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Abstract

Let G denote a finite group and cd(G) the set of irreducible character degrees of G. Huppert conjectured
that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G � H × A, where A is an
abelian group. He verified the conjecture for many of the sporadic simple groups and we complete its
verification for the remainder.
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1. Introduction

Let G be a finite group, Irr(G) the set of irreducible characters of G, and denote the
set of character degrees of G by cd(G) = { χ(1) : χ ∈ Irr(G)}. This set can be used to
gain information about the structure of G. For example, it can be used to determine
if G is abelian. Unfortunately, it does not completely determine the structure of G.
It is possible for nonisomorphic groups to have the same set of character degrees.
For example, the nonisomorphic groups D8 and Q8 not only have the same set of
character degrees, but also share the same character table. The character degree set
cannot be used to distinguish between solvable and nilpotent groups. For example,
if G is either Q8 or S 3, then cd(G) = {1, 2}. However, in the late 1990s, Huppert [6]
posed a conjecture which, if true, would sharpen the connection between the character
degree set of a nonabelian simple group and the structure of the group.

C 1.1 (Huppert). Let G be a finite group and H a finite nonabelian simple
group such that the sets of character degrees of G and H are the same. Then G � H × A,
where A is an abelian group.
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The conjecture asserts that the nonabelian simple groups are essentially
characterized by the set of their character degrees. It does not extend to solvable
groups. Unfortunately, it is not possible to establish the conjecture for all nonabelian
simple groups with a single argument. In addition to verifying this conjecture for
many of the simple groups of Lie type, Huppert also verified it for many of the sporadic
simple groups. The sporadic simple groups not considered by him are Conway groups,
Fischer groups, the Monster, and the Baby Monster. The conjecture for the Baby
Monster, the Monster and the Fischer group Fi23 was established in [1, 8]. Huppert’s
proofs rely upon establishing five steps to achieve the result. Steps 2 and 3 are the
most delicate and require the most specific and technical arguments.

(1) Show that G′ = G′′. Hence if G′/M is a chief factor of G, then G′/M � S k, where
S is a nonabelian simple group.

(2) Identify H as a chief factor G′/M of G.
(3) Show that if θ ∈ Irr(M) and θ(1) = 1, then θg = θ for all g ∈G′, (that is, θ is stable

under G′), which implies that [M,G′] = M′.
(4) Show that M = 1.
(5) Show that G = G′ ×CG(G′). As G/G′ �CG(G′) is abelian and G′ � H, Huppert’s

conjecture is verified.

We utilize these steps to verify the conjecture for the remaining sporadic simple
groups.

2. Preliminaries

In this section, we present some necessary results to establish the conjecture for the
Conway and Fischer families of simple groups.

If n is an integer, let π(n) denote the set of all prime divisors of n. If G is a group,
we write π(G) instead of π(|G|) to denote the set of all prime divisors of the order of
G. If N EG and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) = {g ∈G | θg = θ}.
If the character χ =

∑k
i=1 eiχi, where each χi is an irreducible character of G and ei is a

nonnegative integer, then those χi with ei > 0 are called the irreducible constituents of
χ. The set of all irreducible constituents of θG is denoted by Irr(G|θ). Other notation is
standard.

L 2.1 [5, Theorems 19.5 and 21.3]. Suppose that N EG and χ ∈ Irr(G).

(a) If χN = θ1 + θ2 + · · · + θk with θi ∈ Irr(N), then k divides |G/N|. In particular, if
χ(1) is prime to |G/N|, then χN ∈ Irr(N).

(b) (Gallagher’s theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for all ψ ∈ Irr(G/N).

L 2.2 [5, Theorems 19.6 and 21.2]. Suppose that N EG and θ ∈ Irr(N). Let I =

IG(θ).

(a) If θI =
∑k

i=1 ϕi with ϕi ∈ Irr(I), then ϕG
i ∈ Irr(G). In particular, ϕi(1)|G : I| ∈

cd(G).
(b) If θ extends to ψ ∈ Irr(I), then (ψτ)G ∈ Irr(G) for all τ ∈ Irr(I/N). In particular,

θ(1)τ(1)|G : I| ∈ cd(G).
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(c) If ρ ∈ Irr(I) such that ρN = eθ, then ρ = θ0τ0, where θ0 is a character of an
irreducible projective representation of I of degree θ(1) and τ0 is a character
of an irreducible projective representation of I/N of degree e.

The following lemma [8, Lemma 3] will be used to verify step 1.

L 2.3. Let G/N be a solvable factor group of G minimal with respect to being
nonabelian. Then two cases can occur.

(a) G/N is an r-group for some prime r. Hence there exists ψ ∈ Irr(G/N) such that
ψ(1) = rb > 1. If χ ∈ Irr(G) and r - χ(1), then χτ ∈ Irr(G) for all τ ∈ Irr(G/N).

(b) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N.
Then f = |G : F| ∈ cd(G) and |F/N| = ra for some prime r, and a is the smallest
integer such that ra ≡ 1 mod f . If ψ ∈ Irr(F) then either fψ(1) ∈ cd(G) or ra

divides ψ(1)2. In the latter case, r divides ψ(1).

(1) If no proper multiple of f is in cd(G), then χ(1) divides f for all χ ∈ Irr(G)
such that r - χ(1), and if χ ∈ Irr(G) such that χ(1) - f , then ra | χ(1)2.

(2) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then either
f divides χ(1) or ra divides χ(1)2. Moreover, if χ(1) is divisible by no
nontrivial proper character degree in G, then f = χ(1) or ra | χ(1)2.

Let χ ∈ Irr(G). We say that χ is isolated in G if χ(1) is divisible by no proper
nontrivial character degree of G and no proper multiple of χ(1) is a character degree
of G. In this situation, we also say that χ(1) is an isolated degree of G. We define a
proper power degree of G to be a character degree of G of the form f a for integers
f , a > 1. Throughout this paper we use GAP [4] to determine the isolated degrees of
the groups under discussion.

The next two lemmas will be used to verify steps 2 and 4. The first lemma appears
in [2, Theorems 2–4].

L 2.4. If S is a nonabelian simple group, then there exists a nontrivial irreducible
character θ of S that extends to Aut(S ). Moreover, the following holds.

(a) If S is an alternating group of degree at least seven, then S has two characters of
consecutive degrees n(n − 3)/2 and (n − 1)(n − 2)/2 that both extend to Aut(S ).

(b) If S is a sporadic simple group or the Tits group, then S has two nontrivial
irreducible characters of coprime degrees which both extend to Aut(S ).

(c) If S is a simple group of Lie type, then the Steinberg character S tS of S of degree
|S |p extends to Aut(S ).

L 2.5 [2, Lemma 5]. Let N be a minimal normal subgroup of G so that N � S k,
where S is a nonabelian simple group. If θ ∈ Irr(S ) extends to Aut(S ), then θk ∈ Irr(N)
extends to G.

The following lemma will be used to verify step 4.
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L 2.6 [6, Lemma 6]. Suppose that M EG′ = G′′ and for every λ ∈ Irr(M) with
λ(1) = 1, λg = λ for all g ∈G′. Then M′ = [M,G′] and |M/M′| divides the order of the
Schur multiplier of G′/M.

3. Huppert’s conjecture for the sporadic simple group Fi′
24

3.1. The sporadic simple group Fi′
24
. Using [3], we provide relevant properties of

the sporadic simple group H = Fi′24. Observe that π(H) = {2, 3, 5, 7, 11, 13, 17, 23, 29}.

L 3.1. Let H be the sporadic simple group Fi′24.

(a) The following are isolated degrees of H:

314 · 72 · 23 · 29, 214 · 52 · 7 · 11 · 13 · 17 · 23,

221 · 52 · 73 · 11, 314 · 17 · 23 · 29, 316 · 11 · 13 · 29.

(b) Let 1 , χ(1) ∈ cd(H). Then gcd(11 · 13 · 23, χ(1)) > 1.
(c) The group H has neither proper power degrees nor consecutive degrees.
(d) If K is a maximal subgroup of H such that |H : K| divides some character degree

χ(1) of H, then K � Fi23 and χ(1)/|H : K| divides one of the numbers in the set

A = {24 · 52 · 7 · 17 · 23, 2 · 33 · 7 · 11 · 13 · 17, 22 · 3 · 11 · 13 · 17 · 23,

23 · 3 · 7 · 11 · 13 · 23, 24 · 3 · 13 · 17 · 23, 2 · 7 · 11 · 17 · 23}.

(e) The Schur multiplier M(Fi′24) � Z3 and outer automorphism group Out(Fi′24) �
Z2.

3.2. Verifying Huppert’s conjecture for Fi′
24
. We assume that H � Fi′24 and G is a

group such that cd(G) = cd(H). We will show that G � H × A, where A is an abelian
group, which confirms Huppert’s conjecture for Fi′24. We follow the five steps of
Huppert’s method described in the introduction.

3.2.1. Verifying step 1. By way of contradiction, suppose that G′ ,G′′. Then
there exists a normal subgroup N EG where N is maximal such that G/N is solvable
and nonabelian. By Lemma 2.3, G/N is an r-group for some prime r or G/N is a
Frobenius group.

Case 1. G/N is an r-group. Then there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1.
By Lemma 3.1(c), G has no nontrivial prime power degrees. Hence this case cannot
happen.

Case 2. G/N is a Frobenius group with Frobenius kernel F/N, |F/N| = ra, 1 < f = |G :
F| ∈ cd(G) and ra ≡ 1 mod f . By Lemma 2.3(b), if χ ∈ Irr(G) such that χ(1) is isolated,
then either f = χ(1) or r | χ(1). We observe that there is no prime which divides all the
isolated degrees listed in Lemma 3.1(a). Thus f must be one of the isolated degrees in
Lemma 3.1(a). By Lemma 2.3(b) again, if χ ∈ Irr(G) with r - χ(1), then χ(1) | f . As
f is isolated we deduce that r must divide every nontrivial degree χ(1) of G such that
χ(1) , f .
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Assume first that f = 314 · 72 · 23 · 29. Then r must divide all of the remaining
isolated degrees in Lemma 3.1(a). As gcd(221 · 52 · 73 · 11, 314 · 17 · 23 · 29) = 1, we
find that f , 314 · 72 · 23 · 29 and r ∈ {3, 7, 23, 29}. For each value of r, there exist two
distinct isolated degrees in Lemma 3.1(a) which are both prime to r, so f must be
equal to both by Lemma 2.3(b)(2), which is impossible. Thus G′ = G′′.

3.2.2. Verifying step 2. Let M ≤G′ be a normal subgroup of G such that G′/M is
a chief factor of G. As G′ is perfect, G′/M is nonabelian. Hence G′/M � S k for some
nonabelian simple group S and some integer k ≥ 1.

Claim 1. k = 1. By way of contradiction, assume that k ≥ 2. By Lemma 2.4, S
possesses a nontrivial irreducible character θ extendible to Aut(S ). By Lemma 2.5,
θk ∈ Irr(G′/M) extends to G/M, hence θ(1)k ∈ cd(G), which contradicts Lemma 3.1(c).
Hence k = 1 and G′/M � S .

Claim 2. S is not an alternating group of degree at least seven. By way of
contradiction, assume that S = An, n ≥ 7. By Lemma 2.4, S has nontrivial irreducible
characters θ1, θ2 with θ1(1) = n(n − 3)/2, θ2(1) = θ1(1) + 1 = (n − 1)(n − 2)/2 and both
θi extend to Aut(S ). Thus G possesses two consecutive nontrivial character degrees,
contradicting Lemma 3.1(c).

Claim 3. S is not a simple group of Lie type. If S is a simple group of Lie type
in characteristic p, and S , 2F4(2)′, then the Steinberg character of S of degree
|S |p extends to Aut(S ) so that G possesses a nontrivial prime power degree, which
contradicts Lemma 3.1(c).

Claim 4. S � Fi′24. By Claims 1–3, S is a sporadic simple group or the Tits group.
We will eliminate all other possibilities for S and hence the claim will follow. By
the Ito–Michler theorem (see [6, Lemma 1]) we deduce that every prime divisor
of S must divide some character degree of S and, as every character degree of
S �G′/M divides some character degree of H, every prime divisor of S is also a
prime divisor of H. Thus π(S ) ⊆ π(H) = {2, 3, 5, 7, 11, 13, 17, 23, 29}. Hence we only
need to consider the simple groups in Table 1. For each group S in Table 1, we
exhibit a nontrivial irreducible character θ of S such that θ extends to Aut(S ) and
gcd(11 · 13 · 23, θ(1)) = 1, which contradicts Lemma 3.1(b). This finishes the proof of
step 2.

3.2.3. Verifying step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Assume
that I <G′ and θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s. Let U/M be a

maximal subgroup of G′/M containing I/M and let t = |U : I|. Then φi(1)|G′ : I| is
a character degree of G′ by Lemma 2.2(a), so it divides some character degree of G.
Thus tφi(1)|G′ : U | divides some character degree of G and so the index |G′ : U | must
divide some character degree of H. By Lemma 3.1(d), U/M � Fi23 and, for each i,
tφi(1) divides one of the numbers in A. By inspecting the list of maximal subgroups
of Fi23 in [3], the index of a maximal subgroup of U/M divides no number in A
so that t = 1 and hence I = U. As the Schur multiplier of I/M � Fi23 is trivial and θ
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T 1. Some character degrees of sporadic simple groups and Tits group.

Group Character Degree Group Character Degree

M11 χ9 32 · 5 J2 χ6 22 · 32

M12 χ6 32 · 5 Co3 χ32 27 · 36

M22 χ3 32 · 5 Fi22 χ54 25 · 35 · 52 · 7
M23 χ3 32 · 5 HS χ24 27 · 52

M24 χ3 32 · 5 Co1 χ71 218 · 36

McL χ12 22 · 32 · 53 2F4(2)′ χ20 26 · 33

He χ12 27 · 3 · 5 Suz χ43 210 · 35

Co2 χ22 36 · 53 Fi23 χ82 25 · 312 · 17
Ru χ34 212 · 33

is I-invariant, we deduce from [7, Theorem 11.7] that θ extends to θ0 ∈ Irr(I). By
Gallagher’s theorem, τθ0 is an irreducible constituent of θI for every τ ∈ Irr(I/M), and
so τ(1)θ0(1) = τ(1) divides one of the numbers in A. Choose τ ∈ Irr(I/M) = Irr(Fi23)
with τ(1) = 559 458 900. This degree divides none of the numbers in A, which is a
contradiction. Thus we conclude that θ is G′-invariant.

3.2.4. Verifying step 4. We have shown that G′/M � Fi′24 and for every θ ∈ Irr(M),
if θ(1) = 1, then θ is G′-invariant, so that by Lemma 2.6, |M : M′| divides the order
of the Schur multiplier of Fi′24. Hence |M : M′| divides 3. Assume first that M = M′.
If M is abelian, then we are done. Assume that M is nonabelian. Let N ≤ M be
a normal subgroup of G′ such that M/N is a chief factor of G′. It follows that
M/N � S k for some nonabelian simple group S . By Lemma 2.4, S possesses a
nontrivial irreducible character ϕ such that ϕk ∈ Irr(M/N) extends to G′/N. Gallagher’s
theorem yields ϕ(1)kτ(1) ∈ cd(G′/N) ⊆ cd(G′) for all τ ∈ Irr(G′/M) ⊆ Irr(G′/N). Since
cd(G′/M) = cd(G) and ϕ(1) > 1, if we choose τ ∈ Irr(G′/M) such that τ(1) is the largest
degree of H, then ϕ(1)kτ(1) divides no degree of G, a contradiction. If |M : M′| = 3,
then G′/M′ � 3 · Fi′24. By [3], 3 · Fi′24 possesses an irreducible character of degree
χ182(1) = 405 445 459 419 which divides none of the character degrees of H. Thus
M = 1.

3.2.5. Verifying step 5. Suppose that G′ ×CG(G′) �G and let A = CG(G′). It
follows from step 4 that G′ � Fi′24. Then G/A embeds into Aut(G′) and hence
G induces on G′ some outer automorphism σ. We have that |Out(Fi′24)| = 2, and
hence G/A � Fi′24 · 2. By [3], G/A possesses an irreducible character of degree
410 707 651 200 which is not a degree of Fi′24. Thus G = G′ × A. Since A �G/G′,
we obtain that A is abelian and G �G′ × A � Fi′24 × A.

4. Huppert’s conjecture for the sporadic simple group Fi22

4.1. Some properties of Fi22. We list relevant properties of the character degree set
of the sporadic simple group H = Fi22 by examining [3].
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L 4.1. Let H be the sporadic simple group Fi22.

(a) The following are isolated degrees of H:

217 · 11, 25 · 35 · 52 · 7, 23 · 38 · 11,

38 · 5 · 11, 39 · 7 · 13, 28 · 52 · 7 · 13.

(b) If 1 , χ(1) ∈ cd(H), then gcd(7 · 11 · 13, χ(1)) > 1.
(c) The group H has neither proper power degrees nor consecutive degrees.
(d) If K is a maximal subgroup of H such that |H : K| divides some character degree

χ(1) of H then one of the following cases holds.

(a) K � 2.U6(2) and χ(1)/|H : K| divides one of the numbers in the set

A = {22 · 3 · 5 · 11, 23 · 5 · 7, 35}.

(b) K � O+
8 (2) : S 3 and χ(1)/|H : K| divides 6.

(c) K � 210 : M22 and χ(1)/|H : K| divides 6.

(e) The Schur multiplier M(Fi22) � Z6 and outer automorphism group Out(Fi22) �
Z2.

4.2. Verifying Huppert’s conjecture for Fi22. Steps 1 and 2 follow in the same way
as steps 1 and 2 of Section 3. In this case we use Lemma 4.1 and apply the argument to
the isolated degree 38 · 5 · 11 and use the fact that gcd(27 · 11, 39 · 7 · 13) = 1. Hence
the chief factor G′/M of G is isomorphic to Fi22.

4.2.1. Verifying step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Assume that
I <G′ and θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s. Let U/M be a maximal

subgroup of G′/M containing I/M and let t = |U : I|. Then φi(1)|G′ : I| is a character
degree of G′ by Lemma 2.2(a). Thus tφi(1)|G′ : U | divides some character degree of
G and hence the index |G′ : U | must divide some character degree of H. By Lemma
4.1(d), one of the following cases holds.

(a) U/M � 2.U6(2). For each i, tφi(1) divides one of the numbers in A. As U/M is
perfect, the center of U/M lies in every maximal subgroup of U/M and so the indices
of maximal subgroups of U/M and those of U6(2) are the same. By inspecting the
list of maximal subgroups of U6(2) in [3], the index of a maximal subgroup of U6(2)
divides no number in A. Thus t = 1 and hence I = U. Let M ≤ L ≤ I such that L/M
is isomorphic to the center of I/M, and let λ ∈ Irr(L|θ). As L E I, for any ϕ ∈ Irr(I|λ)
we have that ϕ(1) divides one of the numbers in A. As above, we deduce that λ
is I-invariant. Let L ≤ T ≤ I such that T/L � U5(2). It follows that λ is T -invariant
and since the Schur multiplier of T/L � U5(2) is trivial, λ extends to λ0 ∈ Irr(T ). By
Gallagher’s theorem, τλ0 is an irreducible constituent of λT for every τ ∈ Irr(T/L).
Choose τ ∈ Irr(T/L) with τ(1) = 210 and let γ = τλ0 ∈ Irr(T |λ). If χ ∈ Irr(I) is any
irreducible constituent of γI , then χ(1) ≥ γ(1) by Frobeniusreciprocity [7, Lemma 5.2]
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and χ(1) divides one of the numbers in A, which implies that γ(1) = 210λ(1) ≤ χ(1) ≤
660, which is impossible.

(b) U/M � O+
8 (2) : S 3. For each i, tφi(1) divides 6. Let M EW E U such that

W/M � O+
8 (2). We have that M E I ∩W E I and M E I ∩W ≤W. Assume that W � I.

Then I � WI ≤ U and t = |U : I| = |U : WI| · |WI : I|. Now |WI : I| = |W : W ∩ I| > 1,
and hence t is divisible by |W : W ∩ I|. As W/M � O+

8 (2), t is divisible by the index
of some maximal subgroup of O+

8 (2). Thus some index of a maximal subgroup of
O+

8 (2) divides 6, which is impossible by [3]. Thus W ≤ I ≤ U. Write θW =
∑l

i=1 fiµi,
where µi ∈ Irr(W |θ). As W E I, µi(1) divides 6 for every i. If f j = 1 for some j, then
θ extends to θ0 ∈ Irr(W). By Gallagher’s theorem, τθ0 is an irreducible constituent of
θW for every τ ∈ Irr(W/M), and so τ(1)θ0(1) = τ(1) divides 6. However, we can choose
τ ∈ Irr(W/M) with τ(1) = 28 and this degree does not divide 6. Therefore fi > 1, for
all i. We deduce from Lemma 2.2(c) that, for each i, fi is the degree of a nontrivial
proper irreducible projective representation of O+

8 (2). As µi(1) = fiθ(1) = fi, each fi
divides 6. This is impossible as the smallest nontrivial proper projective degree of
O+

8 (2) is 8.

(c) U/M � 210 : M22. For each i, tφi(1) divides 6. Let M E L E U such that
L/M � 210. We have that L E U and U/L � M22. The same argument as in part (b)
shows that U = IL since the minimal index of a maximal subgroup of M22 is 22
by [3]. Hence U/L � I/L1 � M22, where L1 = L ∩ I E I. Let λ ∈ Irr(L1 | θ). Then for
any ϕ ∈ Irr(I|λ), we have that ϕ(1) divides 6. We conclude that λ is I-invariant as the
index of a maximal subgroup of I/L1 � M22 is at least 22. Write λI =

∑l
i=1 fiµi, where

µi ∈ Irr(I|λ). Then µi(1) divides 6, for each i. If f j = 1 for some j, then λ extends to
λ0 ∈ Irr(I). By Gallagher’s theorem τλ0 is an irreducible constituent of λI for every
τ ∈ Irr(I/L1), and so τ(1)λ0(1) = τ(1) divides 6. However, we can choose τ ∈ Irr(I/L1)
with τ(1) = 21 and this degree does not divide 6. Therefore fi > 1 for all i. We deduce
from Lemma 2.2(c) that, for each i, fi is the degree of a nontrivial proper irreducible
projective representation of M22. Moreover, as µi(1) = fiλ(1) = fi, each fi divides 6.
However, this is impossible as the smallest nontrivial proper projective degree of M22

is 10. Therefore θ is G′-invariant.

4.2.2. Verifying step 4. Since G′/M � Fi22 and IG′(θ) = G′, for every linear
character θ ∈ Irr(M), Lemma 2.6 implies that |M : M′| divides 6, the order of the Schur
multiplier of Fi22. Suppose that M = M′. If M is abelian, then we are done. If M is
not abelian, then by the same argument as in step 4 of Section 3, a proper multiple of
τ(1) = 2 729 376 ∈ cd(G′/M) divides some degree of G, a contradiction. Suppose that
|M : M′| = 2, 3 or 6. We arrive at a contradiction by considering χ110(1) = 2 358 720 ∈
cd(2 · Fi22), χ164(1) = 3 088 800 ∈ cd(3 · Fi22), and χ198(1) = 3 088 800 ∈ cd(6 · Fi22),
respectively. Thus M = 1.

4.2.3. Verifying step 5. This step follows exactly in the same manner as step 5 of
Section 3 by considering the degree 1 965 600 ∈ cd(Fi22 · 2). Therefore G �G′ × A �
Fi22 × A, where A is abelian.
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5. Huppert’s conjecture for the sporadic simple group Co1

5.1. Some properties of Co1. We provide relevant properties of the character degree
set of the sporadic simple group H = Co1 by examining [3]. Observe that π(H) =

{2, 3, 5, 7, 11, 13, 23}.

L 5.1. Let H be the sporadic simple group Co1.

(a) The following are isolated degrees of H:

218 · 36, 218 · 52 · 7 · 11, 219 · 7 · 11,

37 · 53 · 7 · 11, 37 · 53 · 7 · 23, 212 · 3 · 53 · 11 · 13.

(b) If 1 , χ(1) ∈ cd(H) and gcd(11 · 13 · 23, χ(1)) = 1, then χ(1) = 218 · 36.
(c) The group H has neither consecutive degrees nor nontrivial prime power degrees

and the only proper nontrivial power degree of H is 218 · 36.
(d) If K is a maximal subgroup of H such that |H : K| divides some character degree

χ(1) of H, then one of the following cases holds.

(a) K � Co2 and χ(1)/|H : K| divides one of the numbers in the set A =

{3 · 7 · 11 · 23, 23 · 33 · 5}.
(b) K � 21+8

+
.O+

8 (2) and χ(1)/|H : K| divides 1.

(e) The Schur multiplier M(Co1) � Z2 and outer automorphism group Out(Co1) is
trivial.

5.2. Verifying Huppert’s conjecture for Co1. Steps 1 and 2 follow exactly in the
same manner as steps 1 and 2 in Section 3, respectively. We use Lemma 5.1 and apply
the argument to the isolated degree 218 · 36 and use the fact that gcd(218 · 36, 11 · 13 ·
23) = 1. Consequently, one can show that the chief factor G′/M of G is isomorphic to
Co1.

5.2.1. Verifying step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Assume that
I <G′ and θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s. Let U/M be a maximal

subgroup of G′/M containing I/M and let t = |U : I|. Then φi(1)|G′ : I| is a character
degree of G′ by Lemma 2.2(a). Thus tφi(1)|G′ : U | divides some character degree of G
and so the index |G′ : U | must divide some character degree of H. By Lemma 5.1(d),
one of the following cases holds.

(a) U/M � Co2. For each i, tφi(1) divides one of the numbers in A. By inspecting
the list of maximal subgroups of Co2 in [3], the index of a maximal subgroup of
Co2 divides no number in A so that t = 1 and hence I = U. As the Schur multiplier
of I/M � Co2 is trivial, θ extends to θ0 ∈ Irr(I). By Gallagher’s theorem, τθ0 is
an irreducible constituent of θI for every τ ∈ Irr(I/M). Choose τ ∈ Irr(I/M) with
τ(1) = 23 · 11 · 23 and let γ = τθ0 ∈ Irr(I|θ). Then γ(1) = 23 · 11 · 23 divides no number
inA, which is a contradiction.

(b) U/M � 21+8
+

.O+
8 (2). For each i, tφi(1) divides 1. It follows that t = 1

and all φi(1) = 1. Hence I = U and every irreducible constituent of θI is linear
so that θ extends to θ0 ∈ Irr(I). By Gallagher’s theorem, τθ0 are all irreducible
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constituents of θI , where τ ∈ Irr(I/M). Hence τ(1)θ0(1) = τ(1) = 1, which implies that
all irreducible characters of I/M are linear and so I/M � 21+8

+
.O+

8 (2) is abelian, which
is a contradiction. Therefore θ is G′-invariant.

5.2.2. Verifying step 4. As G′/M � Co1 and IG′(θ) = G′ for every linear character
θ ∈ Irr(M), Lemma 2.6 implies that |M : M′| divides 2, the order of the Schur multiplier
of Co1. Considering the largest degree τ(1) of Co1, the same argument as in step 4 of
Section 3 shows that if |M : M′| = 1, then M is abelian and thus M = 1. If |M : M′| = 2,
then G′/M′ � 2 · Co1. By [3], 2 · Co1 possesses an irreducible character of degree
χ167(1) = 1 021 620 600, which divides no degree of H. Thus M = 1.

5.2.3. Verifying step 5. Let A = CG(G′). As Out(Co1) = 1 and G′ � Co1 is simple,
we deduce that G = G′A and G′ ∩ A = 1. Therefore G = G′ × A � Co1 × A, where
A �G/G′ is abelian.

6. Huppert’s conjecture for the sporadic simple group Co2

6.1. Some properties of Co2. We provide relevant properties of the character degree
set of the sporadic simple group H = Co2 by examining [3]. Observe that π(H) =

{2, 3, 5, 7, 11, 23}.

L 6.1. Let H be the sporadic simple group Co2.

(a) We have that 218 · 7 is an isolated degree of H. Moreover, the two degrees
22 · 35 · 52 · 23 and 2 · 36 · 53 · 11 of H are maximal with respect to divisibility
and no nontrivial divisor of the greatest common divisor of both of these degrees
is a degree of H.

(b) If 1 , χ(1) ∈ cd(H) and gcd(11 · 23, χ(1)) = 1, then χ(1) ∈ {36 · 53, 218 · 7}.
(c) The group H has no consecutive degrees. The only proper nontrivial power

degree of H is 36 · 53 and the only prime power degree of H is 23.
(d) If K is a maximal subgroup of H such that |H : K| divides some character degree

χ(1) of H, then one of the following cases holds.

(a) K � U6(2) : 2 and χ(1)/|H : K| divides one of the numbers in the set A1 =

{2 · 5 · 7 · 11, 24 · 5 · 7, 35}.
(b) K � 210 : M22 : 2 and χ(1)/|H : K| divides one of the numbers in the set

A2 = {32 · 5, 22 · 3}.
(c) K � 21+8

+ : S6(2) and χ(1)/|H : K| divides one of the numbers in the set
A3 = {5 · 7, 3 · 5, 2}.

(d) K � McL and χ(1)/|H : K| divides 22 · 11.

(e) The Schur multiplier and the outer automorphism group of Co2 are both trivial.

6.2. Verifying Huppert’s conjecture for Co2.

6.2.1. Verifying step 1. Suppose that G′ ,G′′. Then there exists a normal
subgroup N EG where N is maximal such that G/N is solvable and nonabelian. By
Lemma 2.3, G/N is either an r-group for some prime r or a Frobenius group.
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Case 1. G/N is an r-group. Then there exists ψ ∈ Irr(G/N) such that ψ(1) = rb > 1.
By Lemma 6.1(c), we obtain that rb = 23. Let χ ∈ Irr(G) such that χ(1) = 218 · 7.
As gcd(|G/N|, χ(1)) = 1, by Lemma 2.1, we have that χN ∈ Irr(N). By Gallagher’s
theorem, χψ ∈ Irr(G) so that χ(1)ψ(1) ∈ cd(G), which is impossible as χ(1) is an
isolated degree of G by Lemma 6.1(a).

Case 2. G/N is a Frobenius group with Frobenius kernel F/N, |F/N| = ra, 1 < f = |G :
F| ∈ cd(G) and ra ≡ 1 mod f . By Lemma 2.3(b), if χ ∈ Irr(G) such that χ(1) is isolated,
then either f = χ(1) or r | χ(1). By Lemma 6.1(a), 218 · 7 is an isolated degree of G so
that either f = 218 · 7 or r ∈ {2, 7}. Assume first that f = 218 · 7. By Lemma 2.3(b)
again, if χ ∈ Irr(G) with r - χ(1), then χ(1) | f . As f is isolated we deduce that
r must divide every nontrivial degree χ(1) of G such that χ(1) , f . However, G
possesses two relatively prime degrees 23 and 52 · 11 different from f , which leads to a
contradiction. Hence r ∈ {2, 7}. By Lemma 6.1(a), the degrees χ1(1) = 22 · 35 · 52 · 23
and χ2(1) = 2 · 36 · 53 · 11 of G are maximal with respect to divisibility and are both
prime to 7, so that if r = 7, then by Lemma 2.3(b), f must divide both of these degrees.
This is impossible by Lemma 6.1(a) and thus r = 2. By Lemma 2.3(b) again, if ra

divides χi(1)2 for i = 1 or 2, then ra ≤ 24 and hence f ≤ ra − 1 ≤ 24 − 1 = 15, which is
impossible as the smallest nontrivial degree of Co2 is 23. Thus we conclude that f
divides both χi(1), which again contradicts Lemma 6.1(a). Thus G′ = G′′.

6.2.2. Verifying step 2. Let M ≤G′ be a normal subgroup of G such that G′/M is
a chief factor of G. As G′ is perfect, G′/M is nonabelian. Hence G′/M � S k for some
nonabelian simple group S and some integer k ≥ 1.

Claim 1. S is not an alternating group of degree at least seven. If S = An for
n ≥ 7, then by Lemma 2.4, two nontrivial irreducible characters θ1, θ2 of consecutive
degrees θ1(1) = n(n − 3)/2, θ2(1) = θ1(1) + 1 extend to Aut(S ), so that by Lemma 2.5,
θk

i (1) ∈ cd(G). By Lemma 6.1(c), G has only one nontrivial power degree, so that k = 1.
But then G possesses two consecutive nontrivial character degrees, contradicting
Lemma 6.1(c).

Claim 2. S is not a simple group of Lie type. If S is a simple group of Lie type
in characteristic p and S , 2F4(2)′, then the Steinberg character of S of degree |S |p
extends to Aut(S ). By Lemma 2.5, |S |kp ∈ cd(G) and hence G possesses a nontrivial
prime power degree. By Lemma 6.1(c), we deduce that |S |kp = 23, and so k = 1, p = 23
and |S |p = 23. It follows that the Lie rank of S is 1 and the only possibility for S
is L2(23). By [3], L2(23) possesses an irreducible character of degree 22 which is
extendible to Aut(S ). By Lemma 2.5, G has an irreducible character of degree 22,
which is a contradiction.

Claim 3. S � Co2. By Claims 1–3, S is a sporadic simple group or the Tits group.
If k ≥ 2, Lemmas 2.4(b) and 2.5 imply that G would possess two distinct nontrivial
proper power degrees, which contradicts Lemma 6.1(c). Thus k = 1. As π(S ) ⊆ π(H) =

{2, 3, 5, 7, 11, 13, 23}, we only need to consider the simple groups in Table 1 excluding
Co2. For each such simple group S , there exists an irreducible character θ ∈ Irr(S )
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which is extendible to Aut(S ). By Lemma 2.5, we obtain that θ(1) ∈ cd(G) with
gcd(θ(1), 11 · 13 · 23) = 1. It follows from Lemma 6.1(b) that θ(1) ∈ {36 · 53, 218 · 7},
which is impossible by inspecting Table 1.

6.2.3. Verifying step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Assume
that I <G′ and θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s. Let U/M be a

maximal subgroup of G′/M containing I/M and let t = |U : I|. Then φi(1)|G′ : I| is
a character degree of G′ by Lemma 2.2(a), so it divides some character degree of G.
Thus tφi(1)|G′ : U | divides some character degree of G and the index |G′ : U | must
divide some character degree of H. By Lemma 6.1(d), one of the following cases
holds.

(a) U/M � U6(2) : 2. For each i, tφi(1) divides one of the numbers in A1. Let
M ≤W ≤ U such that W/M � U6(2). Then W E U. Assume that W � I. Since
t = |U : I| = |U : WI| · |WI : I| and |WI : I| = |W : W ∩ I|, the index of some maximal
subgroup of W/M � U6(2) divides t and so divides some number in A1, which is a
contradiction by [3]. Thus W ≤ I ≤ U. Let M ≤ V ≤W such that V/M � U5(2). We
have that θ is V-invariant and, since the Schur multiplier of V/M is trivial, θ extends to
θ0 ∈ Irr(V). By Gallagher’s theorem, τθ0 is an irreducible constituent of θV for every
τ ∈ Irr(V/M). Choose τ ∈ Irr(V/M) with τ(1) = 1215 and let γ = τθ0 ∈ Irr(V |θ). If χ ∈
Irr(I) is an irreducible constituent of γI , then χ(1) ≥ γ(1) by Frobenius reciprocity [7,
Lemma 5.2] and also χ(1) divides one of the numbers in A1, which implies that
γ(1) = 1215 ≤ χ(1) ≤ 770, which is impossible.

(b) U/M � 210 : M22 : 2. For each i, tφi(1) divides one of the numbers in A2.
Let M E L EW E U be a subgroup of U such that L/M � 210 and W/L � M22. Let
L1 = L ∩ I and X = W ∩ I. As I ≤WI ≤ U, we obtain t = |U : I| = |U : WI| · |WI : I| =
|U : WI| · |W : X|. Now X ≤ XL ≤W so that |W : X| = |W : XL| · |XL : X|. Assume that
|W : XL| > 1. Then L ≤ XL � W and W/L � M22 so an index of a maximal subgroup
of W/L � M22 must divide a number in A2. This is impossible by checking [3].
Thus W = XL and W/L � X/L1 � M22. Let λ ∈ Irr(L1 | θ). As X = W ∩ I E I, we
deduce that for any irreducible constituent ϕ of λX , ϕ(1) divides 12 or 45. Write
λX =

∑l
i=1 fiµi, where µi ∈ Irr(X|λ). If f j = 1 for some j then λ extends to λ0 ∈ Irr(X).

By Gallagher’s theorem, τλ0 is an irreducible constituent of λX for every τ ∈ Irr(X/L1)
and τ(1)λ0(1) = τ(1) divides 45 or 12. However, we can choose τ ∈ Irr(X/L1) with
τ(1) = 385 and this degree does not divide 45 and 12. Therefore fi > 1 for all i. We
deduce from Lemma 2.2(c) that, for each i, fi is the degree of a nontrivial proper
irreducible projective representation of M22. As µi(1) = fiθ(1) = fi, each fi divides
45 or 12. By [3], we obtain that all fi = 45. As |X/L1| =

∑l
i=1 f 2

i , we conclude that
27 · 32 · 5 · 7 · 11 = 34 · 52l, which is impossible.

(c) U/M � 21+8
+ : S6(2) For each i, tφi(1) divides one of the numbers in A3. Let

M E L E U be subgroup of U such that L/M � 21+8
+ . Let L1 = L ∩ I and X = U ∩ I. As

I ≤ IL ≤ U, we obtain t = |U : I| = |U : IL| · |IL : I|. Now L ≤ IL ≤ U and U/L � S6(2).
Assume that |U : IL| > 1. The index of some maximal subgroup of U/L � S6(2) must
divide some number in A3. This is impossible by checking [3]. Thus U = IL and
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then U/L � I/L1 � S6(2). Let λ ∈ Irr(L1 | θ). Write λI =
∑l

i=1 fiµi, where µi ∈ Irr(I|λ).
If f j = 1 for some j then λ extends to λ0 ∈ Irr(I). By Gallagher’s theorem, τλ0

is an irreducible constituent of λI for every τ ∈ Irr(I/L1) and then τ(1)λ0(1) = τ(1)
divides some number in A3. However, we can choose τ ∈ Irr(I/L1) with τ(1) = 512
and this degree divides no number in A3. Therefore fi > 1 for all i. It follows
from Lemma 2.2(c) that fi is the degree of a nontrivial proper irreducible projective
representation of S6(2) for each i. As µi(1) = fiθ(1) = fi, each fi divides 2, 15 or 35.
This is impossible by checking [3].

(d) U/M � McL. For each i, tφi(1) divides 44. By inspecting the list of maximal
subgroups of McL in [3], no index of a maximal subgroup of McL divides 44 so that
t = 1 and hence I = U. Recall that θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s.

Assume first that e j = 1 for some j. Then θ extends to θ0 ∈ Irr(I). By Gallagher’s
theorem, τθ0 is an irreducible constituent of θI for every τ ∈ Irr(I/M) and then
τ(1)θ0(1) = τ(1) divides 44. We can choose τ ∈ Irr(I/M) = Irr(McL) with τ(1) = 231
and this degree does not divide 44. Therefore ei > 1 for all i. We deduce from
Lemma 2.2(c) that, for each i, ei is the degree of a nontrivial proper irreducible
projective representation of McL. As φi(1) = eiθ(1) = ei, each ei divides 44. It follows
that ei ≤ 44 for each i and ei is the degree of a nontrivial proper irreducible projective
representation of McL. Using [3], we deduce that there is no such projective degree.
Therefore θ is G′-invariant.

6.2.4. Verifying steps 4 and 5. Since G′/M � Co2 and IG′(θ) = G′ for linear
characters θ ∈ Irr(M), by Lemma 2.6, |M : M′| divides the order of the Schur multiplier
of Co2, which is 1. Thus M = M′. By considering the largest degree τ(1) of Co2, the
same argument as in step 4 of Section 3 shows that M is abelian. Therefore M = 1.
Since Out(Co2) = 1, step 5 follows in the same way as step 5 of Section 5.

7. Huppert’s conjecture for the sporadic simple group Co3

7.1. Some properties of Co3. We provide relevant properties of the character degree
set of the sporadic simple group H = Co3 by examining [3]. Observe that π(H) =

{2, 3, 5, 7, 11, 23}.

L 7.1. Let H be the sporadic simple group Co3.

(a) We have that 27 · 36 and 36 · 53 are isolated degrees of H. The degrees 27 · 52 · 23,
27 · 52 · 7 · 11, and 53 · 7 · 11 · 23 of H are maximal with respect to divisibility.
No nontrivial divisor of both 27 · 52 · 23 and 27 · 52 · 7 · 11 is a degree of H.

(b) If 1 , χ(1) ∈ cd(H) and gcd(11 · 23, χ(1)) = 1 then χ(1) ∈ {27 · 36, 36 · 53, 27 · 7}.
(c) The group H has no consecutive degrees. The only proper nontrivial power

degree of H is 36 · 53 and the only prime power degree of H is 23.
(d) If K is a maximal subgroup of H such that |H : K| divides some character degree

χ(1) of H then K � McL : 2 and χ(1)/|H : K| divides one of the numbers in the
setA = {22 · 3 · 7 · 11, 2 · 3 · 5 · 7}.

(e) The Schur multiplier and the outer automorphism group of Co3 are both trivial.
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7.2. Verifying Huppert’s conjecture for Co3.

7.2.1. Verifying step 1. This step follows similarly to step 1 of Section 6. We use
Lemmas 2.3 and 7.1. If G/N is an r-group, we make the same argument by taking
χ(1) = 27 · 36. If G/N is a Frobenius group with Frobenius kernel F/N, |F/N| = ra

and 1 < f = |G : F| ∈ cd(G), then applying Lemma 2.3(b) to χ, we deduce that either
f = 27 · 36 or r ∈ {2, 3}. If f = 27 · 36, then again by Lemma 2.3(b), two relatively
prime degrees 23 and 52 · 11 lead us to a contradiction. If r ∈ {2, 3}, by considering
χ1(1) = 27 · 52 · 23 and χ2(1) = 27 · 52 · 7 · 11, we deduce that r = 2. In this case, the
degrees 36 · 53 and 53 · 7 · 11 · 23 lead us to a contradiction. Thus G′ = G′′.

7.2.2. Verifying step 2. The same argument as in step 2 of Section 6 shows that
the chief factor G′/M of G is isomorphic to Co3. To eliminate sporadic simple groups
except for Co3, use Lemma 7.1(b) and the fact that Co2 possesses an irreducible
character of degree χ60(1) = 2 095 875 which divides no degree of Co3.

7.2.3. Verifying step 3. Let θ ∈ Irr(M) with θ(1) = 1 and let I = IG′(θ). Assume
that I <G′ and θI =

∑s
i=1 eiφi, where φi ∈ Irr(I) for i = 1, 2, . . . , s. Let U/M be a

maximal subgroup of G′/M containing I/M and let t = |U : I|. Then φi(1)|G′ : I| is
a character degree of G′ by Lemma 2.2(a), so it divides some character degree of G.
Thus tφi(1)|G′ : U | divides some character degree of G and the index |G′ : U | must
divide some character degree of H. By Lemma 7.1(d), U/M � McL : 2. Then for each
i, tφi(1) divides one of the numbers in A. Let M ≤W ≤ U such that W/M � McL.
Suppose that W � I. Since I ≤WI ≤ U and |WI : I| = |W : W ∩ I|, we deduce that
the index of some maximal subgroup of W/M � McL divides t, and so divides some
number in A, which is a contradiction by [3]. Thus W ≤ I ≤ U. Write θW =

∑l
i=1 fiµi,

where µi ∈ Irr(W) for i = 1, 2, . . . , s. As W E I, we deduce that, for each i, µi(1) divides
one of the numbers in A. Assume first that f j = 1 for some j. Then θ extends to
θ0 ∈ Irr(W). By Gallagher’s theorem, τθ0 is an irreducible constituent of θW for every
τ ∈ Irr(W/M) and τ(1)θ0(1) = τ(1) divides one of the numbers inA. However, we can
choose τ ∈ Irr(I/M) = Irr(McL) with τ(1) = 10 395 and this degree divides none of the
numbers inA. Therefore fi > 1 for all i. We deduce that, for each i, fi is the degree of a
nontrivial proper irreducible projective representation of McL. As µi(1) = fiθ(1) = fi,
each fi divides one of the numbers in A. It follows that, for each i, fi ≤ 924, fi is
the degree of a nontrivial proper irreducible projective representation of McL, and fi
divides 210 or 924. Using [3], no such projective degree exists. Thus θ is G′-invariant.

7.2.4. Verifying steps 4 and 5. Note that the order of the Schur multiplier of Co3

is 1. Applying Lemma 2.6 and considering the largest degree τ(1) of Co3, the same
argument as in step 4 of Section 3 shows that M = 1. Since Out(Co3) = 1, step 5
follows exactly in the same manner as step 5 in Section 5.
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