a,b). Thus, with N being any positive integer, an object
with a N-bladed symmetric propeller attached to the end of a rod also has to follow
the Jeffery orbits of any bodies of revolution.

An additional reflectional symmetry, shown in figure 2(c), will lead to C1 = C2 =

C23 = 0 and Γ1 = Γ2 = Γ3 =Λ1 = 0, and only six scalars thus remain non-zero. The
π-rotational symmetry of figure 2(d) also reduces the number of non-zero scalars,
and from similar symmetric arguments, we find C23=Γ1=Γ2=Λ1=Λ2= 0. In these
two cases of additional symmetry, the helicoidal symmetry is not readily extended
to the generalized version of helicoid symmetry, which imposes an invariance under
the rotation of an arbitrary fixed angle θ around d. The exceptional case is the
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π/N-rotational invariant around d with additional π-rotational symmetry shown in
figure 2(d), an example being 2N-bladed, asymmetric chiral propellers attached to both
ends of a rod in the same manner as figure 2(d). In this case, symmetric arguments
result in the same result as the four-bladed case, where C23= Γ1= Γ2=Λ1=Λ2= 0,
and the remaining eight scalars are non-zero. In other cases, we need additional
scalars to represent the tensors in (2.8)–(2.10), but we will not consider this further
in this study.

3. Motions of a helicoidal object
3.1. Director dynamics

We then proceed to solve the equations of motion for the object with helicoidal
symmetry and derive the equations for the dynamics of the director, d. As we are
focusing on the time-averaged nature of the object, the 13 scalars of the resistance
tensors are constant values in time.

The dynamics of the object can be obtained from the force and torque balance
relations (2.4)–(2.5), and we consider that no external forces, such as gravity and
magnetic forces, are applied to the object. We then rewrite the shear-induced force
and torque by introducing new second-rank tensors Φ and Ψ that satisfy Γ : E∞ =
Φ · E∞ · d and Λ : E∞ =Ψ · E∞ · d. The explicit forms are given by

Φ = Γ1dd+ Γ2(I − dd)+ Γ3(ê2ê3 − ê3ê2), (3.1)
Ψ =Λ1dd+Λ2(I − dd)+Λ3(ê2ê3 − ê3ê2). (3.2)

Let us introduce a 6 × 6 tensor, known as the grand resistance tensor (Happel &
Brenner 1983),

K=
(

K CT

C Q

)
, (3.3)

and the force and torque balance equations (2.4)–(2.5), i.e., F=M= 0, yields(
U
Ω

)
=

(
U∞
Ω∞

)
−K−1

·

(
Φ · E∞ · d+Fprop
Ψ · E∞ · d+Mprop

)
. (3.4)

Solving the inverse of K will yield the detailed expressions for the swimming
velocities. This can be done using the matrix representation in the body-fixed frame,
and the results are given in the form

U=U∞ + A · E∞ · d+Uprop, (3.5)
Ω =Ω∞ + B · E∞ · d+Ωprop. (3.6)

The 3× 3 tensors, A and B are

A=∆−1
1 (−Q1Γ1 +C1Λ1)dd+∆−1

2 (−Q2Γ2 +C2Λ2 +C23Λ3)(I − dd)
+∆−1

2 (−Q2Γ3 −C23Λ2 +C2Λ3)(ê2ê3 − ê3ê2), (3.7)
B=∆−1

1 (C1Γ1 −K1Λ1)dd+∆−1
2 (C2Γ2 −C23Γ3 −K2Λ2)(I − dd)

+∆−1
2 (C23Γ2 +C2Γ3 −K2Λ3)(ê2ê3 − ê3ê2), (3.8)
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respectively, and the propulsive velocities, Uprop and Ωprop are

Uprop =∆
−1
1 (−Q1F0 +C1M0)d, (3.9)

Ωprop =∆
−1
1 (C1F0 −K1M0)d, (3.10)

where ∆1 and ∆2 are the determinants of the block matrix of the representation, given
by

∆1 =K1Q1 −C2
1 and ∆2 =K2Q2 −C2

2 −C2
23, (3.11a,b)

and both should be positive due to the negative definiteness of the grand resistance
tensor K.

The expression of the dynamics is simplified when we employ a new right-handed
orthogonal basis {d1, d2, d3} rather than the laboratory or body-fixed frame, such that

d1 = d, d2 = {(I − dd) · E∞ · d} × d, d3 = (I − dd) · E∞ · d. (3.12a−c)

Note that d2 and d3 are, in general, not unit vectors, but the lengths are the same,
|d2| = |d3|. When the director is aligned toward the vector E∞ · d, in other words,
when the director d corresponds to one of the principal axes of E∞, we cannot define
the basis since |d2| = |d3| = 0. However, as we will see below, the expansions of these
vectors enable us to proceed with the calculations straightforwardly, which can be
understood by the fact that the shear flow only generates motion along the director
vector when d coincides with one of the principal axes.

Using the relations (I − dd) · d3 = d3 and (ê2ê3 − ê3ê2) · d3 = d2, together with (3.6)
and (3.8), we obtain the angular velocity perpendicular to the director vector and its
time evolution, ḋ=Ω × d, as

ḋ=Ω∞ × d+ αd2 + βd3, (3.13)

where we use the ‘dot’ for the time derivative, and the coefficients α and β, which
are only determined by the shape of the object, are given by

α =
C2Γ2 −C23Γ3 −K2Λ2

K2Q2 −C2
2 −C2

23
and β =

−C23Γ2 −C2Γ3 +K2Λ3

K2Q2 −C2
2 −C2

23
. (3.14a,b)

Equations (3.13)–(3.14) are the generalized Jeffery equations for the director
dynamics of a helicoidal object in a linear background flow. The non-chiral Jeffery
orbit is obtained when α = 0 and −1 < β < 1, the latter of which corresponds to
the Bretherton constant. The new coefficient α appears from chirality effects, and
the objects no longer follow the Jeffery orbits, yielding a nonlinearity in the director
dynamics (3.13). In contrast, the Jeffery equations of the non-chiral object when α= 0
are still linear in d, and thus, the general motions are obtained from the analysis of
the eigenvalues and eigenvectors (Bretherton 1962).

The generalized Jeffery equations (3.13)–(3.14) do not seem to include the active
propulsive effects of a swimmer, but note that the equations hold for an active
microswimmer as well as a passive particle since the propulsive contributions, which
are parallel to the director vector, are decoupled from the angular dynamics.
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3.2. Motion of an object
We then proceed to consider the drift velocity, the linear velocity perpendicular to the
director vector, which is obtained from (3.5) and (3.7) as

(U−U∞) · (I − dd) = ∆−1
2 (−Q2Γ3 −C23Λ2 +C2Λ3)d2

+∆−1
2 (−Q2Γ2 +C2Λ2 +C23Λ3)d3, (3.15)

from which we find there is, in general, a non-zero drift motion by the linear
background shear flow. Similarly, the dynamics along the director vector are also
obtained from (3.5) to (3.10). Direct computations readily show that

U · dd=U∞ · dd+∆−1
1 (−Q1Γ1 +C1Λ1)E

∞
: ddd+Uprop, (3.16)

Ω · dd=Ω∞ · dd+∆−1
1 (C1Γ1 −K1Λ1)E

∞
: ddd+Ωprop, (3.17)

which contain a non-trivial velocity contribution from the shear in addition to the self-
propulsive velocities. This is in contrast to the drift velocity, which does not include
self-propulsive contributions.

For further clarification of the origins of the non-trivial velocity contributions, we
consider the reductions by an additional symmetry, as illustrated in figures 2(a,c,d)
and 3(a,c,d).

3.2.1. Helicoidal objects with reflectional symmetry in a plane containing the helix
axis

With this additional symmetry, the object loosens the chiral effects, and we have
C1=C2=Γ3=Λ1=Λ2= 0. The schematics are shown in figures 2(a) and 3(a). The
coefficients in the director equations (3.13) are then reduced to

α = 0 and β =
K2Λ3 −C23Γ2

K2Q2 −C2
23
, (3.18a,b)

which therefore show that the object traces the Jeffery orbits with the corresponding
Bretherton constant if a simple linear shear is applied. The drift velocity (3.15)
becomes

(U−U∞) · (I − dd)=
−Q2Γ2 +C23Λ3

K2Q2 −C2
23

d3, (3.19)

which has a non-zero value. If we consider a simple linear shear, where the object
periodically rotates following the Jeffery orbits, the time average of the vector d3 over
the period of a closed orbit then becomes zero, or 〈d3〉 = 0, with the time average
denoted by a bracket 〈 〉. Thus the net drift velocity vanishes, Udrift = 〈(U − U∞) ·
(I − dd)〉 = 0. The linear and angular velocity components toward the director vector
are obtained from (3.16) to (3.17), as

(U−U∞) · dd=−
Γ1

K1
E∞ : ddd−

F0

K1
d, (3.20)

(Ω −Ω∞) · dd=−
M0

Q1
d. (3.21)
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3.2.2. Helicoidal objects with reflectional symmetry in a plane perpendicular to the
helix axis

Similar to the above case, some scalars vanish and we have C1 = C2 = C23 = Γ1 =

Γ2=Γ3=Λ1= 0. The schematics are shown in figures 2(c) and 3(c). The coefficients
in the director equations are

α =−
Λ2

Q2
and β =

Λ3

Q2
. (3.22a,b)

The non-zero value of α therefore indicates the breakdown of the Jeffery orbits for
this type of object. The drift velocity, however, vanishes, since

(U−U∞) · (I − dd)= 0 (3.23)

from (3.15). The linear and angular velocities toward the director vector are also
obtained as

(U−U∞) · d=−
F0

K1
and (Ω −Ω∞) · d=−

M0

Q1
, (3.24a,b)

which indicates that only the propulsive linear and angular velocities appear.

3.2.3. Helicoidal objects with π-rotational symmetry around an axis perpendicular to
the helix axis

This symmetry corresponds to the schematics in figures 2(d) and 3(d). The director
dynamics are reduced by the vanishing scalars, C23= Γ1= Γ2=Λ1=Λ2= 0, and we
have the coefficients

α = 0 and β =
K2Λ3 −C2Γ3

K2Q2 −C2
2
, (3.25a,b)

which again shows that the object should follow the Jeffery orbits if it is immersed
in a simple linear shear, as obtained by Chen & Zhang (2011). The drift velocity is
calculated as

(U−U∞) · (I − dd)=
−Q2Γ3 +C2Λ3

K2Q2 −C2
2

d2, (3.26)

which reflects the chirality, as the scalar C2 flips its sign depending on the sign of the
chirality. When the object is in a simple linear shear and exhibits a periodic director
motion as in the Jeffery orbit, the drift velocity yields a non-zero value after the time
average over the period of rotation, and the direction of the drift motion is parallel or
anti-parallel to the background vorticity vector. Finally, we show the expressions for
the linear and angular velocities along the director vector:

(U−U∞) · d=
−Q1F0 +C1M0

K1Q1 −C2
1

and (Ω −Ω∞) · d=
C1F0 −K1M0

K1Q1 −C2
1
, (3.27a,b)

which simply correspond to the propulsive velocities.
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e3(a) (b) e3

Ø∞

e1 e1
e2 e2

u∞ d

œ

ƒ

FIGURE 4. (a) Schematics of a background simple shear flow and (b) the angle variables
for the director vector. (a) A simple shear is considered, u∞ = γ ye1, where γ > 0 is the
shear strength. The background vorticity vector is then directed to the negative e3 axis.
(b) The director dynamics are parameterized by the two angles, the polar angle θ ∈ [0,π]
measured from the e3 axis and the azimuthal angle φ ∈ (−π, π] measured from the e2
axis toward the e1 axis.

4. Dynamics in a simple shear
In this section, we proceed to the director dynamics (3.13) in a simple linear shear

to compare it with the Jeffery orbits. We assume that the background flow u∞ is a
simple shear given by u∞ = γ ye1 with shear strength γ > 0 as schematically shown
in figure 4(a). The background vorticity vector is Ω∞ =−(γ /2)e3, which is directed
toward the −e3 axis. The trajectories of a particle or a swimmer are, in general, not
simple, since the equations only provide the instantaneous time-dependent velocity,
and the background flow depends on the instantaneous position. We thus hereafter
focus on the director dynamics of a helicoidal object.

4.1. Angle dynamics
The director dynamics can be described by the two angle variables, for which we
use the polar and azimuthal angles as shown in figure 4(b). The director vector, d=
dxe1 + dye2 + dze3, is parameterized as

dx = sin θ sin φ, dy = sin θ cos φ and dz = cos θ. (4.1a−c)

After some mathematical manipulation, we may rewrite (3.13) as

ḋx = γ

[
dy

2
+ β

(
dy

2
− d2

x dy

)
+
α

2
dxdz

]
, (4.2)

ḋy = γ

[
−

dx

2
+ β

(
dx

2
− dxd2

y

)
−
α

2
dydz

]
, (4.3)

ḋz = γ
[
−βdxdydz +

α

2
(d2

y − d2
x)
]
. (4.4)

By substituting the expressions (4.1) into the above equations, we finally obtain the
ordinary differential equations for the angle variables as

dθ
dt
= γ

(
β

4
sin 2θ sin 2φ −

α

2
sin θ cos 2φ

)
, (4.5)
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dφ
dt
= γ

(
1
2
+
β

2
cos 2φ +

α

2
cos θ sin 2φ

)
. (4.6)

The shear strength only changes the time scale of the dynamics, and we hereafter fix
γ = 1. When α = 0, we readily obtain the angle dynamics of the periodic motion
known as the Jeffery orbits since the φ dynamics are integrable. However, in the
general case when α 6= 0, the angle variables are coupled, and the director dynamics
become more complicated.

Another extreme case of periodic motion is obtained when β = 0. The equations
(4.5)–(4.6) are integrable, and the integral curve is given by

α sin 2φ sin2 θ − 2 cos θ = const. (4.7)

In figure 5, the trajectories of the angles in the phase space are shown for several
sets of parameters, α and β. The parameter values associated with figure 5 are
plotted in the β–α plane of figure 6, where the structures of the dynamical systems
of (4.5)–(4.6) are summarized, although their detailed analysis is postponed until § 4.2.
Hereafter, we consider a non-negative α > 0, since the dynamics with negative α are
identical after a change in the variable θ 7→π− θ , as readily found from (4.5)–(4.6).

When α = 0, periodic Jeffery orbits are obtained (figure 5a). By the definition of
the angle φ (figure 4b), the object rotates around the background vortex vector Ω∞

with an increase of φ as time progresses. With the additional α term, the orientation of
the chiral object is biased depending on the sign of α, as shown in figure 5(b), where
the parameters (β, α)= (0.8, 0.2) are used. We find from the figure that the angle θ
approaches θ ≈π, where the director vector is aligned toward the background vortex
vector Ω∞. In this particular example, an object with an initial angle of θinit = π/4
reaches the value of θ ≈ 0.8π after a 2π-rotation of φ.

Closed orbits are also obtained when β = 0, and an example case is shown in
figure 5(c), with the values of parameters (β, α) = (0, 0.5). The non-zero values of
α and β lead to biased director dynamics, though the negative sign of β causes the
director vector to approach θ ≈ 0, which is anti-parallel to Ω∞ (figure 5d).

As discussed in detail in § 4.2, equations (4.5)–(4.6) possess stationary solutions for
the angles as the value of α. In figure 5(e), the flows in the phase space are shown
for parameter values (β, α) = (0.5, 1.5), and we find two attracting spirals for θ ≈
0.7π and two repelling spirals for θ ≈ 0.3π. The director vector does not reach the
point where θ = π, which is different from the case with a smaller α in figure 5(b).
Closed loops are again obtained even after the stationary solutions emerge if β = 0,
as shown in figure 5( f ). This is comparable to the closed Jeffery orbits with α = 0
being possible only when |β| < 1. When the parameters are (β, α) = (1.5, 0.2), the
spiral behaviours around the non-trivial stationary angles cease, though there are still
two repelling and two attracting points (figure 5g).

In figure 5(h), the time evolutions of the polar angle θ are plotted for the
non-periodic cases (figure 5b,d,e,g) from three different initial polar angles θ =

π/4, π/2, 3π/4 and the initial azimuthal angle fixed as φ = 0. The director vector
gradually becomes parallel or anti-parallel to the background vorticity vector in the
cases of figure 5(b,d), whereas the director vector is attracted toward a non-trivial
orientation in the cases of figure 5(e,g).
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FIGURE 5. Angle dynamics from (4.5) to (4.6), where the red curves represent the
streamline in the phase space. The blue arrows indicate the flow in the phase space.
The parameters are (a) (β, α) = (0.8, 0), (b) (β, α) = (0.8, 0.2), (c) (β, α) = (0, 0.5),
(d) (β, α) = (−0.5, 0.5), (e) (β, α) = (0.5, 1.5), ( f ) (β, α) = (0, 1.5) and (g) (β, α) =
(1.5, 0.2), as plotted in red circles in figure 6. (h) Time evolution of the polar angle θ for
the parameters from (b,d,e,g) from three different initial polar angles θ =π/4,π/2, 3π/4
and the initial azimuthal angle fixed as φ = 0.
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FIGURE 6. The stability diagram in the β–α plane. The black thick lines on the axes
show the parameter regions, where the closed loops are obtained for the angle dynamics.
The blue thick line, α2

+β2
=1, α 6=0, indicates the conditions where non-trivial stationary

angles bifurcate from θ = 0, π. The dashed green lines show the transition between the
spiral and non-spiral dynamics around the non-trivial stationary angles, obtained from the
linear stability analysis. The red circles and the associated alphabetical symbols show the
parameters with which the angle dynamics are shown in figure 5. The dynamics with
a negative α are identical to the change in the variable θ 7→ π − θ as readily found
from (4.5) to (4.6).

4.2. Some solutions and their stabilities
We further look at the two-dimensional angle dynamics given by (4.5)–(4.6). We first
consider the solutions that satisfy dθ/dt= 0. From (4.5), this is equivalent to

sin θ(β cos θ sin 2φ − α cos 2φ)= 0, (4.8)

and it is readily found that dθ/dt= 0 when sin θ = 0 or θ = 0,π. In this case, where
the object is parallel to the vorticity vector, dφ/dt is always positive, and the object
keeps spinning in the same direction as the background vorticity, as long as

α2
+ β2 < 1 (4.9)

is satisfied. To study the stability of this periodic rotation, we expand θ around θ = 0,
and consider the change in θ during one period of rotation, following the analysis by
Kim & Rae (1991). By denoting the period of rotation as T , the changes in the angle
can be written as

1θ =

∫ T

0

dθ
dt

dt=
∫ 2π

0

(dθ/dt)
(dφ/dt)

dφ =
1
2

∫ 2π

0

β sin 2θ sin 2φ − 2α sin θ cos 2φ
1+ β cos 2φ + α cos θ sin 2φ

dφ,

(4.10)
where θ , in general, depends on the value of φ. To evaluate this integral we use the
integral formula (Kim & Rae 1991)∫ 2π

0

B+C sin 2φ +D cos 2φ
J + E sin 2φ + F cos 2φ

dφ = BP+ (2π− JP)
CE+DF

H2
, (4.11)
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where B, C, D, E, F and J are constants independent of φ, and H =
√

E2 + F2 and
P= 2π/

√
J2 −H2. The integral in (4.10) is then estimated as

1θ ' 2π

(
1−

1
√

1−H2

)
αβ(sin 2θ cos θ − 2 sin θ)

2H2
, (4.12)

assuming that the φ-dependence of the angle θ is negligibly small. Noting that H =
α2 cos2 θ + β2 and P= 2π/

√
1−H2 and expanding θ around θ = 0, we have

1θ 'K
αβ

α2 + β2
θ 3, (4.13)

where the constant K,

K =π

(
1−

√
1− (α2 + β2)√

1− (α2 + β2)

)
, (4.14)

is positive when α2
+ β2 < 1

Thus, the change in the polar angle during one period of rotation around θ ≈ 0,
i.e., 1θ in (4.13), is positive when α > 0, β > 0 and α2

+ β2 < 1, suggesting that
the periodic motion of θ = 0 is unstable. Changes in the signs in α and β result in
changes in the stability accordingly. The change of θ during one period of rotation is
proportional to θ 3, and this very slow change of θ is compatible with the assumption
of the negligible dependence of φ in integrating (4.10) and verified by direct numerical
integrations of (4.5)–(4.6). Similar calculations around θ = π then show a positive
change in the angle θ when α > 0 and β > 0, corresponding to the opposite stability
to the rotation around θ = 0. These stability analyses for the periodic rotation with
θ = 0 and θ =π are also numerically confirmed by integrating equations (4.5)–(4.6).

From condition (4.8), non-trivial dynamics can arise with a stationary polar angle
when sin θ 6= 0. The condition (4.8) is then rephrased to

β cos θ sin 2φ = α cos 2φ. (4.15)

From (4.6), the stationary azimuthal angle is obtained when α cos θ sin 2φ+β cos 2φ+
1 = 0. Thus, dθ/dt = dφ/dt = 0 are both satisfied if cos 2φ = −β/(α2

+ β2). The
existence condition for such an angle φ is obtained from the condition | cos 2φ|6 1,
which is equivalent to

α2
+ (β ± 1

2)
2 > 1

4 . (4.16)

Similarly, the existence condition for the stationary θ is obtained from (4.15), which
is |cos θ | = |α/β||cot 2φ|6 1, leading to the condition

α2
+ β2 > 1 and β 6= 0. (4.17)

As condition (4.17) always satisfies condition (4.16), we conclude that the non-trivial
stationary angles are possible when α2

+ β2 > 1 and β 6= 0, and these conditions are
equivalent to those of non-periodic motion around θ = 0,π.

We then proceed to analyse the stability around the non-trivial stationary angles.
Let (θ∗, φ∗) be one of the non-trivial stationary angles, and from (4.15), we have
cos 2φ∗ = −β/(α2

+ β2) and cos θ∗ = ±α/
√
(α2 + β2)2 − β2. We first assume α > 0

and β > 0 and take one particular solution that satisfies π/2< θ∗ <π and 0<φ <π.
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ê3
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¬

L

FIGURE 7. Schematics of a model bacterium with a spheroidal cell body and a helical
flagellum. The cell body is a rigid spheroid with semiaxes c, a, a, and the flagellum is a
simple circular rigid helix with pitch λ, amplitude b and length L. The axis of the helix
is set to be the swimmer’s director vector, ê1 = d.

This solution corresponds to the stable solutions in figure 5(h). We then expand the
dynamics (4.5)–(4.6) around these non-trivial stationary angles by introducing small
angles, |θ ′|, |φ′|�1, such that θ = θ∗+ θ ′ and φ=φ∗+φ′. Straightforward calculations
to linearize the dynamics with respect to the small angles lead to the following linear
ordinary differential equations:

d
dt

(
θ ′

φ′

)
=

(
A11 A12
A21 A13

)(
θ ′

φ′

)
, (4.18)

where the components are given by A11 = (β/2) cos 2θ∗ sin 2φ∗ − (α/2) cos θ∗ cos 2φ∗,
A12 = (β/2) sin 2θ∗ cos 2φ∗ + α sin θ∗ sin 2φ∗, A21 = −(α/2) sin θ∗ sin 2φ∗, and A22 =

−β sin 2φ∗ + α cos θ∗ cos 2φ∗, respectively.
The eigenvalues of the matrix in (4.18) were numerically solved and we found that

the real parts of the eigenvalues are always negative, indicating that this non-trivial
stationary angle is a stable fixed point. From the components in the matrix, we then
readily find that the stationary solution with π/2 < θ∗ < π is stable and otherwise
unstable when α, β > 0, which is compatible with the plots in 5(g,h). The imaginary
parts can, however, be zero or non-zero, depending on the values of α and β, and
the transition between the two cases is shown by the green dashed line in figure 6.
A spiral fixed point changes to a source or a sink when β is large or α is small
enough, and similar arguments follow when β < 0.

The obtained structure of the dynamical system described by (4.5)–(4.6) is
summarized in figure 6. Closed orbits are possible for regions shown by the thick
black lines. Within the circle of α2

+ β2
= 1, α 6= 0, depicted by the blue thick line,

the orientation of the helicoidal object approaches being parallel to the background
vorticity vector when αβ > 0 and anti-parallel when αβ < 0. Outside the blue circle,
the system possesses four non-trivial stationary angles, two of which are attractive
and the other two repulsive, and the orientation of the object approaches one of the
attractive states.

5. Bacterial swimmers
We then proceed to consider a model bacterium with a spheroidal cell body and a

helicoidal flagellum to obtain estimations of the parameter values of α and β by use
of the resistive force theory (Chwang & Wu 1971; Lauga et al. 2006; Ishimoto 2019),
following the study of the bacterial dynamics in a simple shear (Marcos et al. 2012).
As shown in figure 7, we consider a spheroid of semiaxes c, a, a. The semiaxis of c
is set to be the axis of the helicoidal symmetry, ê1. The flagellum is simply modelled
as a left-handed helix with flagellar radius d. We consider the radius of the helix, b,
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the pitch, λ, and the flagellar length along the ê1 axis, L (figure 7). The cross-section
of the helix is assumed to be a circle of radius d. We set the origin of the body-fixed
frame at the centre of the spheroid.

Let r(s) be the relative position of the centreline of the flagellum from the origin
of the body-fixed frame (figure 1), and let s denote the arc length parameter along the
flagellum. The tangent vector of the centreline is then given by t(s)=dr/ds. According
to the resistive force theory, the hydrodynamic forces on a segment of the flagellum
are linearly related to the local velocity u estimated on the centreline of the helical
flagellum. The local velocity is decomposed into tangent and normal components, and
we have

dF(s)= [CT tt+CN(I − tt)] · u(s) ds. (5.1)

where CT and CN represent the tangential and normal drag coefficients, respectively,
both of which are negative constants along the flagellum. We introduce the ratio of
the drag coefficient, ξ =CN/CT , which is calculated from the Gray–Hancock formula
(Gray & Hancock 1955; Batchelor 1970; Tillett 1970; Rodenborn et al. 2013),

CT =
−2πµ

log(2λ/d)− 0.5
and CN =

−4πµ

log(2λ/d)+ 0.5
. (5.2a,b)

We then calculated the values of α and β for different bacterial morphologies,
using the values of the scalars computed by the resistive force theory. The detailed
expressions and derivations are found in appendix B. In figure 8, the calculated
values are plotted for the model bacterium with several cell-body aspect ratios c,
and flagellar length L. The parameters a = 1, λ = 2.5 and b = 0.25 are fixed, and
these values correspond to typical Escherichia coli bacteria (Lauga et al. 2006). In
figure 8(a), we plot the values of α and β for the choice of seven different aspect
ratios for the cell body c. Without a flagellum, α = 0 and the values of β, given
by β = (c2

− 1)/(c2
+ 1) (Jeffery 1922; Bretherton 1962), are marked by the blue

circles on the line α= 0 in figure 8(a). The seven circles correspond to the values of
β =−0.9,−0.6, . . . , 0.9, which, respectively, give the aspect ratios of the cell body
c≈0.23, c=0.5, c≈0.73, c=1, c≈1.36, c=2 and c≈4.36, as labelled in figure 8(a).
The blue curves show the changes in the values as we increased L from 0 to 100.
The plotted circles indicate the values for L = 0, 2, . . . , 10 with the same colours
for the same value of L. The same plots are shown in figure 8(b), but the horizontal
axis is replaced by the effective aspect ratio c̃ which satisfies β = (c̃2

− 1)/(c̃2
+ 1).

As the flagellar length increases the values of α reach a maximum and converge to
0 when β approaches 1, as expected from the slender-body limit.

One might be surprised that the values of α are relatively small, α ∼ 0.01. We
then consider the time evolution of the angle θ for the bacterial swimmer with such
a small α. With a typical cell aspect ratio c/a ∼ 2–3 and flagellar length L ∼ 7.5
for E. coli (Lauga et al. 2006), from figure 8, we can estimate the values β = 0.9
and α = 0.005 for a typical morphology. With these values for the coefficients, the
computed dynamics of the angle θ are plotted in figure 9, in which we show the time
evolution from different initial values, θinit= 0.1π, 0.2π, . . . , 0.9π in different colours.
The horizontal axis indicates the time normalized by the period of the corresponding
Jeffery orbit (Jeffery 1922), T=2π(c̃+ c̃−1). Within the 10 rotations of φ, the bacterial
swimmer with θinit > 0.2π is turned toward the orientation of the vorticity vector. This
bacterial turning behaviour is compatible with the experimental results (Marcos et al.
2012), in which they also used the resistive force theory for comparison.
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FIGURE 8. The values of α and β for a model bacterium from figure 7 from the resistive
force theory with various cell body aspect ratios c and flagellar lengths L. (a) The values
are plotted in the β–α plane. The seven different values of c are considered, and the
values used are labelled on each curve in the plot. (b) The horizontal axis is replaced
by the effective aspect ratio, c̃, which is obtained from the values of β. The parameters
a= 1, λ= 2.5 and b= 0.25 are fixed. For seven different c, we plotted the values of α
and β as we increased L from 0 to 100, and the plotted circles indicate the values with
L= 0, 2, . . . , 10, with the same colours for the same value of L.

To obtain swimming trajectories, we need to compute the swimming velocity, which
is parallel to the director vector. The detailed values could, however, depend on the
modelling of the active part of the cell. If we consider a given rotational velocity for
the flagellum in the body-fixed frame, the active force and torque, F0 and M0, should
depend on the components of the linear and angular velocities parallel to the director
vector (Lauga et al. 2006). In such a case, the equations (3.9)–(3.10) only provide
implicit relations to determine the propulsive velocities. Nonetheless, as the director
dynamics are decoupled from the active effects, the bacterial turning behaviour in a
flow emerges purely from the geometry of the swimmer.

6. Discussions and conclusions
We have considered the dynamics of a general helicoidal object, a particle or

swimmer with a π/2-rotational symmetry around an axis referred to as helicoidal
symmetry, in a linear background flow at low Reynolds number, and derived an
equation for the director vector of the object, a generalized version of the Jeffery
equation (1.1). This new equation includes two coefficients that reflect the shape of
the object: the Bretherton constant β, and a new constant α derived from the chirality
of the object.

The helicoidal symmetry description is reasonable for a rigid helix, and a squirmer
with a helicoidal shape is also a helicoidal object. Moreover, considering the
time-averaged behaviours of the self-propelling particles, it is also possible to model
these swimmers as helicoidal objects under a moderate background flow condition.
An example of a general helicoidal object is a bacterium-like particle or a swimmer
(Marcos et al. 2012) that does not possess additional symmetries (figures 2b and 3b).
Since the propulsive effect of swimmers is decoupled from the director dynamics and
from the drift velocity, the chiral Jeffery equation (1.1) therefore provides the general
dynamics of a helicoidal particle and a swimmer.
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0

FIGURE 9. Time evolution of the polar angle θ with different initial values of θinit =

0.1π, 0.2π, . . . , 0.9π against time normalized by the period of the Jeffery orbit T . The
values of α and β are (β, α)= (0.9, 0.005), corresponding to values for a typical bacterial
cell as obtained from the calculation in figure 8.

Our new equation includes some previously known results on the angular dynamics
of a chiral object. A helicoidal object with reflectional symmetry in a plane including
an axis of helicoidal symmetry (figures 2a, 3a) is a non-chiral object and follows
the closed Jeffery orbits of any body of revolution (Bretherton 1962; Brenner 1964b).
Further extensions for an object with discrete symmetry have been performed by Fries
et al. (2017). A helical object with a fore–aft symmetry, such as a rod-like object
with two connected helices of opposite chirality (Kramel et al. 2015), is included in
the symmetry group of helicoidal objects with reflectional symmetry with respect to a
plane perpendicular to the axis of helicoidal symmetry (figures 2c, 3c), and we have
proved in a general manner that such an object needs a constant α in the generalized
Jeffery equations, though no drift velocity is generated. A rod-like helicoidal object
considered in Chen & Zhang (2011) belongs to the class of helicoidal objects with
additional π-rotational symmetry around an axis perpendicular to the axis of helicoidal
symmetry, as illustrated in figures 2(d), 3(d), and our generalized version of the Jeffery
equations is reduced to the usual Jeffery equation as obtained by Chen & Zhang
(2011).

Comparing the results of the symmetry group of figures 2(c), 3(c) and figures 2(d),
3(d), it is found that the non-zero α results not from the overall chirality of the
object but from the inhomogeneous distribution of the chiral effects along the axis of
helicoidal symmetry. These results generalize the physical interpretation of the torque
generation for the bacterial turning given by Marcos et al. (2012), where the chirality-
induced hydrodynamic force was generated only on the flagellar end. The overall
chirality of the object contributes to the drift velocity but does not directly appear
in α, as shown in the symmetry class of figures 2(d) and 3(d).

Further analyses have been made for the case of a simple shear flow, and the
director dynamics were reduced to two-dimensional ordinary differential equations
concerning the two angle variables. We studied the structure of the equations, and
the director dynamics of a helicoidal object with a positive α are found to be stable
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when the director vector is aligned toward the background vorticity vector, whereas
the orientation anti-parallel to the vorticity vector is unstable for an elongated object
with β > 0 and α2

+ β2 < 1. This condition is usually satisfied for a bacterial
swimmer with a left-handed flagellum from resistive force theory calculations, which
successfully express the bacterial turning dynamics in a shear flow (Marcos et al.
2012). This also emphasizes the usability of the simple equations with two constant
parameters to express the dynamics of chiral self-propelling particles in a flow. The
applications of these simple equations are also possible in studying the rheology of
particle and swimmer suspensions. If α2

+ β2 > 1, α 6= 0, the object orientation is
attracted to one of the two stable fixed points in the phase space, whereas nonlinear
periodic orbits are obtained when α= 0. These non-trivial fixed points are possible by
the nonlinearity of the director equation (1.1), which suggests complicated dynamics
in a general background flow such as Kolmogorov flow, ABC flow and isotropic
turbulence (Gustavsson & Biferale 2016; Kramel et al. 2015; Clifton et al. 2018).

The sign of α determines the direction of the stable orientation, and this is given
by the chirality of the object shape, as demonstrated in the general framework
and shown by calculations for a bacterial swimmer with a helical flagellar filament.
Observing the numerator of the expression for α in (3.14), the scalars of the resistance
tensors related to the sign of α are all found to be proportional to σ(ξ − 1)CT from
the expressions in the appendix B. Here, σ = ±1 is the chirality of the helix and
CT < 0, and the anisotropic ratio ξ = CN/CT is typically in the range 1.5–2 for a
smooth flagellum. It is known that an additional hairy structure on the flagellum
can reduce the value of ξ to be less than unity, such as the mastigonemes of algal
micro-organisms (Holwill & Sleigh 1967; Brennen 1975; Kobayashi et al. 2009;
Namdeo et al. 2011), suggesting possibilities for the design of the sign of α with
additional manipulations for microparticles and microrobots.

Further extensions of the current study may be possible to a general object with less
symmetry, such as an ellipsoid (Jeffery 1922; Hinch & Leal 1979), which is known
to exhibit chaotic director dynamics (Yarin, Gottlieb & Roisman 1997). A general
formulation was made by Junk & Illner (2007), but further investigations for the
relation to the scalars of the resistance tensors will be useful, as has been done for
some discrete but relatively higher symmetries (Fries et al. 2017). Another important
extension is to include gravity effects. Even a simple helix generates a complex
trajectory under gravity (Kim & Rae 1991; Palusa et al. 2018), and simple director
equations will be very useful considering the dynamics in a flow.

In conclusion, we have derived the generalized Jeffery equations and Jeffery orbits
for any helicoidal objects and swimmers. The expressions are very simple and thus
useful for the studies of microparticles and biological fluid problems. This study also
sheds light on the importance of the symmetry of an object for its dynamical patterns
in a flow at low Reynolds number.
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Appendix A. Hydrodynamic force, torque and resistance tensors

In this appendix, we provide detailed expressions for the hydrodynamic resistance
tensors. We start with the resistance tensors associated with the rigid motions K , C
and Q. With the decomposition of the surface force f̂ =Σ · Û+Π · Ω̂ as in the main
text, we obtain the following expressions by employing the Lorentz reciprocal theorem
(Yariv 2006; Ishimoto & Yamada 2012):

K =
∫

S
Σ dS, C =

∫
S

r×Σ dS=
∫

S
ΠT dS, Q=

∫
S

r×Π dS. (A 1a−c)

Application of the Lorentz reciprocal theorem leads to the second equality for C and
the symmetric properties of the tensors, K =K T and Q=QT (Happel & Brenner 1983).
Introducing the antisymmetric tensor X such that r × Σ = X · Σ , we simply rewrite
the expression for two of the resistance tensors as

C =
∫

S
X ·Σ dS and Q=

∫
S

X ·Σ · X T dS, (A 2a,b)

with symmetric properties Σ =ΣT (Happel & Brenner 1983) and Π =Σ · X T.
The expressions for the additional forces and torques imparted by the background

flow are also obtained by using the Lorentz reciprocal theorem (Pozrikidis 1992). The
force induced by the background flow, F∞, is

F∞ =−
∫

S
u∞ ·Σ dS=−K ·U∞ − CT

·Ω∞ −

∫
S

r · E∞ ·Σ dS, (A 3)

where we have used the linear expansion of the background flow u∞ =U∞ +Ω∞ ×
r+ r ·E∞. The last term of (A 3) therefore corresponds to the shear-force triadic term
in (2.4):

Γ : E∞ =−
∫

S
r · E∞ ·Σ dS=−

∫
S
ΣTr : E∞. (A 4)

Following the expressions of Brenner (1964b) that satisfy identity (2.6), we define the
shear-force tensor by

Γ =−
1
2

∫
S
[ΣTr+ (ΣTr)T] dS=−

1
2

∫
S
[Σr+ (Σr)T] dS, (A 5)

noting that the transpose of a triad refers to the exchange of the second and third
indices as in the main text. The shear-torque triad can also be derived from the
expression of the flow-induced torque,

M∞ =−
∫

S
u∞ ·Π dS, (A 6)

and we have

Λ=−
1
2

∫
S
[ΠTr+ (ΠTr)T] dS=−

1
2

∫
S
[X ·Σr+ (X ·Σr)T] dS. (A 7)
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Appendix B. Expression of the resistance tensors for a bacterial swimmer
In this appendix, we provide explicit forms for the scalars in the resistance tensors

for a model bacterium with a spherical cell body and a helical flagellum with n
cycles. As shown in figure 7, we consider a spheroid of semiaxes c, a, a, the first
of which corresponds to the axis of the helicoidal symmetry, ê1. The flagellum is
simply modelled as a helix with flagellar radius d, helical radius b and pitch λ.
The following calculations are exact only when n is an integer. However, the same
expressions are obtained even for non-integer values of n after taking the average
over the phase of the flagellum, and this is reasonable for a bacterial swimmer whose
flagellum is rapidly rotating around the ê1 axis compared with the time scale of the
swimming and the rotation by the background shear.

Taking the origin of the body-fixed frame as the centre of the spheroid, we have
the centreline of the helix in a parameterized form,

r=−
(

c+
λ

2π
τ

)
ê1 + (b cos τ)ê2 + (σb sin τ)ê3, (0 6 τ 6 2πn), (B 1)

where σ ∈ {+1, −1} represents the chirality of the helix and σ = 1 corresponds to
a left-handed helix as in Lauga et al. (2006). The parameter τ is related to the arc
length s by s = (1 + ε2)1/2λτ/(2π) with ε = 2πb/λ, and we introduce the effective
length of the flagellum, L= 2πnλ. The tangent vector of the centreline is obtained as

t=
dr
ds
= cosΨ ê1 + sinΨ (−sin τ ê2 + σ cos τ ê3), (B 2)

where Ψ is the angle between the tangent vector and the ê1 axis, i.e., cos Ψ =
1/
√

1+ ε2 and sinΨ = ε/
√

1+ ε2.
Within the resistive force theory, the hydrodynamic forces on a segment of the

flagellum are linearly related to the local velocity u as

dF(s)= [CT tt+CN(I − tt)] · u(s) ds, (B 3)

using the tangential and normal drag coefficients, CT and CN , both of which are
negative constants along the flagellum. This expression (B 3) provides the translational
surface force resistance tensor for a flagellum,

Σ =CT tt+CN(I − tt). (B 4)

By introducing the ratio of the coefficients from the resistive force theory ξ =CN/CT ,
from (B 2), we obtain the explicit form with respect to the body-fixed frame, Σij/CT =

 ξ − (ξ − 1) cos2 Ψ −(ξ − 1) sinΨ cosΨ sin τ (ξ − 1)σ sinΨ cosΨ cos τ
−(ξ − 1) sinΨ cosΨ sin τ ξ − (ξ − 1) sin2 Ψ sin2 τ (ξ − 1)σ sin2 Ψ sin τ cos τ
(ξ − 1)σ sinΨ cosΨ cos τ (ξ − 1)σ sin2 Ψ sin τ cos τ ξ − (ξ − 1) sin2 Ψ cos2 τ

 .
(B 5)

The translational tensor K is obtained by integrating over the flagellum with
additional terms from the spheroidal cell body, and the other scalars are also calculated
by similar integrations. Introducing the wavenumber of the helix k= 2π/λ, after some
lengthy but straightforward calculations of (A 1), we have the values for the scalars
for the translational tensor,

K1 =
CT

√
1+ ε2

(1+ ξε2)L+KH
1 , (B 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.142


Helicoidal particles and swimmers in a flow 892 A11-25

K2 =
CT

√
1+ ε2

[
ξ +

(
1
2
+
ξ

2

)]
L+KH

2 , (B 7)

for the rotational tensor,

Q1 =
−CT
√

1+ ε2

(
ξ +

ε2

4

)
Lb2
+QH

1 , (B 8)

Q2 =
CT

√
1+ ε2

[
ξ +

(
1
2
+
ξ

2

)](
c2
+ cL+

L2

3

)
L

+
CT

√
1+ ε2

1
2
(1+ ξε2)Lb2

+QH
2 , (B 9)

and for the coupling tensor,

C1 =
σCT
√

1+ ε2
(ξ − 1)Lb2k, (B 10)

C2 =
−σCT
√

1+ ε2

1
2
(ξ − 1)Lb2k, (B 11)

C23 =
CT

√
1+ ε2

[
ξ +

(
1
2
+
ξ

2

)](
c+

L
2

)
L, (B 12)

and similar calculations will lead to the expressions of the scalars for the shear-force
tensor,

Γ1 =
CT

√
1+ ε2

(1+ ξε2)

(
c+

L
2

)
L, (B 13)

Γ2 =
CT

√
1+ ε2

[
ξ +

(
1
2
+
ξ

2

)](
c+

L
2

)
L, (B 14)

Γ3 =
σCT
√

1+ ε2

1
2
(ξ − 1)Lb2k, (B 15)

from (A 5) and (3.1), and those of the shear-torque tensor,

Λ1 =
σCT
√

1+ ε2
(ξ − 1)

(
c+

L
2

)
Lb2k, (B 16)

Λ2 =
−σCT
√

1+ ε2
(ξ − 1)

(
c+

L
2

)
Lb2k, (B 17)

Λ3 =
CT

√
1+ ε2

[
ξ +

(
1
2
+
ξ

2

)](
c2
+ cL+

L2

3

)
L

−
CT

√
1+ ε2

1
2
(1+ ξε2)Lb2

+ΛH
3 , (B 18)

from (A 7) and (3.2), where the terms from the spheroidal cell-body, KH
1 ,KH

2 ,QH
1 ,QH

2
and ΛH

3 , are explicitly shown in Kim & Karrila (2005). These expressions include
the formula from Lauga et al. (2006) in the absence of a wall if we set ξ = 2.
When the flagellum is removed (or if simply L= 0), the coefficients for the director
equation (3.14) are reduced to the well known results of that of a spheroid, α = 0
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and β = ΛH
3 /K

H
2 = [1 − (a/c)

2
]/[1 + (a/c)2]. At the long flagellum limit, we have

α→ 0 and β→ 1.
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