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AN ENDPOINT ESTIMATE FOR CERTAIN 
fc-PLANE TRANSFORMS 

BY 

S. W. DRURY 

ABSTRACT. In this paper we extend a result of Oberlin and Stein on 
Radon Transforms to /c-plane transforms for k > \n. Specifically let 

F(ir) = sup |r*/(II)| 

where the supremum is taken over all affine /c-planes n parallel to the 
vector &-plane IT. We show that F is in L" of the Grassmann manifold Gnk 

whenever/is in the Lorentz space L(n/k, 1) of U". The proof relies very 
heavily on the ideas of M. Christ. 

Introduction. For /a suitable function defined on U" the /:-plane transform Tkfis 
defined by 

Tkf(U) = jf(x)d\n(x) 

where II is an affine &-plane in Un and Xn is Lebesgue measure on II. Thus Tkf is a 
function on the manifold Mn,k of affine ^-planes in R". The space M„jk has a natural 
bundle structure. Each element II of Mnk may be written uniquely as 

II - TT + x 

where TT is a vector &-plane and x E TT1. The space of vector ^-planes, that is, the 
Grassmann manifold is denoted G„,*. Clearly Mthk is a bundle over Gn,k with an 
(n — &)-dimensional fibre. 

There is a natural measure 7 on Gn,k (the unique rotationally invariant probability 
measure) and a natural measure 

d^(II) = d\^(x)d7(TT) 

on M„tk which is invariant under Euclidean motions. One may define mixed norms 
spaces 

L«(d7, Z/(d\^)) 
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on M„jk in this context and ask for estimates of the type 

\\TJ\W') s C\\f\\Lr. 

In a recent article M. Christ [1] makes substantial inroads into this question. In an 
earlier article Stein and Oberlin [6] prove a fascinating result namely 

H -̂̂ IU-d.*) ^ C^ll/I^! (/i > 3) 

For the Radon Transform Tn-X. The norm on the right is the Lorentz space norm. The 
reader is referred to Strichartz [7] for this formulation of the result. The result is sharp 
in two separate ways. Firstly, the Lorentz space is really needed. For a > 1 there exists 
/ E L(n/n — 1, a) with Tn-\f everywhere infinite. Secondly, the condition n > 3 is 
essential. If n = 2 then taking/to be the indicator function of a Kakeya set yields a 
counterexample. 

The purpose of this note is to rework Christ's ideas to prove an endpoint result for 
Tk where k > \n. 

THEOREM 1. For k> \n we have 

lln/iho^cji/iu,. 
It would be interesting to know if for k < \n one can always find "Kakeya sets". That 
is, can we always find for each e > 0 a subset AClR" with measure < e but for every 
IT E Gn,k there is a translate II of TT such that ku(A) > 1. Indeed this question has 
already been asked by K. J. Falconer [4]. In [4] and [5], Falconer proves qualitative 
variants of Theorem 1. 

A natural generalization of Tk is TLk the "/-plane to fc-plane" transform mentioned by 
Strichartz [7, page 701]. To define it we consider n E Mn,k as fixed and let |xn be the 
natural measure on MU(II) the space of /-planes © contained in II. For/a function on 
Mnj we set 

TiJQb = j/(©)dM@). 

The function Tttkf is defined on Mnik. When / = 0, 0-planes are just points and T0ik = 
Tk. These transforms compose nicely 

Ti,k°Tmj — Tm^k. 

We may now restate Lemma 3.5 of Christ [1] as follows. 

THEOREM 2. (Christ). For 0 < k < n - 1 

IKn-llh^MM^,) ^ C\\f\\LA{LP){Mnk) 

where A' = nP = (n - k)B'', P' = (n - k)R', P > 1, R < <». 
The operator which Christ calls S is, suitably interpreted, T*„-\. Christ's condition 

p < n/k corresponds to our R < o°. 
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One idea of this paper is to use Tkn„-\ as a link between Tk and Tn-1 according to 
Lemma 1 below. We give some motivation for this in the remarks following the proof 
of theorem 1. 

LEMMA 1. 

(0) Tk = Tk^n-] /?_(„_!_k)Tn-\. 

Here R-(n-x-k) is a suitably normalized Riesz potential (of negative order) taken on 
each fibre of M„jM_i. 

PROOF OF LEMMA 1. It will be easier to verify the equivalent adjoint statement 

( 1 ) Tk ~ T n-\ R-(n -\-k) Tk „ - \ . 

First we tackle Tkt„-\. 

rjk,n_1/(n) = J/(0)d^„(0) 

for II E Mn>n_i, 0 E M„ik. If we write II = (TT, JC), TT E GW,„_I, JC E TT1 and 0 = 
(8, /y), 6 E Gn,k,y E 81 then the condition 0 Ç II amounts to 8 Ç TT and y E TT + 
x. The latter can be written y = x + y' with y E TT D 61. The measure d|xn(0) = 
dX7Tne1(};')d77T(G) where 7^ is the invariant measure on the Grassmann of /:-planes 
contained in II. Thus 

7V,-,/(ir , x) = J / ( 8 , x + / )d\wne- ( / )d 7 , (8 ) . 

Next we take the Fourier transform on the fibre TT1 

n,„-,/A(TT, u) = j / ( 8 , x + / ) ^ ^ d ^ n e ^ ( ^ ' ) d 7 . ( e ) d X ^ W 

which is defined for u E TT1. NOW y' E TT D 61 Ç TT is orthogonal to w so that e~lux 

= e-
iuix + y'\ Thus we find 

7V„_, A T T , M) = | / ( 6 , j ) ^ M M V ( y d 7 . ( e ) 

or 

(2) T V ^ / V , M) = J/A(8, w)d7„(8) 

where the " A " on the right is the Fourier transform along the fibre in Mn^k. 
Now we turn our attention to Tk. It is well-known (see [1] or [7]) that 

Tkf\Q,u)=f(u) 

for u E 6 1 . A straightforward change of variables argument now leads to 

(3) T*kg\u) = cn,k\u\-k { g A (8 , W)d7Mx(G) 
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for the adjoint. In case k = n - 1 this simplies further to 

(4) Ttlg
A(u) = cn\u\-{n-l)8A(u1,u) 

as there is only one linear hyperplane perpendicular to u. 
Combining (2), (3) and (4) now leads immediately to (1). The dedicated reader may 

wish to observe that the statement 

is false. (If it were true we could deduce (0) by multiplying on the right by Tk). 
We now establish an interpolation lemma which is probably well-known. The lemma 

is stated in one dimension: we leave the every task of generalizing this result to n 
dimensions to the reader. Lp

a denotes the Sobolev space defined with the Riesz 
potential. 

LEMMA 2. Let a > \ and 1 < r < oo. Suppose that 

\\h\Vlm ̂  Mx 

and 

\\h\\Lrm =£ M 2 . 

Then 

\\h\ym<CM\M\~* 

where P = (1/r) (a - \ + 1/r)"1. 

PROOF OF LEMMA 2. By translation invariance it is enough to control |/i(0)|. Let 8 
denote the delta function at 0, let 6 be a Schwarz class function with integral one and 
denote 8,(;t) = t~lQ(t~lx). Then 

(5) A(0) = <8 - e„ h) + <er, h). 

The second term on the right is controlled by Holder's inequality 

(6) KeM /z)|<| | /z| |r | |eJ|^<r1 / r | |e | |^M2 . 

For the first term we take Fourier transforms and follow up by using 
Cauchy - Schwarz 

|(ô - e„ h)\ < ||/i||^ {/ |w|"2a|i - htuf dM} . 

Since 0 is smooth at the origin and 0 decays at infinity the second factor is finite and 
yields 

(7) |(8 - 0„ h)\ ^Crl/2 + aMl. 

Combining (5), (6) and (7) and choosing t appropriately now yields the conclusion of 
the lemma. 
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PROOF OF THEOREM 1. As in Oberlin and Stein [6] we have 

l|r„-,/|U?„_ll/2)^c||/||,2 

and 

IK-iflW'^cWfl*. 
Interpolating yields 

l|r.-./lk^.w»^c||/|U 
for 1 < p < 2. Equivalently 

(8) l l^ - i -* )^- i / lk^ ( f l . I ) / p ) ^C| | / |U 

for 1 < /? < 2. We now use the Hardy, Littlewood, Sobolev lemma in the one 
dimensional fibre of Af„, „ _ i to obtain 

(9) !!*_,„_,_*, r ^ . / l l ^ s c l l / l l , 

where 1/r = n/p — k and for (n — \)/k < p < n/k. Next we apply Lemma 2 on each 
fibre — that is to the function 

h = R-(n-\-k) T 1 , , - ! / ( I T , •) 

for each TT E G„,„_ I and where IT1 is identified to U. The hypotheses of Lemma 2 are 
provided by (8) with p = 2 and (9) with some fixed p in the range (n — \)/k < p < 
n/k. Thus a = k - (n - l)/2 and a > i by virtue of the hypothesis k > n/2. 

Together with an application of Holder's inequality on the base G„t„-\ we obtain 

ll*-«.-.-*,r1I-I/|ko^c||/||?||/||;-p 

with P as in the lemma and \/q = (3/2 + (1 - P)//? = k/n. Now let | / | < 1£ where 
£ is a set of finite measure m in R". Then 

||rt-(„-i-*) ^ - , / I I L " / ^ - * ) ^ ) < C m*/n. 

Normalized convex combinations of such functions generate the Lorentz space 
L(n/k, 1) so that we now obtain 

\\R-{n-l-k) Tn-xf^n/in-k)^ < C\\f\\n/kJ. 

Now apply T*n_ j to /?_<„_!_*) r„_ i/and use Christ's Theorem with R = 1, P = 1, 
^ = n/fc and A = n/(n— 1) to control the result. Together with (0) this yields the 
Theorem. 

We now offer a rather inadequate motivation for the contortions we have used in the 
proof of Theorem 1. It is instructive to observe that if we take the two estimates (see 
[7]) 

(10) Iln/lh42) ^ c||/||2 
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and 

(ID lln/lh.', =£ 11/11. 
and apply the (n - £)-dimensional analogue of Lemma 2 directly on each fibre ofMnk 

we obtain 

||rJt/
r||L-/c-«(L-)^c||/|UI(*>n/2). 

This statement is weaker than Theorem 1. Despite the fact that (10) is actually an 
equality, this is where the weakness lies. Equation (10) does not carry enough informa­
tion. 

A partial explanation of this comes from observing that (11) above and 

\\Tkf\\L*+HMntk) ^ C\\f\\in+mk+l) 

are affinely invariant inequalities — see equation (4) of Drury [3]. By extrapolation 
Theorem 1 is also affinely invariant. This suggests that one seek an affinely invariant 
proof. The Hardy Littlewood Sobolev lemma is affinely invariant only in dimension 1. 
This indicates the virtue of working on the 1-dimensional fibre of Mnn-X. 
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