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Abstract

The paper asks and answers the question “When does dominance of a particular
strategy play a role in the search for evolutionary stable strategies?” The answer
is much less obvious than would appear at first glance.

When there is strict dominance of a pure strategy, it is clear that the dom-
inated strategy should never be employed in any conflict. However, when the
dominance is not strict it is less obvious that the strategy should not be used.
The research was originally intended to clear up this grey area in the theory of
evolutionary stable strategies, but it has turned out to be of more than simply
academic interest. The result can be used, with varying degrees of success, to sim-
plify the search procedure for these evolutionary stable strategies when a reward
matrix is given.

1. Introduction

Evolutionary stable strategies (ESS’s) were introduced by Maynard Smith and
Price [6] to model the evolution of animal behaviour in conflict situations. A
strategy is a probability distribution q on the n pure strategies which the animals
can use in the conflict. A strategy can therefore be thought of as the random
way a single animal uses various pure strategies or, more accurately, the way
in which the population as a whole mixes up the available pure strategies. An
ESS is a strategy which has sufficient strength and flexibility when measured
in mean fitness terms to outlast any other possible strategy. We define an ESS
mathematically in Section 2.
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The idea of Maynard Smith and Price[6] was to treat the conflict as a game
and parallel some of the ideas of game theory in order to develop results on
ESS’s. Later authors, such as Haigh [4], Bishop and Cannings [3] and Abakuks
[1], developed a search procedure to find all possible ESS’s whenever the reward
matrix is given. For an excellent survey of the theory and problems of ESS’s see
Maynard Smith [5].

This paper looks at the game theory idea of dominance applied to ESS’s. In
particular, the relationship between weak dominance of a pure strategy by an-
other strategy and the use of that pure strategy is an ESS. The theorem, given
in Section 3, not only provides more information on the structure of ESS’s but
may also help to simplify the search procedure by the elimination from consider-
ation of all submatrices with obviously dominated rows and the reduction in size
from n to n — 1 of the original matrix when one of its rows is weakly dominated.
Considering that the search procedure involves studying up to 2™ — 1 square
matrices, every little helps.

Akin (2] also discusses dominance in ESS’s using an approach attributable to
Taylor and Jonker [7]. Akin, however, considers only “interior” strategies, that
is, strategies which use every pure strategy with positive probability. This paper
does not exclude interior strategies, but is generally more concerned with ESS’s
which lie on the boundary of the space of potential strategies.

Although the proofs given here are for the finite strategy-space case, the exten-
sions to countably infinite and continuous strategy spaces are straightforward.

2. Definitions and basic results

Let A={p€R":p; >0V 1<1i<n . pi=1} be the set of all
strategies. Let p,q € A and A = {a;;: 1 < 1,j < n} be an n x n reward
matrix. Define R(p) = {k: px > 0} to be the support of strategy p, E(k,p) =
Y i-1ak;p; = {APT }k is the payoff using pure strategy k against strategy p
and E(q,p) = qApT is the payoff using strategy q against strategy p. Define p
to be an ESS if and only if

E(p,p) > E(q,p) VqeA (1)
and

E(p,q) > E(q,q) whenever E(p,p) = E(q,p). (2)

Equation (1) tells us that the reward using strategy p, in a population playing
p, must be at least as good as using any other strategy. Equation (2) considers
the situation in which a “rebel” strategy q gains the same rewards as p in
the population playing p. If the rebels build up in strength, then strategy p

https://doi.org/10.1017/50334270000006160 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006160

216 P. Breen and W. Henderson [3]

reasserts itself by gaining more than q when in conflict with the rebels. Bishop
and Cannings [3] have shown that if p is an ESS then

E(k,p) = E(p,p) Yk e R(p) (3)
= max E(j,p). (4)

Also let S(p) = {k: E(k,p) = E(p,p)}.
The strategy s, with 8; = 0, weakly dominates the pure strategy ¢ under p if

aij $Y_skak;, Vi € R(p). (5)
k
It is certainly true that whenever a strategy is strictly dominated, that is,
when
38 € A with s; = 0 such that a5 < Z SkQk;y V7, (6)
k

the ith strategy can play no part in an ESS. However, as the following theorem
and the subsequent example shows, some pure strategies, and potential ESS’s,
may be eliminated from consideration under much weaker conditions than (6).

3. New results

THEOREM 1. If A has an ESS p with p; > 0, and pure strategy ¢ 13 weakly
dominated by s under p, then

a;j = Z skak;  Vj € R(p), (7)
k=1

R(s) € S(p), (8)

E(i,8) > E(s,s). 9)

The theorem indicates that, when the ¢th pure strategy is dominated, p; may
still be non-zero, but only if this pure strategy can maintain itself as well as the
dominating s strategy against each pure strategy used by the ESS population,
and then reassert itself when used against the s strategy.

PROOF. Equations (3), (4) and (5) give

E(p,p)= Y ayp; <Z:3k > akipy <ZSkpAp = E(p, p)-
JER(pP) JER(P)

Equality holds throughout if and only if (7) and (8) are valid.
To show (9), consider a strategy q where

¢ =0
Qr = Pr + srpi, VT # 'I:.
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Note that R(q) = R(p) U R(s)\{¢} and hence E(j,p) = E(p,p) Vj € R(q)
from (3) and (8). Consequently, E(q, p) = E(p,P).
Now if p is to be an ESS, (2) must hold, that is, E(p,q) > E(q,q).
Consider

E(p,q) - E(q,q) = (p — q)Aq”

=pi(AqT). + D (px — ax)(AQ")k
k€R(a)

p(AQT)i+ D (—pise)(Ad )k
kER(8)

=D Z aij — Z SkQkj | 95 | -
JjER(a) kER(s)

But if j € R(p), (7) makes the bracket zero, and if j € R(q)\R(p), ¢; = s;pi.

Therefore
E(p,q) — E(q,q) =p} > (aij -y skakj) 3,1
| jER(s)\R(P) k€ER(s)
= p? Z Aij — Z SkQky | Sy from (7)
[JER(8) kER(s)

= p? [E(’l, S) - E(S, S)]
>0 iff E(¢,8) > E(s,s) whenever p, > 0.

COROLLARY 1. If A has the tth row entirely dominated by a convez combi-
nation of the other rows, that i3, ai; < ), skax,VJ, then p; = 0 in any ESS.

PROOF. Since a,; < Y, sxak; V7, then
Z aiy8; < Z Z SkQkj8y,
7 j ok
that is, E(¢,8) < E(s,s). This contradicts (9) and therefore p; = 0 in any ESS.
COROLLARY 2. R(s) £ R(p) whenever the conditions of the theorem hold.

PROOF. Assume R(8) C R(p). Then (7)= E(i,8) = E(s,s), which contra-
dicts (9).
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4. An example

The theorem, as stated, is worth noting for academic completeness. As far as
using it to find ESS’s is concerned, the contrapositive of the theorem is of most
use. That is, if (5) holds, one of (7), (8) and (9) is not satisfied, and then either
p is not an ESS or p; = 0.

As an example, consider the reward matrix

4 2 6
A=13 2 7
5 2 5

Since Row 1 < % (Row 2+ Row 3), Corollary 1 is applicable and p; = 0 in any
ESS.

This leaves potential ESS’s of the form (i) p = (0,p,1 —p), 0 < p < 1,
(ii) p = (0,0,1) and (iii) p = (0,1,0). For (i), R(p) = {2,3}. Let s = (0,1,0)
and ¢ = 3. Equation (5) is then satisfied in the columns 7 € R(p). However
(7) is not valid and therefore either p is not an ESS or 1 — p = 0. Since we
assumed that 0 < p < 1 a strategy p of the form (0,p,1 — p) cannot give an
ESS. For (ii), E(p,p) = 5 and E(q,p) > 5 for any q # p. Hence p = (0,0,1)
is not an ESS. This leaves (iil) with R(p) = {2}. Let 8 = (1,0,0) and ¢ = 2.
Equations (5), (7) and (8) are all trivially satisfied, but E(s,8) = E(2,1) = 3
and E(s,s) = E(1,1) = 4. Therefore (9) is invalidated and hence p = (0,1,0) is
not an ESS.

Consequently A has no evolutionary stable strategies.

5. Conclusion

In the abstract we use the statement that the result can be used, with varying
degrees of success, to help find ESS’s. In the introduction we use the phrases
“every little helps” and “obviously dominated”. Such wording is meant to convey
the message that our theorem will not necessarily help find ESS’s. In many
situations it may be more difficult to establish a dominating vector s than to
proceed in an alternative manner. However, without this theorem, it was never
clear whether a pure strategy was dominated once a few equalities crept into the
lineup, nor was it clear which columns were the most relevant in the discussion
of dominance of a particular pure strategy. Both these points have now been
clarified.

It can be argued that if a;, = Y, sxax; holds for some j € R(p), then any ESS
in which this equality plays an important role is not robust to arbitrary small
perturbations in the reward matrix, and is therefore of no biological interest.
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We believe that an unstable ESS of this form would be of biological interest,
especially if it were the only ESS for the conflict. There may be a tendency for
the population’s strategy to drift towards this point without it necessarily being
a fixed point.

On the other hand, if we use the theorem to reject the ith pure strategy
because of a dominating strategy in which the occasional equality holds, then ¢
cannot be part of an ESS when the reward matrix can only be given to within an
error factor. That is, if a strategy ¢ is dominated with some equality, it certainly
cannot be trusted to be part of a stable ESS under uncertain reward conditions.
Consequently the use of the theorem in rejecting strategies for inclusion in po-
tential ESS’s is still valid when small perturbations are allowed in the reward
matrix. It would be of interest to see some results on the stability of ESS’s in
such situations.
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