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ON EIGENSOLUTIONS OF THE ONE-SPEED NEUTRON
TRANSPORT EQUATION IN PLANE GEOMETRY
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Abstract
We revisit the singular eigensolution to the steady state one-speed transport equa-
tion for an isotropically scattering and multiplying heterogeneous slab. It is proved

that this solution is a sum of Stieltjes integrals over the resolvent set of only the
operator of multiplication by the angular variable.

1. Introduction

Consider the one-speed, variable coefficient and source-free stationary neu-
tron transport equation [2], with isotropic scattering and multiplication in
plane geometry
a2 c ! ' ]
Hgzv(x, )+ Z(xX)y(x, p) = 5Z(x) 1 w(x,u)du
xe€[0,L], ue[-1,1]). (1.1)

In this equation

I(x) =Z(x)+ Zf(x) +Z.(x) (1.2)
is the total neutronic cross section of scattering, fission and capture, and
c=[Z,(x)+ VZf(x)]/Z(x) (1.3)

is the yield (neutron per neutron), in which v is the average number of
neutrons per fission; the reader is referred to (for example) [2, 7] for other
details.
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Recently [7] it was argued that for many situations of practical interest,
¢ may be assumed to be a constant, independent of x. An optical path
transformation may then be performed with x, namely

: =b“/0x>:(c)d¢ (1.4)
L
b= /0 () de (1.5)

to put (1.1) into the equivalent constant-coefficient form

1
pgeb(z w+b(zm =56 [ oz, u)ai,
Hz W =y(x(2), p),  zE0, 1), wel-1, 1. (16)

Equation (1.6) was solved exactly in 1960 by the singular eigenfunction
technique introduced by Case [4]. Other analytical methods for solving this
equation include the application of Lie series [11], summation operators [3],
and double Legendre transforms [7]. In the present work, we intend to revisit
only the singular eigenfunction method, in which the solution is sought in the

form
#(z, ) =h(z)f(w)=hf. (1.7)
Substitution then of this ansatz in (1.6) leads to
1dh bllc ! [ ’
ZEE_E{TE/_,f(u)d”_I]_K (1.8)
for which
h(z) =e"* (1.9)

and f(u) satisfies the eigenvalue equation

1
(b+ K () = 5b /_ Suyan. (1.10)

The explicit form of f(u) and its properties have been studied by several
authors [4, 8, 12]. To date, this essentially analytical technique has exten-
sively been developed to treat a wide variety of neutron transport problems
[10, 14], and it has been extended even to analyse anisotropic scattering of
multigroup neutron transport [6] in multilayer slabs. In particular, we aim to

https://doi.org/10.1017/50334270000008444 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008444

131 Eigensolutions of transport equation 225

further explore the basic nature of the eigensolutions of (1.1) by application
of the theory of Stieltjes integrals [13].

2. Analysis

Let us rewrite (1.10) as

H>——/.ﬂ) ——f Kf @2.1)

in which it is apparent that x is an eigenvalue of the nonselfadjoint singular
integral operator:

7_-_/ d—— (2.2)

whose spectrum must, according to the Weyl-von Neumann theorem [16},
contain a continuous part. Such spectra may satisfactorily be analysed either
variationally [9] or via the technique of singular integral equations [4]. Here
we shall follow a rather indirect route, which enables us to utilise the theory
of selfadjoint operators to investigate the x-eigenvalue spectrum (denoted as
K) of 7, with the aim of trying to add another dimension to these methods.

PROPOSITION 1. Ifthe result of applying a generalised operator X to the eigen-
value problem of (2.1) is another parametric equation

G(f,x)=0 (2.3)
then K may possibly remain unaltered, whereas if it is a Fredholm problem
LX=AX+7Y (2.4)

with 1L being the A-resolvent set of the corresponding L-operator, then K can
only be a subset of (R —L) where R = (—oc0, 00).

Proor. By virtue of the definition of the resolvent {5] of an operator and
as a consequence of Weinstein’s theorem on finite-dimensional perturbation
[15].
2.1. Double differentiation with respect to u

Since (1.10) is an integral equation of the second kind, then the simplest
}-operator one can think of in this connection is ¥ = d? /d uz . Indeed

2 2
ﬁ;ﬂﬁ=§%%ﬁ (2.5)
satisfies (2.3) because it equals
d*f df NS &f_
7{du2}+2du{ } P 2{f} 0 =0. (2.6)
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Let us rewrite (1.10) as

10 =St | [ e = [P rwhad] . @

and differentiate it throughout twice with respect to x4 to obtain the equiva-
lent Cauchy-type homogeneous differential eigenvalue equation

d*f 2x* :
dﬂz—(b+w)f=0(f,x)=o. (2.8)

The general solution of this equation is of the form

f(w) = A(b +rp)”" + B(b +xp)’ (2.9)

where 4 and B are arbitrary constants.
Seeking the eigensolutions f(u) in the class of bounded, | f]| < M, func-
tions over —oo < ¥ < oo demands that B = 0. Further normalisation of

S(u) as 1
1= sw)a =1 (2.10)
-1

and substitution of (1.4), (1.5), (1.8) and (1.7) back into (1.6) provides for
the transcendental generalised dispersion formula,

L Ly
A=1-5 / 5(¢)de| 1n| L 2O dC +
2x |Jo 2 dé-«
whose roots define the discrete eigenvalue spectrum for (1.1). A graphical

solution of (2.11) illustrates that when ¢ < 1 only two distinct discrete
eigenvalues +x, exist in the range

=0 (2.11)

L
|x|</0 (€)dé = b,

and that as X(x) or L is increased without bound (b — o0), then || — oco.
Here the associated eigenfunctions

I EQ)ds [K I E(é)dé]

(15 2@ dé + xou] *fEx@ae

are defined only for k¥ # —-b/u. For k = —b/u, however, the dispersion
function becomes irrelevant, and |x| can take any value over the interval
(b, 00), depending on the value of u. The range |k| > b represents the
continuum of the x-spectrum and it embodies also two other pseudodiscrete
[16] eigenvalues +x, , which lie in the vicinity of the singular x = +b points.

(2.12)

[ ST

v, (x,pn)=

0
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2.2. Weighted integration with respect to u

Expansion of the solution of (2.1) in Legendre or other orthogonal poly-
nomials has frequently been employed to examine the associated eigenvalue
spectrum. It is useful to note that this approach is equivalent to a weighted
integration over u, for example, application of

i
}(=/1Pn(u)d,u. (2.13)

Moreover, since ¥{Ff} = nX f, which may be rewritten as
Mu = nu (2.14)

with u = ¥ f, cannot be reduced for 7 of (2.2) to any of the forms stated in
Proposition 1, the spectrum of the n-eigenvalues is not expected to elucidate
much about the x-spectrum. This follows also from the simple fact that the
n-eigenvalue spectrum is purely discrete, whereas the x-spectrum is a mixed
discrete-continuous one.

2.3. Integration with respect to o
Consider first the normalisation condition of (2.10) in (1.10) to reduce it
to the equivalent Fredholm problem

(L-AAX=Y (2.15)
where use has been made of the substitutions
L=pu, A=-b/k, X=f(n), Y=-cA/2. (2.16)

Here the operator £ = u is selfadjoint in the Hilbert L? space and the
solution of (2.13) is given [5] by
X=RY=(L-ATY (2.17)
with R, being the resolvent of L. The eigenvalue spectrum of this operator
is defined by
Lv=pv=av (2.18)
where
v=uv, (u) =v(u, a). (2.19)
As (2.18) cannot be satisfied by any normal type of eigenfunctions (since
we would have to assume v to be zero for all values of u except u = a),
we shall seek its solution as a generalised function. Since X and Y are
independent of a, integration of (2.15) over a (i.e. ¥ = f;) da) does not
affect this equation. The situation is entirely different, however, as far as
(2.18) is concerned. Let us therefore integrate (2.18) over the closed interval
[ao ’ a] ’ a [e ]
,u/ v(u, a)da =/ av(u, a)do. (2.20)
Qa, e

0 0
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Substitution of

W) = [ viu, a)da (2.21)
o
in the preceding relation leads to
u [ de = [ ade,w (2.22)
C!o ao

where de (u) =d e (1) .
It turns out here that if we assume ¢_(x) to be the discontinuous shifted
step function

1 a>u
e = - 2.23
aw={, 22" (2.23)
with a specified semi-continuity on the right with respect to «, that is,
al{l}}l Gl =¢,), (2.24)
then
de (u) =6(a—p)da, (2.25)

with J(c) being the Dirac delta function for which f;: de,(u) = 1, and
(2.22) reduces therefore to

u= / " ade, (1) (2.26)

0
By virtue of the sifting property of the Dirac delta function, it is obvious
that (2.26) is an identity and the generalised function ¢_(u) satisfies (2.20).
Since this ¢,(u) does not diminish when o increases, that is,

eg(n) 2e,(0);  B>a, (2.27)

then it is essentially a projection operator [1] or “expansion unit” [13] and
the integral to the right of (2.26) is a Stieltjes integral.

Note however that (2.26) is nothing but a special case of the basic general
formula, derived from the Riesz representation theorem [1, 13], for the whole
theory of selfadjoint operators:

L= / ade, . (2.28)
@

It is possible to utilise further the theorem on the resolvent of selfadjoint
operators [1, 13],

¢ a
R, = A mda"(ﬂ) (2.29)
where A represents only the resolvent set of £, in (1.7), (1.8), (2.16) and
(2.17) together with (1.4)—(1.8) to finish the proof of the theorem that follows.
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THEOREM 1. The solution of the integrodifferential equation (1.1) is a sum,
over the resolvent set of the L = u operator,

wix, ) ZZA(A)exp[ /z dé]/ Tosde, () (2:30)

where the expansion unit in the Stieltjes integrals corresponds to this operator
and A(A) are coefficients satisfying appropriate orthogonality conditions.

Substitute finally (2.23) in (2.28) to reduce it to
c -1 [ Au
1) =S5 ARy exp | -4 /z d]—. 2.31
v =55 w27 [ 20 a] 2 231)

This relation illustrates clearly how the angular flux, which is proportional
to ¢/2, could be related, on one hand, to discrete values of the resolvent
set (of the operator £ = u) only for directions u different from 4. For
i =2, on the other hand, w(x, u) is determined by the continuum part of
the resolvent 1 set, and a part of the sum in (2.31) should accordingly be
replaced by an integral.

In conclusion, regardless of the rather new formulation for the eigensolu-
tions of (1.1) that Theorem 1 provides, no new results about the associated
eigenvalue spectrum appear to emerge from it. This theorem proposes nev-
ertheless an additional inlet for further research on this subject.
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