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We study two-parameter nonlinear Sturm-Liouville problems. We shall establish the continuity of the
variational eigencurve X(jt) and asymptotic formulas of X(fi) as n -*• oo, fj. -*• n1.

1991 Mathematics subject classification: primary 34B15.

1. Introduction

We consider the following two-parameter nonlinear Sturm-Liouville problem:

-u(x)" = fiu(x) - ;.{u(x)p +/(u(x))}, x e / = (0, 1),
u(x)>0, xel, (1.1)
u(0) = w(l) = 0,

where p > 1,/x > n2, X > 0 and / is a real-valued, increasing, odd and locally Lipschitz
continuous function on R.

The purpose of this paper is to investigate the behaviour of a variational eigencurve
A = A(/i) obtained by variational theory on a general level set

N, := (u e Wo'-
2(/) : f (u'(x)2 - /*u(x)2)rf* = - 2 a ) , (1.2)

where a > 0 is a fixed number.
In order to motivate the results of this paper, let us briefly recall the known results

concerning linear and nonlinear two-parameter eigenvalue problems. Linear two-
parameter eigenvalue problems in ordinary differential equations began with the analysis
of Lame's equation and there are many works. We refer to Binding and Volkmer [5],
Faierman [11, 12, 13], Langer [16], Rynne [18], Volkmer [22], and the references cited
therein. Especially, the study of the asymptotic behaviour of eigenvalues has found
considerable interest, and one of the main object is to find the asymptotic directions of the
spectrum (the limit of the ratio of two eigenvalue parameters). In particular, Binding
and Browne [3, 4] studied the linear two-parameter Sturm-Liouville equation
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226 TETSUTARO SHIBATA

u"(x) + na(x)u(x) = Xb{x)u{x), x e /,

where n, X e R are parameters. In [3, 4], under suitable boundary conditions, the
asymptotic formulas of Xn(p)l\i as // -*• oo have been given, where Xn(ji) is the n-th
eigenvalue when /z > 0 is given. Concerning nonlinear two-parameter problems, interest
has been directed mainly at bifurcation problems. We refer to Browne and Sleeman
[7, 8, 9], Gomez [14], Rynne [17], Chow and Hale [10], and the references cited therein.
In this paper, motivated by the work [3, 4], we focus our attention on the asymptotic
behaviour of the variational eigencurve X(fj) as n —*• oo,n2, which is regarded as a
nonlinear version of the study of the asymptotic directions. We note here that since
(1.1) is nonlinear, X is parameterized by \x and an additional parameter a. More
precisely, X = X(ji, a) and a is a parameter of general level sets defined in (1.2), which is
developed by Zeidler [23], and it seems effective for us to consider the equation (1.1)
under the variational framework of general level sets.

Recently, the following nonlinear two-parameter problems were considered in
Shibata [20, 21]:

- X{\ + | M ( x ) r > ( * ) , xel,
«(0) = «(1) = 0,

\ 1,(0) = no) = o, ( M )

where p > L i t was shown in [20] tha t as fi -*• oo

«&4~l . (,.5,

In [21], the asymptotic behaviour of X(ji) as /z -»• oo was obtained by using a simple
scaling technique.

Motivated by these facts, we shall establish asymptotic formulas for our non-linear
problem (1.1) by using variational theory on general level sets.

2. Main results

We use the following notation. Let

A(u,n):=Ht/\\l-n]\u\\l (2-2)
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£(w, v) := f f{u)vdx, E(u) := E(u, u), F(u) := / / f(s)dsdx, (2.3)
Jo Jo Jo

) , (2.4)

(2.5)

Now we define the variational eigenvalues A((i) of (1.1): X{p) are called the variational
eigenvalues of (1.1) if there exists u /x ) e N^ satisfying the following conditions (2.6)-
(2.8)

N^x R satisfies (1.1). (2.6)

uM(x) > 0, x € / . (2.7)

G(u/,(x)) = P((i) := inf G(u). (2.8)

By Sobolev's embedding theorem, u,, e Wa
h2(I) c C(I). Then, by (1.1), u'l e C(7), and

consequently, u e C2(7). (cf. Brezis [6, p. 136].) Now we state our main results.

Theorem 1. Assume that f satisfies the following conditions:

s>—y is strictly increasing on R, := (0, oo), (2.9)
s

(2.10)

l i m ^ = 0. (2.11)

There exists a constant 1 < m < oo, C,, C2 > 0 JMCA ?/;a/

| / ( s ) | < C, + C2|s|m. (2.12)

77ien r/iere fxuto A(/j) / o r // > 7i2. Furthermore, \i i-» A(//) « continuous.

Theorem 2. Assume (2.9)—(2.11) anrf (2.12)/or m < p. Then the following asymptotic
formula holds as \i -> TC2:

in W^O
1:!(/), (2.13)

https://doi.org/10.1017/S0013091500019611 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019611


228 TETSUTARO SHIBATA

(2.14)

Theorem 3. Assume (2.9), (2.10) and (2.11). Furthermore, assume that there exists a
constant C3, (5 > 0 such that for 0 < s < 8 and q > p

/(s)<C3s«. (2.15)

Then there exists a constant C4 > 0 such that

(1) Ifq > p + 1, then the following asymptotic formula holds as fi -*• oo:

V ^ C4^. (2.16)

(2) Ifp < q < p + 1 , then the following asymptotic formula holds as fi -»• oo:

(2.17)

The remainder of this paper is organized as follows. In Section 3, we shall prove
Theorem 1. Section 4 is devoted to the proof of Theorem 2. Finally, we shall prove
Theorem 3 in Section 5.

3. Proof of Theorem 1

The existence of (u^x), A(/x)) which satisfies (2.6) and (2.8) is due to Zeidler [23,
Proposition 6a]. Since G(u^) = G(|w,,|), we assume that u^ > 0 in /. If there exists x0 e I
such that M^(X0) = 0, then clearly M^(X0) — 0, since u^x) > 0 in /. Therefore, by the
uniqueness theorem of ODE we obtain that u^ = 0 in /. However, this is impossible, since
0 ^ Np. Thus Up > 0 in /, and the existence of a variational eigenvalue is completed.

Now we shall show the uniqueness of X(ji) for \i > n2. We begin with some
fundamental lemmas.

Lemma 3.1. Let (Ao, «o) and (A,, u,) satisfy (2.6)-(2.8). Then kQ = A,.

Proof. Multiply (1.1) by Uj(J = 0, 1). Then it follows from (2.6) and integration by
parts that for j = 0, 1

-2a = A(Uj, p) =-^Wuj). (3.1)
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Since //(«,) > 0 by (2.5), we obtain by (3.1) that A,- > 0.
Assume that Ao < A,. Then it follows from (1.1) that

-X +

Therefore, «„ is a supersolution of the equation

| ) = /UI in /,
I u(0) = u(l) = 0,

that is, Mo satisfies

J-«" +A, (u'+/(«)) >A<« in /,
{ u(0), M(1) > 0.

Hence, by [2, Theoreme 4] we obtain that u, < u0 in /. If u0 = w,, then it follows from
(3.1) that Ao = A,, which is a contradiction. Hence there exists a compact non-empty
interval /, c / such that «! < u0 in /,. Since/ is increasing, it is clear from (2.4) that
G(u,) < G(w0), which is a contradiction, since we have G(u0) = G(w,) = /?(/*) by (2.8).
Thus the proof is complete. •

Lemma 3.2. Let {^k)f=x be a sequence satisfying fik > n2 and fik -> )i0 > n2 as
k -»• ex). Then there exists a constant C7 > 0 JMC/Z that for any k e N

C7"' < /J(AI4) < C7. (3.3)

Proof. We assume that

P(nk) -*• 0 as fc ^ oo (3.4)

and drive a contradiction. Let ut = uw G NW. Then it follows from (2.4), (2.8), (3.4)
and Holder's inequality that as k -*• oo

ll«tlUi->0, l|«4||2<||«*IU,-»-0; (3.5)

this along with (2.6) implies that for k » 1

H«4ll2 = ftll«*lll-2«<0, (3.6)

which is a contradiction. Thus we obtain the estimate from below.
Next, we shall show the estimate from above. Since 2 j—^-v sin nx e Nn and/(s) is

increasing, we obtain by (2.8) that
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1nxdx+Ff

where £, =
complete.

\nk — n2\ > 0. This is the desired estimate. Thus the proof is

•
Lemma 3.3. f}([i) is continuous in nfor /i > n2.

Proof. Let {^J^ be a sequence satisfying nk > n2 and \ik -*• fi0 > n2 as k -*• oo.
Furthermore, let (uk, Xk) = (uw(x), A(AO). Put

-2<xk = A(uk, Ho) = A(uk, fik) +(jik- Mo)ll"jtIII = - 2 a + (jik - Ho)\\uk\\l. (3 .7)

It follows from Lemma 3.2 that

I|M*II? < \\uk\\l 5 ll"tllp+i 5 {(p+ \)f}(fik)}
p+> < C\, (3.8)

where C8 = {(p+ \)C-,}^. Then (3.7) and (3.8) imply that a.k -> a as k -*• oo. Hence
we see that xk > 0 for fe 2> 1. Now we put vk — y/^uk e N^. We obtain by (2.8) that

1

(3.9)

\F{vk)-F(uk)\.

By (3.6) and (3.8) we obtain

(3.10)

where C\ = maxfe nkC\. Since at ->• a as k -*• oo, we obtain by (3.8) and (3.10) that by
choosing another constant C9 > 0 if necessary, H^H^ < C\ for fc» 1. Therefore, it
follows from (3.8) and (3.10) that

\F(vk)-F(uk)\<f(C9)\\uk-vk\U< \\uk\U
(3.11)

We obtain by (3.9), (3.10) and (3.11) that
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. (3.12)

Next, we put

-2yk = A(u0, nk) = -2a + fa - MA)|]"olll- (3-13)

Then for k » 1 we have yk > 0 and yt ->• a as fc -»• oo. Let

wt=/%,eiV (3.14)

It follows from (2.8) and (3.14) that

(3.15)

Then we obtain by the same calculation as (3.11) that \F(wk) — F(uo)\ -> 0 as k -*• oo.
Therefore, it follows from (3.15) that

Hmsup^fa4)<^fa,). (3.16)
k—oo

Thus, our assertion follows from (3.12) and (3.16). •

Proof of Theorem 1: Continuity.
Assume that there exists fiQ > n2 such that A(/x) is not continuous at \i = fi0. Then

there exists a sequence {/it}^w and 3 > 0 such that nk -*• /x0 as k -»• oo and

W/O-Afa,)|><5. (3.17)

We fix such HQ and a sequence {nk}keN> a n ( l derive a contradiction. Let uk be the
eigenfunction corresponding to l{jik)- We have by (2.3) and the mean value theorem
that for s > 0

f'f(t)dt=f(sl)s<f(s)s, (3.18)
Jo

where 0 < s, < s. Then we obtain by (2.3)-(2-5) and (3.18) that F(u) < E(u), so
consequently

G(u) <//(«). (3.19)

It follows from (3.1), Lemma 3.2 and (3.19) that
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Hence, by choosing a subsequence of {A(jik)) if necessary, we may assume without loss
of generality that there exists a constant Ao such that X(jik) -*• Ao as k -> oo.
Furthermore, since fik —>• fi0 as k ->• oo, we may assume without loss of generality that
Hk < 2n0 and fl(jik) < 20(/io) for ke N. Then by (2.4) and (2.8), we see that

< KHz <
= 2/io((p + < C2

l0 := 2/zo(2(p

this implies that we can choose a weakly convergent subsequence of {ujj£li in Wo
l2(I),

which we write {w,j£i, again. Let u0 = w — l im^^, uk in W0
]2(I). Then by Sobolev's

embedding theorem we obtain that u0 = \imk_^aouk in C(/) and hence llu,,!^ < C10. Since
uk satisfies (1.1), we see that for $ 6 WQ2(I)

u'kct>'dx - ^ j uk<t>dx = — ACA** (3.21)

Since/ is locally Lipschitz continuous, there exists a constant Cn > 0 such that for
S,,Sj6[0,C1 0 ]

l / (s, ) - / (s2) l<CM|S l -s2 | . (3.22)

Since ||uoll<x» ll"*lloo < C10, we obtain by (3.22), Holder's inequality and Sobolev's
embedding theorem that as k -*• oo

< Cn (3.23)

0.

Since HuoH ,̂, \\uk\\x < C,o, we obtain by the mean value theorem that there exists
0(x) € [0, 1] for x e / such that

\uk(xY - uo(xY\ = p\d{x)uk{xTl - 0(x))uo(xy'||u,(x) -

this along with Holder's inequality implies tha t as k —> oo

I / (uZ - nS)0dx < pCio' / I K - «oM<*x < PC^o' llujk - Uoll2||0||2 -»• 0. (3.24)
I Jo Jo
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Let k -» oo in (3.21). Then we obtain by using (3.23), (3.24) and Sobolev's embedding
theorem that

J u'0(x)cj>\x)dx - n0 j uo(x)cKx)dx = ->Jfo K W V W +f(uo(x))<Kx))dx J. (3.25)

Now we shall show that «(, = lim^^Wj in Wo
l2([)- By (3.20) and (3.23) we obtain that

as k -*• oo

|jf\E(uk) - £(«o)| < | jf f(uk)(uk - uo)dx + |jf (f(uk) -

</(C,0)ll«* - "oil, + Cu\\uk - UolLIIUollz -> 0.

Now, we put 0 = Mo in (3.25). Then we obtain by (3.6), (3.25) and (3.26) that

Ki l l = tt>lluoll2 - ^H(uo) = l i m f o j u j i - Hnt)H(uk)} - lim ||w'fc|||. (3.27)
K—*OO fc—»OO

Hence we obtain that u0 — lim^..^ uk in Wo'-2(/). Consequently, it follows from Sobolev's
embedding theorem that u0 e N^. Furthermore, since ||u0lloo> llMtlloo 5 Cm, we obtain
that as k -> cx>

\F(uk) - F ( M O ) | < \ [ d x f k

I JO Juo
< max /(s)

O<<C
/() /

this along with Lemma 3.3 implies that

G(«o) - lim G(«4) = lim
k-*oo

Therefore, (uo.^o) satisfies (2.6)-(2.8) so that ^0 = A(/z0). This contradicts (3.17) and
Lemma 3.1. Thus the proof is complete. •

4. Proof of Theorem 2

We begin with preparing some lemmas.

Lemma 4.1. There exists a constant Cn > 0 such that for 0 < fi — n2

Proof. Since u^ e N , we obtain by Poincare's inequality that
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2a = /illujlj — IIû ||2 5 G* — t2)||i

which together with Holder's inequality implies that

2a < 2 < -

We obtain by (2.6), (3.1) and (4.2) that

2a 2a
AG0 = -

Thus the proof is complete.•

Let

••fx •- - n 2 i
sinrcx e Nr (4.3)

Lemma 4.2. r/iere exists a constant L > 0 JMC/I //ia/ as p ^> n2

sl\x - ifujix) -» Lsin7:x in WQ2(I).

Proof. We put «„ = (/!- n^u^x). It follows from (3.21) that for </> e C~(7)

—^1 f W** - 7-Su(/i - n2y Jo (ji - n2f

We shall show that there exists a constant C,3 > 0 such that

IKIL < c,,. (4.5)

Since (2.12) holds for 1 < m < p, we obtain that there exists a constant CH > 0 such
that

/"' ( 4 1 ^ C14{0i - rcT* + Gi - ^2)"Sf1}- (4-6)/
Jo

We find by (2.8), (4.3) and (4.6) that there exists a constant C15 > 0 such that
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U ' H ' " "" 5" " J " 1 S" * S" (4.7)

Now, (4.7) implies that there exists a constant C,6 > 0 such that as \i -> 7i2

from which, (3.6) and Holder's inequality it follows that

I I«X - llUA>ll2 - Mll^ll2 ^ /^IIMP+I - ^^16- (4-8)

Since fi -* TI2, we obtain (4.5) for C,3 = max^//IC,6. Now (2.12), Lemma 4.1 and (4.5)
imply that as \i -> 7t2

;, + c 2 / " """ | | |0L,-»o. (4.10)

By (4.8) we can choose a weakly convergent subsequence of {i;,,} in W0
]i2(I), which we

write as {i;̂ } again. Let v0 = w — l im, ,^ vr Then by Lemma 4.1, (4.4) and (4.10) we
obtain that for 0 € C~(/)

/
v'0<p'dx = n2 I vo<pdx. (4.11)

Jo
Hence, vo — L sin nx for some L > 0.

Finally, we shall show that u0 = l i m ^ v^ is in W0''
2(J)- Put <j> = v0 in (4.11). Then

IKII2 = Jt2||t>oll2 = lim/iHw,.!!! = litn{||y;i|2 + 2Oi-7c2)a} = lim ||y;||2.

Since v0 = w - l i m ^ ^ v^, this implies that our assertion is true. D

Proof of Theorem 2. First, we shall prove (2.13). To this end, we show that
L = 2y/oi in Lemma 4.2. Let \i -*• n1 in (4.2). Then we obtain

1}
2a < ||i>,J2 -> ||Lsin7cx||2 = — . (4.12)

Thus we obtain 2Va < L.
Now, we shall show L < 2^/a. It follows from (4.7) that
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Let /i -»• n2 in (4.13). Then we obtain by (4.6) that

p + 1 ~p+ 1

Thus we get (2.13) in Theorem 2.
Finally, we shall show (2.14). It follows from (3.1) that

(4.14)

We obtain by (2.12) and (4.5) that as n -»• n2

'JL-^O. (4.15)

Furthermore, we obtain by (2.13) and (4.15) that

\KC\ ~+ (2VST1 f sinp+1 nxdx = (2 Jo)*1 *-&(•%& 1 ) / r( ̂  ). (4.16)

Substitute (4.15) and (4.16) into (4.14) and let fi^-n2. Then (2.14) follows
immediately. •

5. Proof of Theorem 3

Let ŵ  = kijiY^Up. Then it follows from (1.1) that w^ satisfies

Awp)) in /,

W(i(x) > 0, xel, (5.1)

w / 0 ) = w , ( l ) = 0.

Lemma 5.1. There exists a constant C,7 > 0 such that for \i » 1

Proof. We first show that u^x) is bounded for /z » 1. It follows from (2.8), (2.15)
and (4.3) that there exists a constant C,8 > 0 such that
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Then we obtain by (1.2), (3.5), (5.2) and Holder's inequality that there exists a constant
C|9 > 0 such that for fi 3> 1

H«X < H\\l <
Let

/, := {x e / : u^x) < 5], I2 := {x e / : 5 < 11/x) < CI9},

where 5 is defined by (2.15). Then it is clear from (5.3) that / = /, U /2. Now we obtain
by (2.15), (5.2) and (5.3) that

^ = 7/(11,,) = iiuXi

<2(p+ l)ClgA*-^ (

Thus the proof is complete. •

We find from (5.1) that w^ satisfies

1 %(0) = Wfl(l) = 0, l • ;

that is, ŵ  is a subsolution of the equation

I ~v" + vP = ^ in '' (5.5)
[ t<0) = o(l) = 0. k }

We choose a constant /£„ > 0 such that Jg > llw^H^ and 7CJ"1 > \i. Then /C,,(x) = /£„
(x e 7) is a supersolution of (5.5), that is, K^(x) satisfies
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J -K;(x) + K^x)" > nKJix) in /,
| K,(0), K,(l) > 0.

Furthermore, it is clear that w(1(x) < K^x) in /. Hence, by Amann [1, (1.1) Theorem],
we find that there exists a solution v^ of (5.5) satisfying

in /. Since \i > n2, we know from Berestycki [2, Theoreme 6] that this vM is a unique
positive solution of (5.5). Furthermore, it is easy to see that Wx(x) = ^l/(p"1) is a
supersolution of (5.5), and ^ ( x ) = (^ — 7i2)1/tp~l) sin rcx is a subsolution of (5.5) with
W2(x) < Wt(x). Therefore, by Amann [1, (1.1) Theorem], there exists a solution V^ of
(5.5) such that

{H - 7t2)1/0>-" sinrcx < ^(x) < nl/ip-])

for x e /. Since the positive solution of (5.5) is unique, we have v^ = V^. Consequently,
we obtain

w,, < «„ < n^. (5.6)

Now, we put

Then we know from Heinz [15, Proposition 2.1] that r(/i) is a strictly increasing
function of \i > n2, since v^ < v^ in / if //, < /i2. Hence, \i is a function of r > 0, that
is, /x = \i{r). More precisely, /z(r) is increasing for r e (0, oo), and \i(f) -*• n2 as r -> 0
and ^(r) ->• oo as r ->• oo. We refer to Berestycki [2] for these properties. Therefore, v^
is parameterized by r > 0. Now, we introduce the auxiliary functions Cx(r) and R(r) for
r>0:

CiW := ll^llz + ^ 1 1 ^ 1 1 ^ ! . R(r) := /i(r) - r^1. (5.7)

For these functions, we know the following properties:

Lemma 5.2. ([19, Lemma 1.1, Theorem]) C\(f) is differentiable in r > 0 and the
following equality holds:

^ (5.8)
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Furthermore, for r » 1

Ci 'r ' r < R(r) < C20r^; (5.9)

Then we obtain by (5.7), (5.9), and direct calculation that there exists a constant
C21 > 0 such that for \i » 1 (i.e., r » 1)

C2-,V(r)5 < R(r) < C2ili(r)\ (5-10)

Multiply (5.5) by !>„. Then integration by parts yields

tiry = H\\2
2 + \\vXt\- (5-11)

Since /i(r) -*• n2 as r -> 0, we see from (5.U) that as r -*• 0

this along with (5.7) implies that C,(r) ̂ 0 a s r - » 0 . Therefore, we have by (5.8)
that

Cx(r) - / 2n(s)sds = -?—r^] + f 2sR(s)ds. (5.12)
Jo P + 1 Jo

Lemma 5.3. There exists a constant C22 > 0 such that for \i » 1

Proof. By (5.7) and (5.10), we obtain

CJlVW"2 < Mr) - I"""1 < C21//(r)'/2. (5.13)

This implies that

^(r)./(P-.)(1 _ C j , / ! - " 2 ) 1 ^ " < r < MW 1 / 0 > - " (1 - C2-1V"1/2)l/0'"1)-

Therefore, we have

MO'^'kl - C2jii{r)'xn) < r < Kr)U(P~l\l ~ C^r)-ifl). (5.14)

Now, by (5.11) and (5.14)
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Next, we obtain by (5.7), (5.11), and (5.12) that

= r"+1 4-
P
—-^ ?K{f) - \ 2sR(s)ds .

~ * I Jo J

There exists a constant r0 > 0 such that (5.9) holds for r > r0. Then, for r > r0

f 2sR(s)ds = f ° 2sR(s)ds + f 2sR(s)ds
J0 Jo Jr0

(5-16)

2 [
J0

f
Jro

where C24 = /i(ro)i^ + 2rp
0

+l/(j, + 1) - 4C2Oro°'+3)/2/(p + 3). This along with (5.7), (5.9),
(5.10), (5.14) and (5.16) implies that for r » 1

C20C25)R(r)) ( 5 1 7 )

Thus, the proof is complete. •

Lemma 5.4. There exist constants C28, C29 > 0 such that for \i » 1

2odO<)^ < /x^{l - C28/i"i + C29//?}. (5.18)

Proof. It follows from Lemma 5.1 and (5.6) that for \i » 1

W 1 1 * , < C,0Ai-i, (5.19)

where C30 = C^1. We obtain by (2.15), (3.1), (5.6), Lemma 5.3 and (5.19) that
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this along with Lemma 5.1 implies that

ifl< - C2

3zl

where C29 = C^C^,. This is the desired inequality. •

We obtain by (2.15), (5.1), (5.6) and Lemma 5.1 that for /i » 1

f?),, (5.21)q—p

where C3, = C^C]'-, . Put v := fi(\ — C^fi^). Then ŵ  is a supersolution of (5.5), in
which \i is replaced by v, that is, w^ satisfies

- H £ + wj > vŵ  in /,

We can choose a constant £,, > 0 so small that z^(x):— e^ sinnx satisfies

I - / ; + zj < vẑ  in /,

z,(0) = zp(0 = 0

and ẑ  < ŵ  in /. Then by [1, (1.1) Theorem] we obtain that there exists a positive
solution vv of (5.5), in which /z is replaced by v and satisfies ẑ  < vv < w^ in /. Then we
obtain by [2, Theoreme 4] that

(v - 7t2)^ sin 7rx < yv < wy (5.23)

Lemma 5.5. There exists a constant C32 > 0 such that for \i » 1

( cnn~l2 - C32i&). (5.24)

Proof. It follows from (3.1), Lemma 5.3 and (5.23) that

C2 2(v^)) ;

this along with Lemma 5.4 implies that

C 3 2 / i ^ -

Thus the proof is complete. •
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Proof of Theorem 3. We know that there exist constants C33, C34, C35 > 0 such that
for 0 < t «: 1

1 - C33t <(l-tfr<\- Cut (5.27)

and for |t| «: 1

(1 + tfr < 1 + C3i\t\- (5.28)

(1) Let q > p + 1. Then we see that for /i » 1

0<C 2 8 / | - i -C 2 9 / z £ ?« l . (5.29)

Then by Lemma 5.4 and (5.27) we obtain that for \i » 1

£+1

MM) < - ^ r { 1 "{2f (5-30)

< ^
(2a)~

this implies that for fi » 1

34//? < —L^ C34(c28/J - c^/x^2) < - L - MM)-
(2)T" (2)

^ c 2 8 c 3 4 / / < ^ C 3 4 ( c 2 8 / J c ^ / x ) <
2(2a)T" (2a)T" (2a) 2

Similarly, we obtain by Lemma 5.5 and (5.27) that for \i

(532)

this implies that for \i » 1

£+1

< CJSOXJ + / i 2^1) < 2C36^, (5.33)

where C36 = ^ 2 ^ Now we obtain (2.16) by (5.31) and (5.33).
(2a)2
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(2) Let p < q < p + 1 and \i » 1. Then we obtain by Lemma 5.4 and (5.28) that

£+1

< - ^ - s {1 - (Ca/i-i - C29[f?) }^

< - L {1 + CJ5\C2sfi-i - CB/?|} (5.34)
(2p"

< H
(2a)2

this implies that

£+1 .

£+1

{1 + C35(C28/i-i +

-7 (C28C35/J + C^Cjs/ i^2) < Q ^ 2 ^ , (5.35)
(2<x)V (2<x)V

where C37 = —LrC3s(C28 + C29). Similarly, we obtain by Lemma 5.5 and (5.27) that
(2P"

(5.36)

(2a)

this implies that

p-1 — B-I t~ \ ' •

(2a.p- (2oip-

Hence, we obtain (2.17) by (5.35) and (5.37). Thus the proof is complete. •
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