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1. Introduction. Let / denote the interval [0,1] in its usual topology and let
S = 5(7) be the semigroup of continuous mappings of 7 into itself with function
composition as the semigroup operation. In a survey talk given at Oberwolfach in 1989
(see [5]), K. D. Magill Jr. pointed out that some elementary algebraic properties of 5 are
still unknown. We shall answer one of the questions he raised (which appears as Problem
4.6 in [5] and which he had asked earlier, as long ago as 1975 [3]) by showing that 5 has
infinitely many distinct two-sided ideals. In fact, we shall produce an infinite descending
sequence of distinct ideals. As Magill points out, this also solves his Problem 4.5: 5 has
infinitely many distinct congruences. We believe that 5 must have c distinct ideals, but we
have been unable to prove this.

Paradoxically, it is the topological simplicity of 7 which makes our problem difficult.
For example, if 7 is replaced by the circle T, then the map which sends / e 5(T) to its
degree is a homomorphism of the composition semigroup 5(T) onto the multiplicative
semigroup of the ring Z of integers ([2, Corollary 3.4], for example). Each multiplicative
ideal of Z therefore gives an ideal of 5(T). A much deeper study of the ideals of 5(T) is to
be found in [4]. In addition, the fact that 5(7") has infinitely many ideals for any n &2 is
in [3], and is also a consequence of Theorem 11.2 of this paper.

Finally, the referee pointed out to us that the results on 5(7) can be used fairly easily
to obtain similar results for a large class of semigroups. An account of this is given as the
last section of the paper.

2. Ideals of 5. We aim to show that 5 contains a minimal ideal K, a maximal ideal
U, an infinite chain {/„} of ideals, and an ideal L satisfying

K^L^Jn+lCJn^U (forn = 2 ,3 , . . . )

with all inclusions strict. These ideals are described below. In fact U is really just the ideal
/,.

First let us introduce some terminology and notation. We let t denote the identity
function in 5, i(/) = t (t e 1), and t the function given by the formula

i(0 = l - ' (tel).

More generally, for f eS we define / t o be f°i, so that / can be regarded as a
reflection of / in the line t = j . By an interval in I is to be understood throughout an
interval of the form (a, b) with 0 =£ a < b « 1 . For / e 5 a local maximum (resp. minimum)
of/isapoint te(0,1) such that there is e > 0 s o that (t- e,t + e )c (0 ,1) and/(/)s=/(jt)
(resp. f{t) =£/(*)) for all x e (t - e, t + e); the set of such points is denoted by M(f) (resp.
m(f)). More generally, an n-fold local maximum (resp. minimum) of / is an n-tuple
(f,, t2,..., tn) such that each /, is in M(f) (resp. m(f)) and /(/,) =/(f,-)(l ** * ** n)\ t ne set
of such n-tuples is denoted by Mn(f) (resp. mn(f)). More generally, if (a, b) is an interval
in I then Mn(f)(a,b) (resp. mn(f)(a,b)) denotes those elements of Mn(f) (resp. mn(f))
with each coordinate in (a, b).
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We now define our ideals.
K = {/ e 5 : / is constant}.
L = {/ e S: every interval in / has a subinterval on which / is constant}.
Jn = {fe S :for every interval (a, b) in / , both Mn{f)(a, b)J=0 and

mB(/)(a, 6) # 0 } , for* = 1,2, 3 , . . . .
(/ = {/ e 5: on no subinterval of / is / either strictly increasing or strictly decreasing}.
The defining property of U is the same as requiring that / has local maxima and local

minima in each subinterval of / , so that U = JX. Also, as 5 consists of continuous
functions,/is strictly monotone on an interval if and only if it is bijective there.

THEOREM 2.1. The set K is the minimal ideal of S, U is the unique maximal ideal, each
Jn is an ideal and K c L c / n + 1 c i n c (/ (n = 2, 3, 4,. . .), with all the inclusions strict.

The facts that K is the minimal ideal and (J is the unique maximal ideal are in [3]
(Section 3.5, page 241). It is very easy to see that K is the minimal ideal, but we include a
brief proof that U is the unique maximal ideal for completeness. That ^ c L c / , , + 1 c
Jn c U =Jl (n = 2, 3 , . . .) is obvious. We need to prove that L and the Jn are ideals, and
the strictness of the inclusions.

3. The set /„ is an ideal. Let f eJn, g eS. Let (a, b) be an interval in /. Clearly if g
is constant on (a, b) then so is f°g, so that Mn(f°g)(a,b) and mn(f°g)(a,b) are
nonempty. If g is not constant on (a, b) choose an interval (c,d)c.g((a,b)). Let
(tut2,... ,tn)eMn(f)(c,d). Choose xte(a,b) with g(x,) = t, (l=£i=sn). Then
(x{,x2, • • • ,xn)eMn(f°g)(a,b). Similarly for mn. Now consider g°f. One possibility is
that / is constant on some subinterval (c,d) of (a, b). In this case it is clear that
Mn(g°f)(c,d)^0, mn(g°f)(c,d)=£0, and so the same is true for (a,b). The only
remaining possibility is that/ is not constant on any subinterval of (a, b). We assume this
and consider three further cases.

Case (i). There is a subinterval (c, d) of (a, b) such that g is monotonic increasing on
/((c, d)) (which is necessarily non-trivial). Then clearly if (/,, t2,. • . , /„) e Mn(f)(c, d) we
have also that

(tu t2,..., tn) e Mn(gof)(c, d) c Mn(gof)(a, b).

Likewise for mn.

Case (ii). There is a subinterval (c, d) of (a, b) for which g is monotonic decreasing
on f((c,d)). This is similar to case (i) except that an element of Mn{f){c,d) will be in
mn{g°f)(a, b). Similarly with mn and Mn interchanged.

Case {iii). For any subinterval (c, d) of (a, b), g is not monotonic on /((c, d)). Let
{tut2,... ,tn)eMn(f)(a,b). Put z=f(tl). Choose disjoint open intervals £/,(l =£*=£«)
contained in {a, b) such that /(/,-) ^f{t) for t e £/, ( 1 « i =sn). Since/is not constant on C,
we have

where w<z. Then g is not monotonic on any subinterval of (w,z), and so has local
maxima and minima in (w,z). Let u be a local maximum of g in (w,z). For each i,
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1 =s i =s n, choose *, e £/, with /(*,•) = u. Then clearly (xux2,. . . , xn) e Mn(g °/)(a, b). A
similar argument applies to minima.

4. The set £/ is an ideal of 5. As we remarked earlier, we can regard U as / , , and so
a proof similar to 3 will establish this result. However, a simpler proof is possible. Let
/ e U, g e S. Now if g°f is injective on (a, b) then so i s / , and so if / e U then g°f e U.
Suppose that f°g is injective on (a,b) c I. Then / is injective on g((a, b)). As / e U,
g((a,b)) must be trivial and so g is constant on (a,b). Therefore fog is constant on
(a, 6). This is a contradiction. Hence/°g e i/.

5. The set L is an ideal of 5. Let / e L and g e S. Clearly g°f e L. Also if (a, b) is a
subinterval of / then either g is constant on (a,b) and so f°g is constant there, or
g((a,b)) contains an interval (c,d). Choose a subinterval (p,q) of (c,d) on which / is
constant and a subinterval (r,s) of (a,fe) with g((r,s)c(p,q). Then/°g is constant on
(r,s). Hence f°g e L.

6. The set U is the unique maximal ideal. It is clearly enough to show that
S of o 5 = S for all / e S\U, since t/ =£ 5 is obvious. Let f eS\U. Choose a subinterval of /
on which/is strictly monotonic. By replacing / by / ° t ef°S, if necessary, we can assume
that / i s strictly increasing in an interval (a, b) cz/. Define

g(t)=f(a + (b-a)t) (tel).

Then g is strictly increasing on / , and so has a continuous inverse g~' mapping [g(0), g(l)]
onto A Let /i e 5 be any continuous extension of g~l to [0,1]. Then i = h°g eS°f°S.
Hence S°f°S = S.

7. For « ^ 1, /„+, is a proper subset of Jn. This is the most complicated part of the
proof. We need to construct a function / in Jn\Jn+l. To do this we construct a sequence
(fk) of functions in S uniformly convergent to /. We shall define the functions iteratively.
In order to describe the construction we first explain the basic idea behind the iterative
step. Let / 6 5 and (a, b) be a subinterval of / on which / is strictly increasing. Let g e S
with g(0) = 0, g(l) = 1. We make a modification h of/described as inserting g in f between
a and b; the new function is the following function h:

h{t) =
(a<t<b).
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Essentially we have replaced the graph of / between a and b by a suitably scaled copy of
the graph of g in such a way as to obtain a continuous function. If / were decreasing
rather than increasing on (a, b) we should insert g instead of g between a and b, in a
similar way. In our present construction we shall use a function g that has «-fold local
maxima and minima, which will then be inherited by h.

The function /* constructed at the kth stage will have the following properties,
(i) It will be piecewise linear, so that the graph will consist of a finite number of

straight lines between vertices.
(ii) None of the lines will be horizontal. Some of the vertices (but not necessarily

all) will be at local maxima and minima of /*; let us call these vertices the peak
points and trough points of /*. As we travel from left to right the peak and
trough points will alternate, and we can speak of adjacent peak and trough
points,

(iii) Each local maximum and each local minimum of fk will be taken precisely n
times.

The function g is to have precisely n peak and n trough points in its graph (excluding
(0,0) and (1,1)). It is defined by the following rules:

(i) g is linear between ^ r r and IrVr (A: = 0,1,2, . . . , In);

(iii) g(|Hi) = I g(£tf) = i(k = 0,1, 2,. . . , n - 1).
Observe that g takes the same value, § (resp. 3), at each of its n peak (resp. trough)
points.

We now proceed to detail the construction. Choose a sequence (pk,qk) of
subintervals of / such that every subinterval of / contains some (pk qk) and such that
qk~Pk—*Q as A:—»°°. For example we can enumerate the set of all intervals (a, b) with
a, b e [0,1] n Q as a sequence (pk, rk) and then define qk = m\n{rk,pk + I/A;}. Now define
/ 0 = 1 (the identity function). Suppose that /*_,, with properties (i), (ii) and (iii) described
above, has been constructed. Choose a subinterval (ak,bk) of {pk,qk) such that /<._, is
linear on a neighbourhood of [ak, bk], \fk-\(bk) -/*_i(a*)| <2~k and there is no vertex of
/*_! whose _y-coordinate is in the closed interval from/*_,(a*) to/*_,(£>*). This is possible
because /*_! has only a finite number of vertices. We then obtain fk by inserting either g
or g into /*_, according as /*_i is increasing or decreasing on (ak,bk). Observe the
following facts. Firstly any vertex of/*_i is also a vertex oifk, and so/* agrees with/*., at
these points. Also any peak (resp. trough) point of/*_, is a peak (resp. trough) point of
fk. The values of/* at those of its peak and trough points which are not vertices of/*_) are
different from the values of/*_! at any of its peak and trough points. Next

if u and w are trough points and v is a peak point of/*_, with u < v < w, and if 1
A_,(u) «£/,_,« «s/*-,(u) and/*_,(*) «/*_,(«) «/*_,(!;) for te(u,v), (*)
s e(v,w), then these same inequalities hold with /*_, replaced by /*. J

Clearly ||/* - /*_i | | <2~k (where the norm is the supremum norm on C(/)) so that
the sequence (/*) is Cauchy and therefore converges uniformly to some / e 5. From (*)
above we see if u, v and v, w are adjacent trough and peak points of/* for some k then,
for every l^k, fi(v)^fi(t) for all t e (u, w). Thus v is a maximum for /, on an interval
(M, W) which does not vary with /, so that v is also a local maximum for/. Notice too that,
for the peak point v of /*, fi(v)=fk(v) for all l^k, so that f(v) =fk(v). Naturally the
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same conclusions hold for trough points. Because every interval (a,b) contains some
interval (pk,qk), and by construction Mn(fk)(pk,qk)=t0, we see that Mn(f)(a,b)=£0.
Similarly, mn(f)(a,b)±0. We have proved that f eJn.

Next, we claim that a point (0,1) is a local maximum or minimum of/if and only if it
is a local maximum or minimum of fk for some k. We have already observed that every
local maximum or minimum of/* is also one for/and that/agrees with/* at that point.
Suppose that t is not such a point of (0,1). Let £ > 0 with (t — e, t + e) <= /. We can find /
so that (/?/, qt), and so (a,, bt), is contained in (t — e, t). Therefore there are peak points
of/, in (t — e, t). Similarly we can find m so that (t, t + e) contains peak points of fm. Put
k = max{/, m). Then there exist peak points of fk in (t - e, t + e) either side of t. Now t is
not a peak or trough point of fk. So we can find adjacent peak and trough points in
(t — e,t + e) with one on each side of t. If we let e—»0 we can obtain sequences
u,/'t, v,\t where each pair (u,, v,) is an adjacent pair of peak and trough points of some
fk. By taking a subsequence we can assume that all M/S are peak points and v,'s are trough
points, or vice-versa. Let us assume the former is true. Also, since the values of/* at the
peak and trough points not belonging to/*_! are not the values of/*_! at its trough points,
we can assume, again by taking subsequences, that/(u/) > / (M/+I ) , / (U/+I ) >f{yi). (Recall
that the value of / at u, is the value of the functions fk which have u, as peak point). We
then have

by (*) above and so t is not a local maximum of /.
Now consider the local maxima and minima of /. These occur as sets of n of each

introduced at each step in the inductive process. At each stage the values taken at the
new local maxima and minima are different from those taken at all previous local maxima
and minima. So / takes each of its maximum or minimum values precisely n times. Hence
/</„+,.

That completes the proof of 7.

8. The set J2 is a proper subset of U. Since U -Jx, this is a special case of 7. Here
there seems to be no simpler proof (in the way that 4 is simpler than 3).

9. The ideal L is not equal to K. We construct / e L\K in a similar way to the
construction in Jn\Jn+i. The difference is in the choice of the function g. We define g by
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the formula

At each stage we obtain a monotonic increasing, piecewise linear function which is
strictly increasing on a finite number of intervals and constant on another finite set of
intervals. We begin as before with/n = t. We suppose we have constructed /*._,. Consider
the interval (pk,qk). If/*-i is constant on some interval contained in (pk, qk) we just put
fk=fk-\- If n o t w e choose a subinterval (ak,bk) on which /*_, is strictly increasing and
\fk-{(ak) -fk-\(bk)\ <2~k, and so that [ak, bk] c (pk, qk) and insert g between ak and bk.
Then we observe that if fk_x is constant on an interval so is fk. We put / = \\mfk. Then
clearly f e L. Since /(0) = 0 * 1 = / ( l ) , we have f $ K. k

The proof of Theorem 2.1 is now complete.

10. One-sided ideals. We remarked in the introduction that we believe that S(I)
has c distinct two-sided ideals. We should point out that it is easy to find c distinct
one-sided ideals. Indeed, it is easy to see that for each a e I

Ra = {feS(I):f(I)cz[O,a}}

is a right ideal and that

La = {/ e S(I) :f is constant on [0, a]}

is a left ideal. These ideals are singly generated (Ra by the function t*-*at(t e I), and La by
the function g satisfying g(t) = 0 (0 « t =£ a), g(t) = (t - a)/(l - a) (a =£ r =£ 1)). Moreover
they are closed in the uniform topology and a fortiori in the topology of pointwise
convergence. By way of contrast, K is the only pointwise closed two-sided ideal; this fact
can be found in [1], where a full discussion of pointwise closed ideals is presented.

11. A generalization. We are indebted to the referee for the following extension of
Theorem 2.1.

LEMMA 11.1. Let S be a semigroup with identity, and let e be an idempotent ofS. Let J
and K be ideals of the subsemigroup eSe of S with J a proper subset of K. Then the ideals
SJS and SKS are distinct.

Proof. Let keK\J. Clearly keSKS. Suppose that keSJS. We write k=xjy with
x,y e S, j eJ. Since / , k e eSe we can write k = exjye = exejeye. Since exe and eye belong
to eSe, k is in / . This contradiction shows that SKS ̂  SJS.

THEOREM 11.2. Let X be a normal topological space which contains an arc (i.e. a
subset homeomorphic to I). Then S(X) contains a countably infinite descending chain of
ideals.

Proof. Clearly we can assume that / is actually a subset of X. Since X is normal, the
Tietze extension theorem shows that the identity map of / to itself extends to a continuous
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function / mapping X into /. We can regard / as an element of S(X). Then / is
idempotent. For h e S(I) define (j>{h) e S{X) to be h °f (again regarded as an element of
S(X)). Then f°<t>(h)°f = <p{h). It is easy to check that 0 is a semigroup isomorphism of
S{1) onto the subsemigroup/°S(Ar)°/of S(X). The theorem now follows immediately by
using Lemma 11.1 and Theorem 2.1.
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