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THE CONTINUITY OF THE VISIBILITY FUNCTION 
ON A STARSHAPED SET 

GERALD BEER 

1. Introduction. 

Definition. The visibility function assigns to each point x of a fixed measurable 
set E in a Euclidean space En the Lebesgue outer measure of S(x), the set 
{y : rx + (1 — r)y G E for every r in [0, 1]}. 

The purpose of this paper is to determine sufficient conditions for the con­
tinuity of the function on the interor of a starshaped set. 

2. Preliminaries. We basically use the same terminology as in [1], where 
the reader may find a more general investigation of the continuity properties of 
the visibility function. Lebesgue measure in En is denoted by m or mn (if more 
than 1 measure is under discussion). The convex kernel of E, {x G E : S(x) = E} 
is expressed as conv ker E, and the convex hull of E is denoted by conv E. The 
open r-ball about a point x is given by Br(x). The interior of E relative to the 
smallest flat containing E is given by intv E. Finally, xy will denote the line 
segment joining x to y, L(x, y) will denote the line determined by x and y, and 
(W) will denote the flat generated by the set of vectors W. 

In the sequel, we must draw upon 3 facts established in [1], which we state as 
theorems. As in [1], we will designate the visibility function for a fixed set by v. 

THEOREM 1. If 0 C En is open, then v is lower semicontinuous on 0. 

THEOREM 2. If K C En is compact, then v is upper semicontinuous on K. 

THEOREM 3. Let E be a compact set in En. If x G E, the set of endpoints of all 
maximal segments in S(x) with one endpoint x forms a measurable set and has 
measure zero. 

It is easy to see that the visibility function may be discontinuous on the 
interior of a compact starshaped set in Eny if the dimension of the convex 
kernel does not exceed n — 2. For example, let K be a Cantor set of positive 
measure in [0, 2ir] and let E be the following planar starshaped set: 
{(r, 6) : r S 1} U {(r, 6) : 1 < r ^ 2, d G K}. Let a G E C\ {(r, 6) : r ^ 1}. 
Since E P\ {(r, 6) : 1 < r ^ 2} is nowhere dense, and E is starshaped with 
respect to 0, S(q) Pi E C\ {(r, 6) : 1 < r ^ 2} C L(q, 0), so that the visibility 
function for E is discontinuous at the origin. Using "Cantor cylinders", we may 
construct analogous examples in En for any n. 
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3. R e s u l t s . In establishing our main theorem, we use induction and a basic 
proper ty of generalized cylindrical coordinates. Specifically given any flat F 
of dimension n — 2 in En, we can find a collection of hyperplanes {He}, 6 £ [0, IT) , 
such t h a t F = H6l H He2(01 ^ 02), U # 0 = £w , and if i£ is an arb i t ra ry Borel 
set satisfying mn-i(He Pi K) = 0 for almost every 0, then m(K) = 0. 

T H E O R E M 4. L ^ E be a compact slarshaped set in En such that int E ?£ 0. 
Suppose dim conv ker £ ^ w — 1. 77^?z //ze visibility junction v is continuous on 
i n t £ . 

Proof. W e first establish our theorem in the case « = 2. Let x be 
an arbi t rary point of int £ different from some point in conv ker £ and 
let \xn) —> x. T h e lower semicontinuity of v a t x follows if we can show 
S = {y : y G •S'(x), 3/ g US=i 0"=* S(xw)} has measure zero. If we denote the 
set of points which x sees via £ bu t not via int £ by M, then clearly 5 C ^ 
First , it can be seen t h a t any ray with endpoint x intersects M in one point or an 
interval . Excluding the ray on the one possible line which might contain all the 
points of conv ker £ , if such a ray R contains an interval in M, we associate a 
rat ional point in £ 2 with it. Fix p £ conv ker E,p 9^ x. L(p, x) divides the plane 
into two open half planes, Hi and H2. Suppose wi thout loss of generali ty R C Hx 

and 3>i3>2 CMC\R. Clearly there exists a point z such t h a t z Ç in tv 1̂3̂ 2 and 
pz passes through a point rR in Hi with rat ional coordinates. W e claim the 
a s s i g n m e n t s —> rR is 1-1. Suppose there were another ray Rf such t h a t Rr C H\ 
and Rr were also assigned rR. T h e n there exists z' on R; C\ M such t h a t rR is in 
in tv pz' and we may harmlessly suppose z Ç in tv z'p. Since conv(£ U] zr\J x)C_E, 
it follows t h a t z (? M, a contradict ion. 

T h e remaining points of M not contained in these intervals mus t be endpoints 
of maximal segments in S(x) with one endpoint x. Bu t these points have measure 
zero by Theorem 3. Hence, m(S{x)) ^ m(U*°=i Dn=kS(xn)) ^ lim inf m(S(xk)) 
and the lower semicontinuity of v a t x follows in the case n = 2. 

For general n, we must distinguish two cases for an arb i t ra ry point x G in t £ : 
(1) there exists n independent points {yu . . . , yn) C conv ker £ such t h a t 

oc & (yi, • . . , yn), and 
(2) there exists n independent points {3̂ 1, y2, . . . , yn] C conv ker £ s u c h t h a t 

x G (yi, . . . ,yn). 
If dim conv ker £ = n, both conditions are satisfied for every x, and if 

dim conv ker £ = n — 1, then exactly one is satisfied by each x in £ . (See 
Valentine [3] for a thorough discussion of flats, convex kernels and convex hulls). 

In case (1) we first establish by induction t h a t if p is any point in 
in tv conv(J3>i, . . . , yn}) where J3>i, . . . , yn) are as above, then if {xn} - ^ x o n 
L(x, p) w e h a v e m ( 5 ( x ) / U ? = i CM^k S(xn)) = 0. This , of course, has been shown 
when n = 2. Assume it is t rue if n = k, and now suppose n = k + 1. Le t 
{yi y • • • , Ju+i} be independent points in conv ker £ satisfying x ? (3^1, . . . , yk+1 ). 
Let p G in tv conv({y l y . . . , 3^+1}). Clearly there exists a set of hyperplanes 
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{He}, d G [0, 7r), as in the previous discussion such tha t L(x, p) C He for every 
0, dim conv ker (He C\ E) ^ k — 1, U He = Ek+1 and for every 6, there exists 
independent points {yie, . . . , yk

6} contained in conv ker (He P E) such t ha t 
p 6 in tvconv({y i e , . . . , yk

9}) and x g (yx\ . . . , 3 / / ) . 

Now let {xn} be an arb i t rary sequence of points o n I ( x , £) converging to x. By 
the induction hypothesis we have mk(S(x) C\ He/U™=i C\Z=kS(xn) Pi He) = 0. 
Hence, by our previous remarks we have mk+1(S(x)/\Jk°=i Hn=k S(xn)) = 0. 
Hence our proposition is t rue in En for every n. 

This all of course implies t ha t given any point p G in tv conv({^i, . . . , yn})1 

v is continuous on L(x, p). Therefore there exists a point x0 in E 
such tha t x G intv px0 and v(x0) > v(x) — e. Since p was chosen in 
in tv conv({y u . . . , % } ) , it follows tha t conv{x0 , yi, . . . ,yn} will contain a neigh­
borhood N of x and since yt G conv ker E , i = 1, 2, . . . , n, we conclude t ha t 
v(y) > v(x) — e for every y G iV so t ha t y is lower semicontinuous a t x. 

In case (2) we establish by induction tha t the set M of points which x sees 
via E bu t not via int E has measure zero, which is enough to establish the 
cont inui ty of the visibility function a t such points as we have noted before. We 
have seen this to be t rue when x is any interior point of E if n = 2. Now suppose 
the assertion has been established for n = k. If n = k + 1 we again ro ta te a 
hyperplane to sweep out k + 1 space such tha t a t each stage Hd, 6 G [0, IT) , E P\ He 
satisfies the induction hypothesis. Let H denote a hyperplane containing x and 
a subset of conv ker(E) of dimension k. There exists a flat F C H, dim F = k — 1, 
such tha t x G F and dim conv ker (F Pi £ ) = k — 1. Let {He}, 6 G [0,7r), denote 
the set of hyperplanes generated by rotat ing H = H0 about F. Then for all 
6 G [0, 7r), we have dim conv ker (He r\ E) ^ k — 1, and x is located on a 
hyperplane in # 0 (namely F) for every 0 containing a subset of conv ker(i^0 P\ £ ) 
of dimension k — 1. By the induction hypothesis the set ikfg = those points of 
E H Hd which x sees via E C\ He bu t not via in tv E C\ He has k dimensional 
measure zero. By our earlier remarks, U^[O,TT) Me has k + 1 dimensional 
measure zero. 

We claim tha t M/M C\ H0 C Uefjo,^ Me. Suppose z is an interior point of 
E C\ He/F relative to He where 6^0. Let N be an He neighborhood of z 
contained in E C\ He/F. Then dim(iV U conv ker E) = k + 1, and 
z G int conv(iV U conv ker E) C int E. Hence boundary points of E on He, 
M 0 , are boundary points oiEC\He relative to He. Thus , M/M H He C U Me 
so t ha t m(M) — 0, and the continuity of v a t such points x follows. 

Some observations are now in order. Clearly, the converse of Theorem 4 fails. 
If £ is a compact starshaped set in En the dimension of whose convex kernel 
exceeds n — 2, then the boundary of E has measure zero. Thus , the reader might 
guess t ha t Theorem 4 is a special case of the following more general theorem: 
if E C En is a compact set whose boundary is of measure zero, then the visibility 
function is continuous on int E. Howrever, the above proposition is false. In the 
s tandard Cantor set of measure T in [0, 27r] derived by tossing out a sequence of 

https://doi.org/10.4153/CJM-1972-100-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-100-7


992 GERALD BEER 

open sets {On} from [0, 2ir] in the usual way, let our residual closed set after the 
nth deletion be called Kn. Letting 

rn = 3 sup inf \y - x|, 
x£Kn ve[0,2ir]/Kn 

a counterexample is seen to be 

{(r, d) : rS 2} /U {(r, 6 ) : ^ O f f i ) l < K l + Vr»}. 

For details, see [2]. 
For the case when E is a bounded open starshaped set, we are only able to give 

the following planar result. 

THEOREM 5. Let 0 be any bounded open starshaped set in the plane. Then the 
visibility function is continuous on 0. 

Proof. Let x be an arbitrary element of 0 and let {xn} —> x. If 
x 6 conv ker 0, v(xn) —» v(x), so we may assume x Q conv ker 0. We show that 
S = {;y : 3> £ nSÊU US=A;5 ,(XJ/5 ,(X) } has measure zero. Fix a point p in conv ker 0 
and consider any ray R emanating from x. We claim Ûi&tR P S is either empty or 
contains a line segment. If the line L determined by ̂ contains p, then R Pi 5 = 0. 
If not, and R Pi 5 F^ 0, then all but finitely many of the {xw} which see a fixed 
point y of i? P 5* must lie on the p side of L, or else we have conv (x KJ y^J p) CO. 
Since int conv(^ \J p U x) C O , there exists an open rectangle in 0 with one 
edge xv containing y in its relative interior where yv C 0. It is clear that all but 
finitely many members of the range of \xn} which could see y can also see yv, and 
since yv P S(x) = 0, R P S contains yv, an interval. 

We now proceed in the same manner as in the compact case: to each ray R 
containing an interval in S we associate a rational point rR. 

This point corresponds uniquely to R, for suppose that rR lies on both pw 
and pw' where w G R P S,wf G Rf P S and w G intv w'p, say. Since 
int convfW \J x\J p) C 0, we have w G S(x), a contradiction. The upper semi-
continuity of v now follows in the obvious way. 

In addition to establishing more general results for open sets, the following 
conjecture is of interest: let £ b e a compact starshaped set in En whose convex 
kernel is of dimension n — 2. If x G int £ is a point of discontinuity of the 
visibility function, then x is a point on the smallest flat containing the convex 
kernel of E. 
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