Proceedings of the Edinburgh Mathematical Society (1998) 41, 225-245 ©

TWO-PARAMETER NONLINEAR STURM-LIOUVILLE
' PROBLEMS

by TETSUTARO SHIBATA
(Received 30th January 1996)

We study two-parameter nonlinear Sturm-Liouville problems. We shall establish the continuity of the
variational eigencurve A(y) and asymptotic formulas of A(u) as g — oo, yu — 7°.

1991 Mathematics subject classification: primary 34B15.

1. Introduction

We consider the following two-parameter nonlinear Sturm-Liouville problem:

—u(x)" = pu(x) = Mu(x)’ +f(u(x))}, xeI=(0,1),
u(x)>0, xel, (1.1
u(0) =u(1l) =0,

where p > 1,u > %, A > 0 and f is a real-valued, increasing, odd and locally Lipschitz
continuous function on R.

The purpose of this paper is to investigate the behaviour of a variational eigencurve
A = Mu) obtained by variational theory on a general level set

N, := [u e W, () : / I(u'(x)2 — pu(x)’)dx = —Za}, (1.2)

where o > 0 is a fixed number.

In order to motivate the results of this paper, let us briefly recall the known results
concerning linear and nonlinear two-parameter eigenvalue problems. Linear two-
parameter eigenvalue problems in ordinary differential equations began with the analysis
of Lamé’s equation and there are many works. We refer to Binding and Volkmer [5],
Faierman [11, 12, 13], Langer [16], Rynne [18], Volkmer [22], and the references cited
therein. Especially, the study of the asymptotic behaviour of eigenvalues has found
considerable interest, and one of the main object is to find the asymptotic directions of the
spectrum (the limit of the ratio of two eigenvalue parameters). In particular, Binding
and Browne [3, 4] studied the linear two-parameter Sturm-Liouville equation
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u'(x) + pa(x)u(x) = Ab(x)u(x), xe€l,

where u, A € R are parameters. In [3, 4], under suitable boundary conditions, the
asymptotic formulas of A,(u)/u as u — oo have been given, where 4,(u) is the n-th
eigenvalue when u > 0 is given. Concerning nonlinear two-parameter problems, interest
has been directed mainly at bifurcation problems. We refer to Browne and Sleeman
[7, 8, 9], Gomez [14], Rynne [17], Chow and Hale [10], and the references cited therein.
In this paper, motivated by the work [3, 4], we focus our attention on the asymptotic
behaviour of the variational eigencurve A(u) as u — oo, n°, which is regarded as a
nonlinear version of the study of the asymptotic directions. We note here that since
(1.1) is nonlinear, 4 is parameterized by p and an additional parameter «. More
precisely, 4 = A(u, a) and « is a parameter of general level sets defined in (1.2), which is
developed by Zeidler [23], and it seems effective for us to consider the equation (1.1)
under the variational framework of general level sets.

Recently, the following nonlinear two-parameter problems were considered in
Shibata [20, 21]:

—u'(x) = pu(x) — A1 + fu(x)P DHu(x), xel, (13)
(0) = u(1) = 0, '
[ —u'(x) = pu(x) — Au()P'u(x), xel, (1.4)
u(0) = u(1) = 0,
where p > 1. It was shown in [20] that as y — oo
M) (1.5)
u

In [21], the asymptotic behaviour of A(u) as u — oo was obtained by using a simple
scaling technique.

Motivated by these facts, we shall establish asymptotic formulas for our non-linear
problem (1.1) by using variational theory on general level sets.

2. Main results

We use the following notation. Let

1

ull, = (f w(x)r'dx)q @z @.1)

Au, p) = w1l ~ plull3, 22)
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1 pu(x)

E(u,v) := Alf(u)vdx, E(u) := E(u,u), F(u):= /0 f(®)dsdx, (2.3)

1 1
G(u) == P+l lullpsy + F(w), (2.9

H(u) := |lull%$) + E(u). (2.5)

Now we define the variational eigenvalues A(u) of (1.1): A(u) are called the variational
eigenvalues of (1.1) if there exists u,(x) € N, satisfying the following conditions (2.6)-

(2.8)
(u,(x), Aw) € N, x R satisfies (1.1). (2.6)
u(x)>0, xel @7
G(u,(x)) = B(u) := jgfu G(u). (2.8)

By Sobolev’s embedding theorem, u, € Wy *(I) € C(I). Then, by (1.1), u, € C(I), and
consequently, u, € C*(I). (cf. Brezis [6, p. 136].) Now we state our main results.

Theorem 1. Assume that f satisfies the following conditions:

sr—v@ is strictly increasing on R, := (0, 00), (2.9)
limj;(s-s—) = 400, (2.10)
lir%]lss—2 =0. 2.11)

There exists a constant 1 <m < oo, C,, C, > 0 such that
If() = €+ CylsI™ (2.12)

Then there exists A(u) for u > n’. Furthermore, u— (1) is continuous.

Theorem 2. Assume (2.9)-(2.11) and (2.12) for m < p. Then the following asymptotic
Sformula holds as yu — =’:

Vi —ru(x) > 2/asinnx in W), (2.13)
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r P_if_%)
D e N\ T,
(p—7°) r(§+1)

Theorem 3. Assume (2.9), (2.10) and (2.11). Furthermore, assume that there exists a
constant Cs, 8 > 0 such that for 0 <s<dandq>p

(2.14)

165) < Cy5. 2.15)

Then there exists a constant C, > 0 such that
(1) If g > p+ 1, then the following asymptotic formula holds as p — oco:

+1

cili< -t =R Ok Catdh. (2.16)

)

(2) If p < q < p+1, then the following asymptotic formula holds as u — oo:

&]
Ay - L | < e @.17)
Q)T

The remainder of this paper is organized as follows. In Section 3, we shall prove
Theorem 1. Section 4 is devoted to the proof of Theorem 2. Finally, we shall prove
Theorem 3 in Section 5.

3. Proof of Theorem 1

The existence of (u,(x), A(1)) which satisfies (2.6) and (2.8) is due to Zeidler [23,
Proposition 6a]. Since G(u,) = G(Ju,|), we assume that u, > 0 in I. If there exists x, € I
such that u,(x) =0, then clearly u,(x,) =0, since u,(x) >0 in I. Therefore, by the
uniqueness theorem of ODE we obtain that u, = 0 in 1. However, this is impossible, since
0 ¢ N,. Thus u, > 0in I, and the existence of a variational eigenvalue is completed.

Now we shall show the uniqueness of A(u) for u>mn’. We begin with some
fundamental lemmas.

Lemma 3.1. Let (Ay, ) and (1, w,) satisfy (2.6)—(2.8). Then Ay = A,.

Proof. Multiply (1.1) by 4;(j =0, 1). Then it follows from (2.6) and integration by
parts that for j =0, 1

=20 = A(w;, p) = —4L,H(u). 3.1
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Since H(w;) > 0 by (2.5), we obtain by (3.1) that 4, > 0.
Assume that 4, < A,. Then it follows from (1.1) that

—tig + Ay (g + f (o)) = —ug + Ao(ts§ + f(uo)) + (A = Ao)(ug + f (1))

> uuy.
Therefore, u, is a supersolution of the equation

—u'+ W+ fW)=pu in I,
u(0) =u(1) =0,

that is, u, satisfies

[ '+ 2 +fw)>pu in I, (3.2)

1(0), u(1) > 0.

Hence, by {2, Théoréme 4] we obtain that u, < u, in I. If u, = u,, then it follows from
(3.1) that A4, = 4,, which is a contradiction. Hence there exists a compact non-empty
interval I, C I such that u; < u, in I,. Since f is increasing, it is clear from (2.4) that
G(u)) < G(u,), which is a contradiction, since we have G(uy) = G(u;) = B(n) by (2.8).
Thus the proof is complete. ]

Lemma 3.2. Let {u)>, be a sequence satisfying u,>n" and u, — y, > n° as
k — o0. Then there exists a constant C; > 0 such that for any k € N

Ci' < B(w) < Cs. (3.3)
Proof. We assume that
Blu)—0 as k— o0 (3.9

and drive a contradiction. Let u, =u, € N, . Then it follows from (2.4), (2.8), (3.4)
and Hoélder’s inequality that as k — oo

N llper = 0, Nuglly < lllper = O; (3.5
this along with (2.6) implies that for k > 1
lll3 = pellugll; — 22 < 0, (3.6)
which is a contradiction. Thus we obtain the estimate from below.

Next, we shall show the estimate from above. Since 2 “—j’?sin nx € N, and f(s) is
increasing, we obtain by (2.8) that
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1 o '
By, < o+ (2 /#k i = ' '/; sin”” nxdx + F(Z ” i p sin nx)
el or(3f).

where ¢ = max,y |y, — 7’| > 0. This is the desired estimate. Thus the proof is
complete. O

Lemma 3.3. B(u) is continuous in p for u > n*.

Proof. Let {1,)3, be a sequence satisfying u, > n° and p, — p, > n° as k — oo.
Furthermore, let (u, ) = (4, (x), (). Put

=20, = A(uy, o) = A(uy, ) + (1 — l‘o)”ukug = =20+ (y, — ﬂo)”“k”%- 3.7

It follows from Lemma 3.2 that

lall? < N2 < N2, < {(p + DB < C3, (3.8)

where C; = {(p+ l)Q}#. Then (3.7) and (3.8) imply that «, - a as k — 0o. Hence
we see that o, > 0 for k> 1. Now we put v, = \/Euk € N, . We obtain by (2.8) that

pi

Bluo) < (1)TL lagllZ2L + F(oy)

o) p+1 (3.9)
1 & & p+1
< G(w,) +m &‘; =1 ¢llwlln + 1F(w) — F(udl.
By (3.6) and (3.8) we obtain
a2 < N3 < mellueliZ, < C3, (3.10)

where C3 = max, u,Ci. Since o, — & as k - 0o, we obtain by (3.8) and (3.10) that by
choosing another constant C, > 0 if necessary, ||lv ||, < C5 for k> 1. Therefore, it
follows from (3.8) and (3.10) that

21

el
Oy

[F(v) — F(u)] < f(Cllu ~ velly < f(Cs)

/E_ll.
Oy

@3.11)
< G f(Gy)

We obtain by (3.9), (3.10) and (3.11) that
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Bluo) < liminf Bu,). (3-12)
Next, we put

=2y, = A(up, p) = —2a + (o — )l ll3- (3.13)

Then for k >> 1 we have y, > 0 and y, > a as k — oo. Let

w, = \/Euo EN,. (3.14)
Vi

It follows from (2.8) and (3.14) that
g
() -
Pk

Then we obtain by the same calculation as (3.11) that |F(w,) — F(uy)| = 0 as k — oo.
Therefore, it follows from (3.15) that

Blu) < G(w) < Glup) + w1231 + [F(w,) — F(uo)l. (3.15)

lim sup A1) < Blso) (3.16)
Thus, our assertion follows from (3.12) and (3.16). O

Proof of Theorem 1: Continuity.
Assume that there exists y, > n° such that A(u) is not continuous at u = y,. Then
there exists a sequence {y,};ey and 6 > 0 such that u, — u, as k - oo and

[AQe) — Aug)l = 6. (3.17)

2

We fix such u, and a sequence {4}y, and derive a contradiction. Let u, be the
eigenfunction corresponding to A(y,). We have by (2.3) and the mean value theorem
that for s > 0

[o f@dt = £(s)s < S(5)s. (3.18)

where 0 <5, <s. Then we obtain by (2.3)-(2.5) and (3.18) that F(u) < E(u), so
consequently

G(u) < H(u). (3.19)

It follows from (3.1), Lemma 3.2 and (3.19) that
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200
H (uk) G(uk) ﬂ(ﬂk) -

< Au) = < 20C;.

Hence, by choosing a subsequence of {A(y,)} if necessary, we may assume without loss
of generality that there exists a constant A, such that A(y,)— 4, as k — oo.
Furthermore, since y, — u, as k — 0o, we may assume without loss of generality that
i < 2u, and B(u,) < 2B(1y) for k € N. Then by (2.4) and (2.8), we see that

, 2
lulloe < Ny < pllwelly < 2p0llalize < 2p0((p + 1DG(w )P

(3.20)
= 2u((p + DB < Clo 1= 2u4(2p + D)™,

this implies that we can choose a weakly convergent subsequence of {1}, in Wy(I),
which we write {1}, again. Let u, = w—lim,_ %, in W,"’(I). Then by Sobolev’s
embedding theorem we obtain that u, = lim,_, . u, in C(I) and hence ||y}, < C,,. Since
u, satisfies (1.1), we see that for ¢ € W,"*(I)

[ dax = [ pax = —a(uo{ I +f(uk)¢)dx}. (3.21)

Since f is locally Lipschitz continuous, there exists a constant C,; > 0 such that for
51,52 € [0, Cyo)

1f(51) = f(s2)] = Cyylsy — syl (3.22)

Since |luglleo, ltille < Cio, We obtain by (3.22), Holder’s inequality and Sobolev’s
embedding theorem that as k — oo

/o(f(uk)—f(uo))tbdx = Cu/o. |ty — ol pdx (3.23)

< Cullu, — woll;lI@ll, — 0.

Since ||uglle, Il < Cio» We obtain by the mean value theorem that there exists
0(x) € [0, 1] for x € I such that

(%) — up(x)°l = pIOG)u(x)7™" + (1 — OGN ue(xy " 1 (x) — up(x)]
< pClg ' lup(x) — u(x)l;

this along with Holder’s inequality implies that as k — oo

1 1
} f W — W)pdx| < pCl! f (e — ue)bldx < pC3 g — wollollll, > 0. (3.24)
1] 0
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Let k — oo in (3.21). Then we obtain by using (3.23), (3.24) and Sobolev’s embedding
theorem that

/0. up(x)¢'(x)dx — pg /o Uup(x)p(x)dx = —%[ /0 (uo(x) (x) +f(uo(X))¢(x))dX]- (3.25)

Now we shall show that u, = lim,_, _ u, in W,"*(I). By (3.20) and (3.23) we obtain that
ask » o0

1 1
15Ga) = B < | [ 1) = x| + | [ () = S
0 0 (3.26)
< f(Cidllwe — wolly, + Cyllug — gl ligll, — 0.
Now, we put ¢ = u, in (3.25). Then we obtain by (3.6), (3.25) and (3.26) that
46112 = molluoll3 — AoH (o) = lim {psyllwell} — AQ)H()} = lim llw 3. (3.27)

Hence we obtain that u, = lim,_,  u, in W, *(I). Consequently, it follows from Sobolev’s
embedding theorem that u, € N,. Furthermore, since |ty ltillc < Cio, We obtain

that as k —> oo
1 g 1
/ dx f f(s)ds| < max £(s) / ity (x) ~ ()l
0 o 0=s2Cyp 0

= f(Ciollu, — uoll, = 0;

[F(u) — F(up)l <

this along with Lemma 3.3 implies that
Gluo) = lim G(w) = fim B(u,) = Also)-

Therefore, (ug, 4,) satisfies (2.6)-(2.8) so that Ay = A(y,). This contradicts (3.17) and
Lemma 3.1. Thus the proof is complete. O

4. Proof of Theorem 2

We begin with preparing some lemmas.

Lemma 4.1. There exists a constant C,, > 0 such that for 0 < y — n* < 1
1
) < Coplp = ). 1)

Proof. Since u, € N,, we obtain by Poincaré’s inequality that
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20 = pllullz — Mll3 < (u = 72w, li3,

which together with Holder’s inequality implies that

< w3 < lw iy 4.2)

We obtain by (2.6), (3.1) and (4.2) that

2cx 2

2 — 2y
Thus the proof is complete.[]
Let
s, = —Laz%sm nx € N,. “4.3)
(u—n)

Lemma 4.2. There exists a constant L > 0 such that as y — 7°

vu—rtu(x) > Lsinnx in  W,(]).

Proof. Weputov, =(u— nz)iu"(x). It follows from (3.21) that for ¢ € C5°(J)

1 1 , U 1
- ‘ddx — ——— ¢d .
- nz)i/ K & (u— nz)i ./(; Pupax 44

= _,1(,1){ g / Vidx + / i ( m _v”nz);)fﬁdx],

We shall show that there exists a constant C;; > 0 such that

vl < Cis- @.5)

Since (2.12) holds for 1 < m < p, we obtain that there exists a constant C,, > 0 such
that

F(s,) < / ‘ mt 1 }"" <Culu-) - (6

We find by (2.8), (4.3) and (4.6) that there exists a constant C,s > 0 such that
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1
— lu,lZh < G,) < G(s,) = —— s, 12 + F(s,)

4.7
< Csfu—m)" ”f+(u—n2) b u—m) ¥
Now, (4.7) implies that there exists a constant C,s > 0 such that as y — 7
loullzts = (e = =250 < CT&
from which, (3.6) and Hdlder’s inequality it follows that
‘ 19,015 < 10,13 < pllv,l; < wllv,liz < pCle. (4.8)

Since ¢ — 7%, we obtain (4.5) for C,; = max JECs. Now (2.12), Lemma 4.1 and (4.5)
imply that as u — n°

0 [ 1y ) = Cotu- %+ o Hahion 0. @0

By (4.8) we can choose a weakly convergent subsequence of {v,} in W;"*(I), which we
write as {v,} again. Let vy = w —1lim,_2v,. Then by Lemma 4.1, (4.4) and (4.10) we
obtain that for ¢ € C5(I)

1 1
/ vpd'dx = nzf voddx. 4.11)
0 0

Hence, v, = Lsinznx for some L > 0.

Finally, we shall show that v, = lim__, 2 v, is in W,*(I). Put ¢ = v, in (4.11). Then

[ g id

2 2 : 2 H 2 : 2
%112 = 7*llvoll; = tim pllv, I3 = Lim{(lv, I3 + 2(u — 7} = lim (|, [13.
y»nz u—vnz y—bnz
Since v, = w —lim,_, 2 v,, this implies that our assertion is true. |

Proof of Theorem 2. First, we shall prove (2.13). To this end, we show that
L =2/xin Lemma 4.2. Let 4 — 7’ in (4.2). Then we obtain

2

. L
20 < |lv, I} — |Lsin x| =5 4.12)

Thus we obtain 2./a < L.
Now, we shall show L < 2./a. It follows from (4.7) that
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p+1 1 . p+l nE
l]v loi < P —— 12Vasinnx|fyy + (u — n?) T F(s,). (4.13)

Let u — 7’ in (4.13). Then we obtain by (4.6) that

1

1
_Lp+|<_2 P+I'
p+1 _p+l(ﬁ)

Thus we get (2.13) in Theorem 2.
Finally, we shall show (2.14). It follows from (3.1) that

l(#z = - 20 . (4.14)
(=) ol +(u—n )’fE(——f—— v,,)
(u — n))}
We obtain by (2.12) and (4.5) that as y — n?
(#_nz);E( )< (u—n’)‘%{C. +Co }n w—0.  (4.15)
(u—

Furthermore, we obtain by (2.13) and (4.15) that

(: .

o 55 — (2ﬁ)ﬂ+‘/ sin”*! nxdx = 2V0) ' n -%r<2~ 1)/1‘(”;3). (4.16)

0

Substitute (4.15) and (4.16) into (4.14) and let u— n>. Then (2.14) follows
immediately. O

S. Proof of Theorem 3
Letw, = l(,u)Fl-'Tu“. Then it follows from (1.1) that w, satisfies
—wj = pw, — (W + AWF O W) in

w,(x) >0, xel, (5.1)

w,(0) =w,(1)=0
Lemma 5.1. There exists a constant C,, > 0 such that for p > 1

1
#E;_ < Cy2(0).

Proof. We first show that u,(x) is bounded for p > 1. It follows from (2.8), (2.15)
and (4.3) that there exists a constant C,; > 0 such that
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Il = 800 < 66 = {2 + £ 62

< Collu— ) F +(u—n?)yF).

Then we obtain by (1.2), (3.5), (5.2) and Holder’s inequality that there exists a constant
C,s > 0 such that for y > 1

N, lZ, < N3 < mlhuglll < plu i, < Cls. (5.3)
Let
={xel:u(x)<dé}, L:={xel:d<u,x)=<Cpl

where ¢ is defined by (2.15). Then it is clear from (5.3) that I = I, U I,. Now we obtain
by (2.15), (5.2) and (5.3) that

200 P+l !
= () = WMH+£K%MM

1
<2p+ )CupuF + /0 f-—i’:“) wrtdx
u
<2p+ l)C,K,u‘z;‘] + C;é"“’/ udx +f—(§,,—'9)/; ult'dx
2

1

szw+an*¥+(qN* ﬂc“)um

<2p+ 1)c,8(1 G +L(§,,—'i)-)u'”r'

Thus the proof is complete. O

We find from (5.1) that w, satisfies

-w,+wh <pw, in I, (5.4)
w,(0) = w,(1) =0,
that is, w, is a subsolution of the equation
- +0v° = in I,
v+ MU 1n (5.5)
v(0) = v(1) = 0.

We choose a constant K, > 0 such that K, > [lw,|l, and K""' > pu. Then K, (x) =
(x € I) is a supersolution of (5.5), that is, K (x) satisfies
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—Ki(x) + K, (x)f > uK,(x) in I,
K,(0), K, (1) > 0.

Furthermore, it is clear that w,(x) < K, (x) in I. Hence, by Amann [1, (1.1) Theorem],

we find that there exists a solution v, of (5.5) satisfying

W”SU"SK“

in 1. Since u > n’, we know from Berestycki [2, Théoréme 6] that this v, is a unique
positive solution of (5.5). Furthermore, it is easy to see that Wi(x)=u'¢™" is a
supersolution of (5.5), and Wy(x) = (u — 7)"®"sinnx is a subsolution of (5.5) with
Wy (x) < Wj(x). Therefore, by Amann [1, (1.1) Theorem], there exists a solution V, of
(5.5) such that

(u— 7" Vsinnx < V(x) < p'e"

for x € I. Since the positive solution of (5.5) is unique, we have v, = V,. Consequently,
we obtain

1
=T
W,‘SU,‘SW .

(5.6)
Now, we put
r=r) = vl

Then we know from Heinz [15, Proposition 2.1] that r(u) is a strictly increasing
function of u > n?, since v, <, in Iif u < p,. Hence, u is a function of r > 0, that
is, u = u(r). More precisely, u(r) is increasing for r € (0, o), and u(r) - n* as r — 0
and u(r) — oo as r — oo. We refer to Berestycki [2] for these properties. Therefore, v,
is parameterized by r > 0. Now, we introduce the auxiliary functions C,(r) and R(r) for
r>0:

2
Ci(r) := [, 1I3 + 1 lolibi,  R(r):= p(r) — . (&N))

For these functions, we know the following properties:

Lemma 5.2, ({19, Lemma 1.1, Theorem]) C,(r) is differentiable in r > 0 and the
Sfollowing equality holds:

dcl(')_
dr

2ru(r). (5.8)
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Furthermore, for r > 1
Cir'T < R(r) < Cyf'T. (5.9

Then we obtain by (5.7), (5.9), and direct calculation that there exists a constant
C,, > O such that for u > 1 (i.e.,, r » 1)

Col (P} < R() < Cyup(ry. (5.10)
Multiply (5.5) by v,. Then integration by parts yields
#(Or = 15,13 + o, 531 (5.11)
Since u(r) = n* as r —» 0, we see from (S.Iﬁ) thatasr— 0
5,03 o, lipi — 0;

this along with (5.7) implies that C,(r) = 0 as r — 0. Therefore, we have by (5.8)
that

Ci(r) = /orZy(s)sds = p-_%r"“ + /r2sR(s)ds. (5.12)

0

Lemma 5.3. There exists a constant C,, > 0 such tnat for u > 1
+1 +1
w11 = Clud) < I, I50 < (1 — Coh).
Proof. By (5.7) and (5.10), we obtain
Ciiun)'”? < p(r) — P~ < Cuu(n)'”. (5.13)
This implies that
ﬂ(r)ll(p—l)(l _ CZlﬂ—I/Z)I/(P—I) <r< ,Ll(r)l/(p_l)(l _ CZ-'IM—IIZ)I/(P-I).
Therefore, we have
#(O(A = Coup() ™) < 1 < ()1 = CH U ™). (5.14)

Now, by (5.11) and (5.14)

"Uu "::: < #(r)rz < #(r)#(r)Z/(P—l)(l _ C;;lﬂ(r)—llz)z

< p(r)(P'H)/(P—l)(l _ szﬂ(’)_lﬂ)- (5.15)
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Next, we obtain by (5.7), (5.11), and (5.12) that

I, =255 ) = €0
(5.16)

=rt! +Z—i——i [rzR(r) - /O’ZSR(S)ds}.

There exists a constant r, > 0 such that (5.9) holds for r > ry. Then, for r > r,

r ro ,
/ 2sR(s)ds = / 2sR(s)ds + / 2sR(s)ds
0 o A
ro ,
<2 f (u(s)s + sP)ds + 2Cy / SP+D2 g
0 o

4
< Cpy + —— Cpgr®2 < C, V02,
24 p+3 20 - V25

where C,, = pu(ro)r2 + 2057 /(p + 1) — 4C,or?™?/(p + 3). This along with (5.7), (5.9),
(5.10), (5.14) and (5.16) implies that for r > 1

o, Ny = r+' — f 25R(s)ds > PP+ — C,gr?P2
0

= rz(rp_l - Czs"(p-l)/z) = "2(#(") — (1 + CxCy5)R(M) (5.17)
> p(r) 0 = Coau(r) Y (u(r) — Coou(n)'?)
> p(r)®He0(1 = Cou(r)™).

Thus, the proof is complete. O
Lemma 5.4. There exist constants Cqq, Cyy > 0 such that for u > 1
2T < g1 ~ Cogu~t + Crou). (5.18)
Proof. It follows from Lemma 5.1 and (5.6) that for u>> 1
M) ™w, < Cou™}, (5.19)

1
where C,, = . We obtain by (2.15), (3.1), (5.6), Lemma 5.3 and (5.19) that

2 , ) )
A—(Z) = H(u,) = 2 FTlw, |25 + A T EQ() *w,, w,)
< ) P02 + CoA() F o, 7! (5.20)

< Ay (4) - ¢ () | + a0 F,
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this along with Lemma 5.1 implies that
2“'1(#)7’%[ < #F'} -Cy (#5‘%"7) + Cz9#$}!ﬁ_jv
where Cp = C;C%':F . This is the desired inequality. O
We obtain by (2.15), (5.1), (5.6) and Lemma 5.1 that for u > 1

—_ -1 —

—Wl W > w”{ - c3;.(y)5?wg-'} > w”[p - C;i(y)HygT'} > ,u(l -G, ,H)w,,, (5.21)
where C;, = C; ﬁf Put v:= pu(l -—C;,;ﬁj). Then w, is a supersolution of (5.5), in
which u is replaced by v, that is, w, satisfies

—w,+w,>w, in I,
[ w,(0), w,(1) > 0. (5.22)
We can choose a constant ¢, > 0 so small that z,(x) := ¢, sin nx satisfies

—zZ+z£ <vz, in I,
z,(0)=z,1)=0

and z, <w, in I. Then by [1, (1.1) Theorem] we obtain that there exists a positive

solution v, of (5.5), in which u is replaced by v and satisfies z, < v, <w, in I. Then we

obtain by [2, Théoréme 4] that

(v— ) sinnx < v, < W,. (5.23)

Lemma 5.5. There exists a constant C;, > 0 such that for u > 1

20 > uFT(1 = Cyp™t = Cop'™). (524)

Proof. It follows from (3.1), Lemma 5.3 and (5.23) that

20 T o
W H(u) = A" liw,lla = 20 vl (5.25)

2 2y I = Cp (v ));
this along with Lemma 5.4 implies that
22 2 (1 = CypTYFT = Co (D (1 — €y Ty E) 526
> pH(1 - Co') — CoouD.

Thus the proof is complete. O
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Proof of Theorem 3. We know that there exist constants Cj;, Cy4, C35 > 0 such that
for0<t«x1

—1
1= Cyut <(1=t)T < 1= Cyyt (5.27)
and for |t] « 1

(1+07 <14 Cyltl. (5.28)

(1) Let g > p+ 1. Then we see that for u>» 1

0 < G — Cpop™ < 1. (5.29)

Then by Lemma 5.4 and (5.27) we ot.ain that for u > 1

+1

u
@07
= _
=< a ,__1{1 - C34(Czsll_% - C29#L2q)};
(20)2

Mp) < {1 = (Cypp™} = Coout™) }L}l

(5.30)

this implies that for u > 1

+1
e C,yCoyu® < — Cou(Crouf — C oo o # — A(W). 5.31
2(20(),%1 280l (20()12_1 34( 1nH M ) = (20‘)2_.2_, ) ( )

Similarly, we obtain by Lemma 5.5 and (5.27) that for u > 1

,u“ - -y 5
Ap) = (20‘)&;_1 {1 sz(/‘ +u )
E‘l:l
> = Gt + ™))
—(Za)’%{ 2 33(# u )}

-2l
}2

(5.32)

this implies that for u > 1

41

u
(22)7

— M) < Cag(ud +1™7) = 20,0, (5.33)

where Cys = $2531 Now we obtain (2.16) by (5.31) and (5.33).

(207
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(2) Let p<g<p+1and u>» 1. Then we obtain by Lemma 5.4 and (5.28) that

g o
(;z)fr‘ {1 - (Cupt- ngu"z’)}Er

Ap) <

<

(2 e {1 + Cys|Coppt™ b Cz9I»‘L‘1|} (5.34)
o

1

<

(2 ) = {1 + C:s(czsll by Cz9#£’1)}

this implies that

&‘

Ap) — (szscssllg + Cz9cas#ﬁri) < C37# 7 ) (5.35)

(20&r (20:)&r

where C;; = #_TC”(CZs + C,). Similarly, we obtain by Lemma 5.5 and (5.27) that
20

1

oy B
ﬂ(u)>( a)‘r{ - Cofp i+ 47}
L R (5.36)
(20()’5' 32033
2;_1
z £ (1 _2C32C33ﬂ¥)
)T
this implies that
B e
)»(ﬂ)— U > — C32C33 #-Lz—-q (5.37)

)T~ )T
Hence, we obtain (2.17) by (5.35) and (5.37). Thus the proof is complete. Od
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