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Abstract

We revisit the singular eigensolution to the steady state one-speed transport equa-
tion for an isotropically scattering and multiplying heterogeneous slab. It is proved
that this solution is a sum of Stieltjes integrals over the resolvent set of only the
operator of multiplication by the angular variable.

1. Introduction

Consider the one-speed, variable coefficient and source-free stationary neu-
tron transport equation [2], with isotropic scattering and multiplication in
plane geometry

t*0^V(x, fJ.) + Z(x)y/{x,n) = ^S(JC) J y/{x,n')d/i'

xe[0,L], fi€[-l, 1]. (1.1)

In this equation
Z(x) = !,(*) + 1 / * ) + Zc(x) (1.2)

is the total neutronic cross section of scattering, fission and capture, and

c = [Z,(x) + i/Z/xM/ZOc) (1.3)

is the yield (neutron per neutron), in which v is the average number of
neutrons per fission; the reader is referred to (for example) [2, 7] for other
details.
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Recently [7] it was argued that for many situations of practical interest,
c may be assumed to be a constant, independent of x . An optical path
transformation may then be performed with x, namely

z = b~x fxi.(t)de (i.4)
Jo

b= f 1(0 d£ (1.5)
Jo

to put (1.1) into the equivalent constant-coefficient form

<j>{z,n) = v{x{z),n), ze[0, 1], fie[-l, 1]. (1.6)

Equation (1.6) was solved exactly in 1960 by the singular eigenfunction
technique introduced by Case [4]. Other analytical methods for solving this
equation include the application of Lie series [11], summation operators [3],
and double Legendre transforms [7]. In the present work, we intend to revisit
only the singular eigenfunction method, in which the solution is sought in the
form

-hf. (1.7)

Substitution then of this ansatz in (1.6) leads to

\dh t
-K (1.8)

for which

h{z)=eKZ (1.9)

and f{n) satisfies the eigenvalue equation

f(/i)dfi. (1.10)

The explicit form of f(ji) and its properties have been studied by several
authors [4, 8, 12]. To date, this essentially analytical technique has exten-
sively been developed to treat a wide variety of neutron transport problems
[10, 14], and it has been extended even to analyse anisotropic scattering of
multigroup neutron transport [6] in multilayer slabs. In particular, we aim to
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further explore the basic nature of the eigensolutions of (1.1) by application
of the theory of Stieltjes integrals [13].

2. Analysis

Let us rewrite (1.10) as

7f=^f\(i')dn' -b-f = *f (2.1)

in which it is apparent that K is an eigenvalue of the nonselfadjoint singular
integral operator:

whose spectrum must, according to the Weyl-von Neumann theorem [16],
contain a continuous part. Such spectra may satisfactorily be analysed either
variationally [9] or via the technique of singular integral equations [4]. Here
we shall follow a rather indirect route, which enables us to utilise the theory
of selfadjoint operators to investigate the K-eigenvalue spectrum (denoted as
K) of 7, with the aim of trying to add another dimension to these methods.

PROPOSITION 1. If the result of applying a generalised operator U to the eigen-
value problem of (2.1) is another parametric equation

G(f, K) = 0 (2.3)

then K may possibly remain unaltered, whereas if it is a Fredholm problem

LX = kX + Y (2.4)

with L being the k-resolvent set of the corresponding C-operator, then K can

only be a subset of (E - L) where R = (-00, oo).

PROOF. By virtue of the definition of the resolvent [5] of an operator and
as a consequence of Weinstein's theorem on finite-dimensional perturbation
[15].

2.1. Double differentiation with respect to fi

Since (1.10) is an integral equation of the second kind, then the simplest
#-operator one can think of in this connection is M = d2/d/i2 . Indeed

dji dfi

satisfies (2.3) because it equals

(2-5)

dfi2
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Let us rewrite (1.10) as

[4]

( 2 "

and differentiate it throughout twice with respect to n to obtain the equiva-
lent Cauchy-type homogeneous differential eigenvalue equation

= s whit [/." / ( " '»*•" - / " / ( " '»"] •

(2'8»

The general solution of this equation is of the form

(2.9)

where A and B are arbitrary constants.
Seeking the eigensolutions /(/*) in the class of bounded, | |/ | | < M, func-

tions over — oo < K < oo demands that B = 0. Further normalisation of
AM) as

= /_ Afi')dfi' = i (2.10)

and substitution of (1.4), (1.5), (1.8) and (1.7) back into (1.6) provides for
the transcendental generalised dispersion formula,

In = 0 (2.11)

whose roots define the discrete eigenvalue spectrum for (1.1). A graphical
solution of (2.11) illustrates that when c < 1 only two distinct discrete
eigenvalues ± K 0 exist in the range

\K\ < f
Jo

ooand that as X(x) or L is increased without bound (b —» oo), then |KO|
Here the associated eigenfunctions

2

are defined only for K ^ -b/fi. For K - -b/n, however, the dispersion
function becomes irrelevant, and \K\ can take any value over the interval
(b, oo), depending on the value of fi. The range \K\ > b represents the
continuum of the K-spectrum and it embodies also two other pseudodiscrete
[16] eigenvalues ±/c, , which lie in the vicinity of the singular K = ±b points.
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2.2. Weighted integration with respect to H
Expansion of the solution of (2.1) in Legendre or other orthogonal poly-

nomials has frequently been employed to examine the associated eigenvalue
spectrum. It is useful to note that this approach is equivalent to a weighted
integration over fi, for example, application of

(2.13)

Moreover, since H{Jf) — T]Mf, which may be rewritten as

r]U (2.14)

with u = Mf, cannot be reduced for 7 of (2.2) to any of the forms stated in
Proposition 1, the spectrum of the ^/-eigenvalues is not expected to elucidate
much about the K-spectrum. This follows also from the simple fact that the
^-eigenvalue spectrum is purely discrete, whereas the K-spectrum is a mixed
discrete-continuous one.

2.3. Integration with respect to a
Consider first the normalisation condition of (2.10) in (1.10) to reduce it

to the equivalent Fredholm problem

(£.-X)X=Y (2.15)

where use has been made of the substitutions

t = fi, X = -b/K, X = Aft), Y = -cX/2. (2.16)

Here the operator £ — n is selfadjoint in the Hilbert L2 space and the
solution of (2.13) is given [5] by

X = RXY = (L-X)~XY (2.17)

with Rx being the resolvent of C . The eigenvalue spectrum of this operator
is defined by

£v = nv = av (2.18)

where
v=va(n) = v(fi,a). (2.19)

As (2.18) cannot be satisfied by any normal type of eigenfunctions (since
we would have to assume v to be zero for all values of n except n = a),
we shall seek its solution as a generalised function. Since X and Y are
independent of a, integration of (2.15) over a (i.e. H = f° da) does not
affect this equation. The situation is entirely different, however, as far as
(2.18) is concerned. Let us therefore integrate (2.18) over the closed interval

H I v{/x,a)da= av{n,a)da. (2.20)
Jan Jan
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Substitution of
e (M)= f°v(fi,a)da (2.21)

K
in the preceding relation leads to

H f dea(fi)= faadea(fi) (2.22)

where dea(/i) = daea(/i).
It turns out here that if we assume ea(fi) to be the discontinuous shifted

step function

- < ' <2-23)
with a specified semi-continuity on the right with respect to a , that is,

Jim^M-^), (2.24)

then
dea(fi) = d(a-fi)da, (2.25)

with d(a) being the Dirac delta function for which J" dea(n) = 1, and
(2.22) reduces therefore to

H= faadea(fi). (2.26)

By virtue of the sifting property of the Dirac delta function, it is obvious
that (2.26) is an identity and the generalised function ea(fi) satisfies (2.20).
Since this ea(n) does not diminish when a increases, that is,

efi(fi)>ea(n); p>a, (2.27)

then it is essentially a projection operator [1] or "expansion unit" [13] and
the integral to the right of (2.26) is a Stieltjes integral.

Note however that (2.26) is nothing but a special case of the basic general
formula, derived from the Riesz representation theorem [ 1, 13], for the whole
theory of selfadjoint operators:

a (2.28)
a0

It is possible to utilise further the theorem on the resolvent of selfadjoint
operators [1, 13],

T
where A represents only the resolvent set of C, in (1.7), (1.8), (2.16) and
(2.17) together with (1.4)-( 1.8) to finish the proof of the theorem that follows.
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THEOREM 1. The solution of the integrodifferential equation (1.1) is a sum,
over the resolvent set of the C = ft operator,

] Ja0 K*- a)1 f
where the expansion unit in the Stieltjes integrals corresponds to this operator
and A(X) are coefficients satisfying appropriate orthogonality conditions.

Substitute finally (2.23) in (2.28) to reduce it to

] ^ . (2.31)

This relation illustrates clearly how the angular flux, which is proportional
to c/2, could be related, on one hand, to discrete values of the resolvent
set (of the operator £ — ft) only for directions n different from A. For
fi = k, on the other hand, y/(x, ft) is determined by the continuum part of
the resolvent X set, and a part of the sum in (2.31) should accordingly be
replaced by an integral.

In conclusion, regardless of the rather new formulation for the eigensolu-
tions of (1.1) that Theorem 1 provides, no new results about the associated
eigenvalue spectrum appear to emerge from it. This theorem proposes nev-
ertheless an additional inlet for further research on this subject.
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