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SUMMARY

We consider an age-structured population that is observed at times t = 0, 1,
2 , . . . . I t is assumed that for each t there is the same number of individuals of
a particular sex and age group. Another assumption we make is that an offspring
of a specified sex has at all times the same probability of having a parent of
a particular age and sex. I t is shown that the rate of substitution of neutral
mutants is v/L, where v and L are respectively equal to the mean fraction of
mutants among gametes succeeding in forming newborn individuals and the
mean age of reproduction. This result also applies to monoecious populations.
The substitution rate is also derived for advantageous mutants in a monoecious
population. Once again, the mutation rate in the usual expression is replaced
by v/L. Implications of these results are discussed.

1. INTRODUCTION

One of the arguments that has been used in support of the neutral mutation theory
is that the rate of mutant substitutions has been approximately constant and that this
would only occur if the mutants that ultimately become fixed are at least approximately
neutral. The mathematics upon which this reasoning is based is applicable to populations
with discrete generations. The theory has been applied, however, to data from distantly
related species, and such species have, in many cases, developed different life tables and
fertility schedules since they have diverged from common ancestors. I t is therefore of
interest to derive a theory for the rate of mutant substitution in a population with
overlapping generations.

Enough is now known about the theory for age-structured populations with an
unchanging demographic structure to obtain the substitution rate for neutral mutations,
as well as a general impression of what it should be when the mutants are advantangeous.
These rates will be derived in sections 2 and 3 and discussed in section 4.

2. THE DERIVATION FOR NEUTRAL ALLELES

We consider a population that is observed at times t = 0, 1, 2 , . . . . An individual will
be said to be in age group i at time t if it is between i and i + 1 units of age at that time,
where i = 1 among the newborn. I t shall be assumed that, for each value of t,
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iVJ" = the number of males in age group i, i = 1,... ,am,
Nj = the number of females in age group j , j = 1,..., af,
\Vu = P (a gene in a male comes from a father in age group i),

j = P (a gene in a male comes from a mother in age groups),
|_ = P (a gene in a female comes from a father in age group i),

\'pfj = P (a gene in a female comes from a mother in age group j).
Then if vi and v j are respectively equal to the probabilities that a gamete from a father
in age group i and from a mother in age group j contain a new mutant, the expected
numbers of mutants entering the population at any particular time in males and females
of age group 1 are

Mm = 2Nf-[ £ pj>,.+ I.p'SvA (1)

and

Mf =2N{U Y:A vt. + I pf, vj) (2)
6 \ )

f =2N{U Y:A vt. + I pf, vj
6 \i-i j-!

= 2N{vf.

Now a substitution takes place when a mutant that was originally present in one
individual becomes fixed in a population. Following Kimura & Ohta (1971), we define
the rate of substitution per unit time to be

k= lim n(T)/T, (3)
T-»oo

where n(T) is the cumulative number of mutants that have been fixed in a population
during a time period of length T.

The expression n(T) may be written as

n(T)= I £ n M l ( T ) + Z i % , ( T ) , (4)

where nltl (T) and n2ti (r) are respectively equal to the numbers of mutants fixed at time
T that originated t1 units of time earlier in newborn males and females. Thus,we have
from (1) and (2) that

E{nUl (T)] =22Vf vm (tfu.-tf,,,,.,),

where, for example, UUl is equal to the probability that a mutant originating in a newborn
male becomes fixed within t1 units of time. Hence

nMl ( ) ] 5 m ^

and, similarly, r- T -.
E\ 2 nUi(T)\=2N{vfU2T.

Lti-i J

It therefore follows from the law of large numbers that

n(T) ~ T[2N™vm ^ + 2N{vf U2], T-*ao,

where U1 and U2 are the probabilities of ultimate fixation of mutants originating in
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newborn males and females. Therefore (3) takes the form

k = 22VJ"vm C/j + 2N{vf U2 (5)

whether mutants are neutral or not.
It has been shown by Emigh & Pollak (1979) that, if reproduction is not periodic and

there is no selection, .
U (6 )

where
L = the average of the mean ages of parents

Therefore, if there is a dioecious population, aperiodic reproduction and all mutants are
neutral, we find, by substituting (6) and (7) in (5), that

The same sort of reasoning as we have just used may also be applied to a monoecious
population. Thus, we assume that at all times 0, 1, 2,. . . ,

Nt = the number of individuals in age group i
and

pt = P (a gene in a newborn individual comes from a parent in age group i).

Then if Vi denotes the probability that a gamete from a parent in age group i contains
a new mutant, the expected number of mutants entering the population at any particular
time is

M=2N1Jlpivi = 2N1v.
i

Expressions (3) and (4) may be replaced by

k = lim I £ 2 nh(T)\ T,
T->oo LT-1 tj-1 J/

where nti (T) is equal to the number of mutants fixed at time r that originated tY units
of time earlier in newborn individuals. Hence

where UT is equal to the probability that a mutant becomes fixed within T units of time.
The law of large numbers then leads to

k = 2NlvU, (9)

where U is equal to the probability that a mutant that is originally present in one
individual is ultimately fixed.

It has been shown by Emigh & Pollak (1979) that, if there is no selection and
reproduction is aperiodic,
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where L = Y.ipt. Therefore, if only neutral genes are substituted, (9) and (10) imply that

3. THE RATE OF SUBSTITUTION FOR ADVANTAGEOUS MUTANTS IN A
MONOECIOUS POPULATION

If there is a monoecious population in which mutants have a selective advantage, it
has been shown by Charlesworth & Williamson (1975) and Pollak (1976) that

where c and <r\ are respectively equal to the mean and variance of the number of
heterozygous children produced by a rare heterozygote in its lifetime. Because we are
assuming that the number of individuals in each particular age group does not change
with time, it is clear that the mean number of offspring of individuals carrying an
advantageous mutant must decrease as the frequency of such individuals increases in
the population. Nevertheless, it is reasonable to assume that (12) is still applicable if c
is taken to denote the ratio of the mean number of offspring produced by a heterozygote
in its lifetime to the mean number of offspring produced in the lifetime of an individual
of the type that was present before the mutant was introduced. Examination of the
expression for the fixation probability of a mutant in a finite haploid population, derived
by Emigh (1979), indicates that this should be true if there is random union of gametes,
no selection for fecundity and intermediate viability of heterozygotes.

Also, it follows from Pollak (1979, expression (6.8)) that a* = LNJNe. Thus, (12) can
be rewritten as , r

where s and 2s are respectively equal to the selective advantages of heterozygotes and
homozygotes that carry an advantageous mutant. It follows from (9) and (13) that

k = 4Nes^. (14)

4. DISCUSSION

If L = 1, so that generations are discrete, expressions (8), (11) and (14) agree with
results given by Kimura (1968), King & Jukes (1969) and Kimura & Ohta (1971).
Charlesworth (1980, p. 105), has given an expression for k with L > 1 that agrees with
(8) if u is taken to be ' the rate of neutral mutation per time interval' and the rate of
mutation in a germ cell increases linearly with age. In this case the rate of mutation per
generation is equal to Lu, so that k = u, as given by Charlesworth.

If & is multiplied by L, the generation interval, it follows from (8), (11) and (14) that
kg, the mean number of substitutions per generation, is given by

kg = 9 (15)
for neutral mutants and , . ,7 _ ..„.

kg — 4Nesv (16)
for mutants with a selective advantage s in monoecious populations. Hence v and k are
respectively consistent with the 'potential mutation rate per generation' and the
'substitution rate per year' of Ohta & Kimura (1971), although they do not define v or
L precisely.
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Thus, if mutants are neutral, it is the substitution rate per generation that is equal
to the mutation rate, and not the substitution rate per year. This means that, if two
species which exist now had a common ancestral form in the distant past, and the species
have since that time developed very different values of L, the substitution rate per unit
time would only under special circumstances be constant in both lineages. Suppose, for
example, that species 1 and 2 are distantly related and the potential mutation rate per
generation and the generation interval for species i are vt and Lt. Then

only if Vi/v2 = Lt/L2, so that the potential mutation rates are proportional to the
generation intervals.

King (1972) has asserted that v/L, the mutation rate per unit time, is indeed constant
in any one species and that such quantities are very similar in different vertebrate species.
It has, however, been pointed out by Crow (1972) that classical studies of single locus
mutation rates in humans, mice and Drosophila yield figures that are rather similar if
time is measured in generations. He thus concludes that either mutation rates differ
between substitutions that are neutral and those that are severely deleterious or that
substitution rate measures are wrong.

Kohne, Chiscon & Hoyer (1972) are also in disagreement with King (1972), because
they claim that data on primates suggest the rate of nucleotide sequence change seems
to have been fastest in species with short generation times. Fitch & Langley (1976) point
out that their data, as well as those of other authors contributing to the same symposium
volume, suggest that the rate of substitution among the primates has slowed down. This
may in part be due to larger values of L among primates than among, say, mice, rats
and chickens, for (17) does not hold if vdoes not increase in proportion to L when different
species are compared. Vogel, Kopun & Rathenberg (1976) argue that the probability that
a gamete carries a mutant increases with the number of cell divisions leading to its
formation. They calculate that the generation interval is about 75 times as long among
humans as among mice, whereas the numbers of cell divisions leading to spermatogenesis
differ by a factor of only about 10. Thus, other things being equal, v/L should be much
smaller among species with life cycles like humans than those with life cycles like mice.

Therefore, even if there is no selection, the substitution rates per unit time need not
be the same for different species. If they are the same, selection cannot be completely
ruled out because we could have &x = k2 if Nesv is a constant multiple of L among the
species. Perhaps, however, this is more implausible than (17).

Clearly, if data on substitution rates are to be used as evidence for or against neutrality
of the alleles involved, estimates must be available for at least generation intervals as
well as mutation rates. In addition, comparisons should be most informative for species
with rather similar values of L. Even then, the collection of appropriate data may prove
to be a formidable task.

My calculations are, strictly speaking, applicable only to a population with an
unchanging size and demographic structure. The results may therefore furnish good
approximations if a species has long been well adapted to its ecological niche and has
not fluctuated greatly in numbers. Perhaps similar results can also be derived if the
population size fluctuates in regular cycles, but I do not have proof of this.
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