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LINEAR TRANSFORMATIONS ON MATRICES:
THE INVARIANCE OF A CLASS OF
GENERAL MATRIX FUNCTIONS

HOCK ONG

1. Introduction. Let F be a field, F* be its multiplicative group and
M, (F) be the vector space of all n-square matrices over I'. Let S, be the sym-
metric group acting on the set {1, 2, ..., n}. If Gis a subgroup of S, and X is a
function on G with values in F, then the matrix function associated with G and
\, denoted by G*, is defined by

GO0 = T A0 H Xinon X = (riy) € Mo(F)

and let

T (G, \) = {1 : T is a linear transformation of M, (/) to itself and

GMT'(X)) = GMX) for all X}.

It is of interest to characterize all linear maps in.7 (G, \). For example, if
G = S, and X is a linear character on S,, i.e., S,* is either the determinant or
permanent, then .7 (S,, \) has been obtained [3; 4. If G is transitive and
cyclic and X is a function on G[1] or G is regular or doubly transitive and \ is
a linear character on G[2] then .7 (G, \) has also been characterized. In [2],
it was mentioned that if G is singly transitive but not regular or doubly transi-
tive, then the techniques in [2] fail and the dihedral group of degree four was
given as a counter example. In this paper we show that D,is, in fact, an excep-
tion, i.e., we apply the techniques in [2] and the results in [5] to characterize
all linear maps in.7 (D,, \) where D, is the dihedral group of degree n, n = 5
and A is a function on D, with values in *.

2. Definitions and statements of the main results. Recall that the
dihedral group of degree 7 is the subgroup of S, generated by the two permuta-
tionsgand 2 whereg(t) =1+ 1,7=1,2,...,n — 1;g(n) = land k(1) = 1,
h(@) =n —i4+2,7=23,...,n Ifwewriteg, = ¢g-1,7=1,2,...,n,
then D, = {g;, g:h: 1 = 1,2, ..., n} and the diagonals g, g,k are illustrated
by the following diagram when » = 6, the solid lines denote the diagonals g,
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the dotted lines denote the diagonals g k.

& g2 g g1 & £

\\\\\
OO
OO
OO

geh gih  goh gsh gih gsh

If n is a positive integer let K, = {¢ € S,: ¢ maps even integers onto even
integers}. Clearly K, is a subgroup of .S, and the permutations in K,g map even
integers onto odd integers.

A subspace Z of M,(F) is a 0-subspace for D,* if dim Z = n?* — n and
X € Z implies D,M(X) = 0. Then we have

PROPOSITION 1. Let n be a positive integer, n = 5 and
D, = {gy,gh:i=1,2,...,n

be the dihedral group of degree n. A subspace Z is a O-subspace for D, if and
only if there exist n distinct pairs of inlegers (i1, j1), - -« (Iy, Ju), 1 S 15, j, S 1
and a permutation o € S, if nis odd and a € K, if n is even such that

gt(it) = ga(l)h(it) = 7,
(l‘ﬂd’ifX E Z,x“j, = 0,[ = 1,2,. .., h
The group D,/ = {g;: 1 =1, 2, ..., n} and the set D,k are regular and
D, = D, \UD,’h. Hence for each pair of integers (i, j), 1 <1, j < n there

exist exactly one k and one /, 1 < k, [ < n such that g,(z) = j, g,h(i) = jor
g (1) = g.h(7). We define

‘Pk(i> =1L
If we work modulo n using {1, 2, ..., n} as asystem of distinct representatives,
then it is known [5] that

(1) =k +20—1) (modn), 1,k =12 ...,n
and for n odd, ¢, are in S, and {for n even ¢, (1) =, (1 +n/2), k=1,2,...,n,
1=1,2,...,n/2. For n even, since ¢,(i),72 = 1,2, ..., n are even if and
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only if 7 is even, we define ¢, (! such that
1 £ ¢opy e, (1) S n/2 ifandonlyif 1 =1 = n/2

where ¢, p are both in K, or K,g and hence ¢,;"'ue; are in S,.

If ¢ €S, then the permutation matrix corresponding to o, P(s), is the
n-square matrix whose (7, j) entry is 1 if ¢(j) = 7 and 0 elsewhere. If 4 =
(ay;) and B = b(;;) are n-square matrices then the Hadamard product of 4
and B, 4 = B, is the n-square matrix whose (¢, j) entry is «¢;;b,; for all 2 and j.
A = (a;;) € M,(F)and ¢ € S, then the o-diagonal of 4, 4,, is the n-square
matrix whose (7, j) entry is aq; if ¢(¢) = j and 0 elsewhere. If 4 = (ayy) €
M,(F), let X" be the n-square matrix whose (7, j) entry is @;,—,4+1 for all 1,
j=1,2,...,n Let R be the linear transformation of A, (F) to itself such that
R(X) =X"forall X. { T M,(F) — M,(F) is a linear transformation which
transforms the entries in ¢-diagonal of X € M, (F) onto the u-diagonal where
a, p € S, then we write T(¢) = w. It can be easily shown that R(g;) = gu—s11h,
R(gh) = go—ip1,2=1,2,..., n Nowif nisodd, (¢, u) €S, X .S, the direct
product of S, by S,, and X € M,(F) we define

n

2.1) (o, 0)X) = 2 Pl we)X 0P (gi(on  ued) gucn™ ),

=

ie,fori =1,2, ..., n, (¢, u) permutes the entries within the g;,-diagonal of X
by ¢.(» " 'ue, and then transforms the entries in g;-diagonal to g,y -diagonal or
equivalently, (o, u) permutes the diagonals gy, g5, ..., g, by ¢ and permutes
the diagonals g7, gok, . . ., g,h by p. Then we have

THEOREM 1. Let n be an odd positive integer, n = 5,
D, = {gi,gih:i: 1,2,...,%}

be the dihedral group of degree n and \ be a function on D, with values in F*.
Then T € T (D,, \) if and only if there exist a matrix A = (ay;) in M,(F) and
a linear transformation 1" in the group S, X S, o {1, R} such that

T(X) = AxT"(X) forall X
with

n

Az = M) AT (@)

ayr gy = MNgeh) ()\(T'(gkh)))_l, k=1,2,...,n,

= 1T

i=1
where o 1s the usual function composition and I 1s the identity transformation of
M, (F).

Next suppose # = 2m is a positive even integer. Let H, be the subgroup of
S, generated by the transpositions (i m + 7),7 = 1,2, ..., m. For A, Ay, . .

L}
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ay be the linear transformation of M, (F) into itself defined

n

and let
A=1{Anom: Ny N) € Hy X0 X HYL

Note that A is a group and Aq, ... Ay is the linear transformation which per-

mutes the entries in g;-diagonal by N\;, 1 =1, 2, ..., #n, i.e., An,....» either
interchanges the entries at positions (k, g;(k)), (k + m, g;(k + m)) or fixes
them, k=1, 2, ..., m; =1, 2, ..., n Clearly Aq,....a»(c) = ¢ for all

¢ €D, If 4= (ay) is an m-square matrix we denote by 4, the n-square
matrix whose (z, j) entry is «; if 2 + j is even and 0 elsewhere and 4, =
A — Ay Let U, 1" be the linear transformations of M, (/) into itself defined by
U(X) = XP(¢g™') forall X,
'X) = Xo 4+ R(UX,)) forall X.

Then 1t can be shown that
U(gl-) = 8o, U(gh) = ga(i)ll, t=1,2,...,mn,
V(g:) = ¢y V(gih) = gih if 7is odd,
1(g:) = guih, V(g:h) = g,—; if 1is even |5].

If for (o, u) € K, X K, and X € M,(F), we define (o, u)(X) by (2.1), then
we can state our

THEOREM 2. Let n be an even positive integer, n = 6,
Dn = {giygih: 1/ = ]7 2v L] n}

be the dihedral group of degree n and \ be a function on D, with values in I'*. Then
T €7 (D,, \) if and only if there exist « matrix A = (uy;) in M,(F) and a
linear transformation 1" in the group Ao K, X K,o{I, U} oI, R} o {I, 17}
such that

T(X) = A T(X) forall X

with
[T aurnie = e 007 @),
I acromo = MeD AT @™ k=12 %
3. Proofs. For ¢ € S,, let D(o) = {(1, o)) :2=1,2, ..., n}. lf Sisa

finite set let |S| denote the number of elements in .S. Then since D,” and D,'g
are regular, [D(g,) M D(g;)| = |D(g:h) N D(g;h)| = 0 if 7 # j. Furthermore
we have the following properties of D, [5].
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LEMMA 1. For each pair g;, gihin D,, 1 < j, k < n,1f nis odd then
ID(g;) N D(gih)| =1
and if n1s even then

|D(g;) N D(gih)| =0 f2 & (G — &),
[D(gs) N D(gh)| = 2 if 2[(G — F).

Suppose Z is a subspace of M,(F) and dim Z = n? — n. By using the
reduction of a basis for Z to Hermite normal form we can assume that there
exist n distinct pairs of integers { (i1, j1), ..., (1, ju)} = M such that the
matrices

Il

Ay=Ey;+ Zl ¢"Eij, ¢”€F G,7)¢ M
1=

form a basis for Z. Here E,; is the matrix whose (1, j) entry is 1 and 0 elsewhere.
If Gisasubgroup of S,let G(7,7) = {¢ € G: (1) = j}. If Gis transitive then
|G| = np and |G(4, 7)| = p for all 1 £ 4, j < n where p is an integer and

p =1
LemMA 2. If G is a transitive subgroup of S, and for some ¢ € G, |D(a) M M|
=k > 1, then there exist at least k — 1 elements uy, ..., w—y tn G such that
D) "YM| =0,7=1,2,...,k— 1.
Proof. 1f [D(e) " M| =k > 1 say D(e) N M = { (i1, 71), ..., G, Ju)},
thenfort = 2,3,...,k, |Gy, j1) NG, 7,)] = 1. Hence
n n k
k}lG(in]’r) é 2:1 |G(1’Ty]1)‘ - 22 |G(llv]l)mG(1’tv]t)l
T= T= 1=
=np— (k—1) = |G| — (k- 1).
Therefore there exist ui, ..., me1 € G such that u; ¢ Ulor Gy, 7o), le.,
Dp) YM| =0,i=1,2,...,k— 1

LEMMA 3. If n = 5 and |D (o) M M| = 0 for some ¢ € D, then there exists a
matrix B in Z such that D,M(B) # 0.

Proof. Consider the matrix
(brs) = B = 2:1 Ay = P(o) + Zl iy,
i= =

where ¢, = X1 ¢, t =1,2, ..., n Clearly B€ Z, b,, =0 1if (r, s) ¢
D(e) U M and

(3.1) D,'B) = \(o) + ; A(r) g bircoy-

If for all 7 # o, II"_, b7y = 0 then DMB) =\(o) # 0. Hence assume that
for some 7 # o, 1I"_) iy # 0. Then D(r) C D(e) U M. By Lemma 1,
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|ID(c) N\ D(7)| = 0orlif nisodd and 0 or 2if nis even. Hence |D(r) N\ M| =
norn — 1if nisodd and n or n — 2 if n is even. Since D, is transitive and
ID(r) VY M| 2 n — 2 = 3, by Lemma 2 there exists p € D,, u # o such that
D(1) N M| = 0. Let

(brs,) =B = Zl Ai#(i) = P(/J') + Zl Ct,Eiu’t
i= =

where ¢,/ = X1 ¢, Then B’ € Z, b,/ = 0if (r,s) ¢ D(u) \J M and

(32) DMB) =AW + 3 AG) H Doy

Vv
We consider the cases |[D(r) N\ M| = n, n — 1, n — 2 separately.
(i) M = D(r). Consider (3.1). Since for v # o, 7, |D(v) N\ D(o)| < 2,
[D(v) N\ D(r)| £ 2, it follows that [D(») N (D(e) U D(r))] £ 4 and
I, bivn = Osincen = 5. Hence

D, (B) = o) + \(7) I} ¢

with 1%, ¢, % 0. Similarly in (3.2) we have 11", by’ = 0 for v 5 u, 7.
It I, bircy’ = 0 then DMB') = Nu) # 0. Hence suppose

DB = Aw) + A () H ¢

with I1"_; ¢,/ % 0. Since ¢/’ # 0 there exists 7’ such that ¢;#(?") 3 (. Consider
the matrix

Ax) = E—:i Aoy + x4 vucn

where x is an indeterminate over F. Then the (7;, ;) entry of 4 (x) is a nonzero
polynomial of degree one; hence we may choose ¢ € /' so that this entry is
zero. Let

n

(a,g) = A(c) = ; Ay + cAvuin.

Thena,, = 0if (r,s) ¢ D(e) \J { (@, u(@))} U (M — {(11,71)}) = Q4. Clearly
forv € D,,v# o, 7, D) NQu £ 3if nisodd and [D(») N Q| <5 il nis

even. Since n = 5, I1"_1 b, = Oforall v % o. Hence DA (c)) = (o) # 0.

(i) |[D(r) Y M| = n — 1. Then nis odd and |D(¢) M D(r)| = 1. Consider
(3.1). For v # ¢, 7, since |[D(v) N\ D(c)] <1 and |D(») M M| £ 2 it follows
that [D(») N (D(¢) U M)| < 3 and I, by = 0 since n = 5. Hence

DB) = \o) + A () H buto.
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Applying the same argument to (3.2) we have I, b = 0if » # u, 7.
Furthermore |D(p) N\ D(r)| = 0 for otherwise |D(p) N M| #0 or u = o.
Hence (1, 7(z)) ¢ D(n) U M for some 1, i.e., by = 0 and DM(B') = Nu)
# 0.

(iii) [D(z) Y M| = n — 2. Then nis even and |D(¢) M D(7)| = 2. We may
assume o = g, 7 = gk for some k and / and 2|(k — /). Consider (3.1). For
v # g, 1, since either |D(») M D(s)| = 0or |D(») M D(r)| = 0, it follows that
D) N (D(e) \J M)| £ 4 and I, by = 0. Hence

DAB) = 2&) + 26 T beco

Since there are /2 (2 3) g,-diagonals with 2 + (¢ — ) which do not intersect
with the diagonal 7 = g4 and since there are only two positions in 3 which
do not lie in D(r), we may choose p = g, with 2 + ([ — ¢). Applying the
above argument to (3.2) we have II%_; b,y = 0ifv % u, 7. Since2 + (I — q),
[D(u) N D(r)| = 0 and I1%_, bir) = 0. Hence DA (B') = \(u) # 0.

By Lemmas 2 and 3, we have

LEmMMA 4. If Z is a O-subspace for D} n = 5, then for every o € D,,
ID(e) N M| = 1.

LEMMA 5. Suppose n = 5 and Z is a 0-subspace for D,}. Then Z consists of
all matrices with n fixed positions {(i1, j1), - ... (4o, Ju)} = M equal to zero.

Proof. We need only to show that ¢, = Oforall (7,j) ¢ Mand1 £t £ n.
Suppose the contrary, i.e., ¢, # 0 for some (i, j) and some ¢ Since
D, (24, 71)| = 2let D,(¢4,7,) = {0, »}. Let x be an indeterminate over F.

(i) (i) 5 j. Let

B(x) = k; Areqry T x4 45
Then the (7,, j,) entry of B(x) is a nonzero polynomial of degree 1 in x so we
may choose ¢ € Fso that the entry is nonzero. Let B(¢) = (b,;). Thenb,;, = 0
if (r,s) d M\J Do) J{(, 7)) and by #£ 0,7 =1,2,...,n Now

Dn)‘(B(C)) = )\(U) H Doty + Z k(u) H blcu(k)-
k=1 MFET k=1

If p # o, then there exist p # ¢ such that u(p) # o(p), u(g) # o(g) and hence
[D(¢) "ND(u)| £ n — 2. If there exists u # o and Il}_;bu) # 0 then
D(p) € M\J D(o) \J {4, /)}. Since by Lemma 4, [D(u) M M| = 1, it follows
that |D(¢) N D(u)] = n — 2. If w = 5, this is impossible since by Lemma 1,
[D(e) ND(u)| = 0, 1 or 2. Hence DXB(c)) = MNo) i boy # 0 and
B(c) € Z, a contradiction.
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(i) 0(i) = jand |F| > 2. Let

B(x) = Z Aoy + A4 101
k#ie, 1
Then we may choose ¢ € F* so that the (1, j,) entry of B(¢) is nonzero. Again
set B(c) = (b,5). Then b,y =0 if (r,5) § MU D(s) and by # 0,1 = 1,
2,..., n. Since |D(u) M M| = 1 for p € D, it follows that D,}(B(c)) = (o)
I}y breqy # 0 and B(c) € Z, a contradiction.

(iii) o(i) = jand F = {0, 1}. Let (b,s) = B = X ieis Apory. I 04y, = 1 then
DMB) = No) # 0 and B € Z, a contradiction. Hence assume by, ;, = 0.
Then ¢,"'?" =1 for some (i, j’) ¢ M, 7 # 1 and ¢(¢') = j'. Since |D(s) N
D(v)| £ 2, it follows that at least one of (1, j), (', /) is not in D(v). This
reduces to case (i) with ¢ replaced by ».

Proof of Proposition 1. By Lemma 4, [D(g;) " M| = 1fori=1,2,..., n.
Hence the pairs (¢4, j,), ¢ = 1, 2, ..., n may be arranged so that g,(z,) = j,,
t=1,2,...,n Since |D(gh) N M| =1fori=1,2, ..., n there exists a
permutation a such that gonh(z,) = j, t = 1,2,..., n If nis odd, it follows
from |D(g;) N\ D(g:h)| = 1 that @ € S,. Suppose 7 is even. By Lemma 1,
ID(g;) M D(gih)| # 0 only if 2|(j — k). Hence 2|(t — a(/)) and « € K,. By
Lemma 5 the result follows.

LEMMA 6. If T € .7 (D,, \), n = 3, then T is nonsingular.

Proof. Suppose 1" is singular. Then 7°(4) = 0 for some 4 = 0. Hence

DMX — 4) = DNT(X — A4)) = DNT(X) — T(4))
= DNT(X)) = DMX)

forall X. If A = (ay;) then a;; ¥ 0 for some 7, j. We know that |D, (1, 7)| = 2
and let ¢ € D, (1, 7). Set

n n
1L = Z )‘(V) H Ayy(p)y Cy = Z )\(V) H Lyv(p)-
vE€Dn(1,7) =1 v¢Dn (i,5) =1

Then DMA4) = ¢1 4+ ¢2 = 0 since DMA) = DMNT(A)) = DM0O) = 0. We
consider two cases:

(1) c1 = —co # 0. Let X = ay;E;;. Then DMX) = 0 and

DMX —A)= 2 @ g @Bty — ap) +c2=04+c25#0

vEDn(1,5)

since 8,,(y@s; — @iy = 0. Hence we have DX — A4) # D}X), a contra-
diction.

(i1) ¢1 = ¢» = 0. Let X be the matrix whose (7, s) entry is ¢4, if () = s and
zero elsewhere. Then DM (X) = No)a; " # 0. Write B = X — 4 = (by;). Then
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DMB) = d; + d; where

Z >\(V) 11;11 by, do= Z )\(”) tI;Il by

vEDn(1,5) v¢Dn(1,7)

d1

I

Since b;; = a;; — a;; = 0 we have d; = 0. If d = 0 then D,(B) = 0 and
DMX — A) # DMX), a contradiction. Therefore we suppose dy # 0. Since
cy # dy there exists p ¢ D, (7, j) such that

(3.3) tI:Il by # tI_Il MO

Since A and B differ only at positions in D(¢) we have |D (o) M D(u)| # 0
and |D(¢) M D(u)| = 1 or 2 depending on whether # is odd or even. If n is
odd let (k, 1) € D(c) N\ D(p) and X, = a;;(E;; + E;y). lf niseven let (k, 1),
(B, ') € D(e) N\ D(u) and Xy = ay;(Ey; + Exy + Ep ). In both cases we
have D,}(X;) = Osincen = 3. Nowlet X; — 4 = (b,)). Then DMX; — A)
= d,/ + dy’ with

&= 2, A0 L Do’ =0
1=

v€Dn(1,7)

since biv(i)/ = bij/ = Wiy — Qg5 = 0 and

dyf = Z )\(V) H bzv(t)l + >\(#) H bm(z),
¥¢Dn(1,9) U Da(k, 1) 1=1 =1
since D, (k, 1) = {a, u}. Note that b,pn' = @y if v ¢ D,(,7) \J D,(k, [) and
by’ = by forallt = 1,2, ..., n Hence
dy = > AO) IT awn + 2w IT b
v¢Dn(1,75) U Dn(k, D =1 =1

ca — M) H @wep + NMu) n b (-
1= 1=

Now ¢; = 0 and by (3.3), dy’ # 0. Hence D,}(X; — A) # 0 and DMX; — 4)
# DM X,), a contradiction.

Now suppose 1" € 7 (D,, \). Then by Proposition 1 and Lemma 6, applying
the same argument as in [2], it can be shown that for each pair 1 £ 7,7 £ n
thereexist 1 < p, ¢ < nand a,, € F*such that

T(E;) = ayky,

and for distinct (7, j) we have distinct (p, ¢), i.e., the matrix representation of 7°
with respect to the basis {E,; : 7,7 = 1,2, ..., n} is a generalized permutation
matrix.

For ¢ € D,, since D) P(s)) = No) #0, it follows that T(P(c)) = 4 * P(u)
for some u € D,, i.e., T transforms diagonals to diagonals. Furthermore
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since DMT(P(0))) = Mu) 1121 aey, we have IThy anw = No) (M)
By minor medifications on the proofs in [5], Theorems 1 and 2 follow.
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