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U N C O U N T A B L E D I S C R E T E SETS IN EXTENSIONS 
A N D M E T R I Z A B I L I T Y 

BY 

MURRAY BELL AND JOHN GINSBURG 

ABSTRACT. If X is a topological space then exp X denotes the 
space of non-empty closed subsets of X with the Vietoris topology 
and XX denotes the superextension of X Using Martin's axiom 
together with the negation of the continuum hypothesis the follow­
ing is proved: If every discrete subset of exp X is countable the X is 
compact and metrizable. As a corollary, if À.X contains no uncount­
able discrete subsets then X is compact and metrizable. A similar 
argument establishes the metrizability of any compact space X 
whose square X x X contains no uncountable discrete subsets. 

1. Introduction and preliminaries. Our set-theoretic and topological ter­
minology and notation are standard. For background material on set-theoretic 
topology the reader is referred to (4). All topological spaces discussed in this 
paper are assumed to be regular and Hausdorff and infinite. 

If X is a space then exp X denotes the set of all non-empty closed subsets of 
X. If G1? G 2 , . . . , Gn are subsets of X, we define 

<Gi, G2, . . . , G n > = J F e e x p X i F ç : Û Gt and F H G ^ ^ for i = 1, 2 , . . . , n\. 

In particular, if G ç X then (G) = { F e e x p X : F ç G | . The Vietoris topology 
on exp X is that topology having the sets of the form (G1? G 2 , . . . , Gn) where 
G1? G 2 , . . . , Gn are open in X, as a basis. Endowed with this topology exp X is 
referred to as the space of closed subsets of X. A comprehensive discussion of 
the topological properties of expX may be found in (7). 

A family of sets £f is said to be linked if A n B j= 4> for all A,Be^. For a 
topological space X, ÀX denotes the set of all maximal linked families of closed 
subsets of X. If G is an open subset of X, we let G+ = {ae AX : there exists 
Fea such that Fc G}. ÀX is endowed with a topology by taking all sets of the 
form G+ , for G open in X, as a sub-base. With this topology AX is referred to 
as the superextension of X Our basic reference for superextensions is (13). 

In this paper we make use of the set theoretical statement known as Martin's 
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axiom, denoted by MA. For an introduction to Martin's axiom and its applica­
tions in topology the reader is referred to (9). We will not need a precise 
statement of Martin's axiom in this paper, since we will only be using a 
theorem from (12) and one from (4) which are proved using Martin's axiom 
together with the negation of the continuum hypothesis, which we abbreviate 
by MA+ ~ C H . For a discussion of the consistency of MA+ ~ C H with the 
usual axioms of set theory the reader is referred to (11). 

For the reader's convenience we now recall several topological notions which 
will be used in the sequel. 

A space X is Lindelof if every open cover of X has a countable subcover. X 
is hereditarily Lindelof if every subspace of X is Lindelof. 

X is separable if X has a countable dense subset. X is hereditarily separable 
if every subspace of X is separable. 

As usual, a space S is called discrete if every point of S is open in S. Thus if S 
is a subspace of a space X, then S is discrete if for every point seS there exists 
an open set Gs in X such that Gs D S = {s}. 

We recall that a subset S of a space X is a Gs-set in X if S is equal to the 
intersection of countably many open subsets of X. X is said to have a Gs-
diagonal if the diagonal Ax = {(x, x ) : x e X } i s a G ô - set in the square X x X. 

Finally we recall that a space X is said to be first countable if every point of 
X has a countable neighborhood base in X 

We will use the fact that, in a regular hereditarily Lindelof space, every 
closed set is a Gs-set. Since a compact space, in which all points are Gs-sets, 
is first countable, it follows that every hereditarily Lindelof compact space is 
first countable. 

In this paper, our main interest is in the spaces exp X, AX, and X x X, with 
regard to the existence of uncountable discrete subsets. What does it mean for 
these extensions to contain no uncountable discrete subset? In the next section, 
using MA+ ~ C H , we show that if all discrete subsets of exp X are countable, 
then X must be compact and metrizable. This answers a question posed by V. 
I. Malyhin in (6). As a corollary it follows that , if all discrete subsets of AX are 
countable then X must be compact and metrizable. A similar argument 
establishes the metrizability of any compact space X whose square X x X 
contains no uncountable discrete subset. 

2. Uncountable discrete subsets in expX, AX, and X x X . In (6) it is shown 
that if expX contains no uncountable discrete subsets then X must be 
compact, hereditarily Lindelof, and hereditarily separable. For the reader's 
convenience we sketch that argument here: Firstly one observes that the space 
of closed subsets of the discrete space N of natural numbers contains an 
uncountable discrete subset. In fact, if si is any antichain of subsets of N, then 
si is a discrete subset of exp IV, for clearly (S)Hsi={S} for all S in si. Since 
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there exist uncountable antichains of subsets of N the statement follows. 
Therefore if expX has no uncountable discrete subsets then X must be 
countably compact. For if X is not countably compact then X contains a closed 
subset homeomorphic to N, and therefore expX would contain a copy of 
exp N and so would contain an uncountable discrete set. (We have used the 
fact that if F is a closed subset of a space X then the inclusion mapping is an 
embedding of exp F into expX.) Next one shows that, if expX has no 
uncountable discrete subset, then X must be hereditarily Lindelof. If not, then 
X contains a sequence {Ga : a < cox} of non-empty open sets such that a < 0 -* 
Ga^Gp. For each a, choose x a + 1 e G a + 1 - G a . Then the set 3 = 
{X-Ga+i : a<(o1} is an uncountable discrete subset of e x p X In fact, ( X -
{xa+1}, G(X+2-{x<x+1}) is an open set in expX whose intersection with 3 is 
precisely {X-Ga+1}. Thus X must be hereditarily Lindelof. Therefore X is 
compact, being countably compact and Lindelof. Finally, X must also be 
hereditarily separable. Otherwise X would contain a sequence of points 
{xa : a <(o1} such that, for all a <o>1, xa^cl{;x€ : £<a}. (Here cl S denotes the 
closure of S in X.) Let F0, = cl{x€ : £ ̂  a +1}. Then 3 ={FOL : a <<ol} is an 
uncountable discrete subset of expX, since (X-{xa+2}> X-cl{x€ : £ ^ a } ) is an 
open set in exp X whose intersection with 3 is precisely {Fa}. 

Thus if exp X has no uncountable discrete subsets then X must be compact, 
hereditarily Lindelof and hereditarily separable. In (6) it is asked whether X 
must in fact be a compact metric space. In this section we will answer this 
question in the affirmative with the help of MA + —CH. (Note that the 
converse statement, that exp X contains no uncountable discrete subset when 
*X is compact metric, is trivial; for, if X is a compact metric space, then exp X 
is also a compact metrizable space and so has a countable basis; in fact, if X is 
a compact metric space with metric d, then the Vietoris topology on exp X is 
the same as that determined by the Hausdorff metric on exp X induced by d). 

2.1 THEOREM (MA+—CH). Let X be a space and suppose exp X contains 
no uncountable discrete subsets. Then X is compact and metrizable. 

Proof. As pointed out at the beginning of this section, the assumption on 
exp X implies that X is compact, hereditarily Lindelof and hereditarily separa­
ble. These three properties imply that exp X is first countable, (see (3) and (7) 
for a discussion of the first countability and other cardinal invariants of exp X) 
Since exp X is compact whenever X is, it follows that exp X is a first countable 
compact space containing no uncountable discrete subsets. But, by Theorem 
5.6 of (4), MA+—CH implies that any first countable compact space which 
contains no uncountable discrete subsets must be hereditarily separable. There­
fore exp X is hereditarily separable. By Theorem 3 of (12), MA + ~ C H implies 
that any hereditarily separable compact space is hereditarily Lindelof. Thus 
exp X is hereditarily Lindelof, and so every closed subset of exp X is a G8 -set in 
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expX. In particular, the set F1 = {{x} : x e X } i s a Gs-set in expX. Now, the 
function / : X x X — » e x p X defined by f(x,y) = {x,y} is continuous, and so 
/_1CFi) is a Gô-set in X x X . But f"1(F1) is exactly the diagonal Ax. Therefore 
X is a compact space having a G8-diagonal. Any such compact space is 
metrizable, by the well-known result of (10). 

The corresponding result for superextensions is a consequence of the follow­
ing result, whose proof does not require MA+—CH. 

2.2 LEMMA. Let X be a topological space. I / e x p X contains an uncountable 
discrete subset then AX contains an uncountable discrete subset. 

Proof. Of course this would follow immediately if we knew that exp X were 
embedded in ÀX This does not seem to be known, however. It is known that 
for any proper closed subset F of X, exp F is embedded in ÀX (see the 
proposition on page 94 of (13).) Thus it is sufficient to show that, if expX 
contains an uncountable discrete subset, then so does exp F for some proper 
closed subset F of X. To this end, let S be a discrete subset of exp X with 
|2| = (ox. For the sake of contradiction, assume that, for every proper closed 
subset F of X, exp F does not contain any uncountable discrete subset. Then, 
by the remarks at the beginning of this section, every proper closed subset F is 
compact, hereditarily Lindelof, and hereditarily separable. Since clearly X can 
be expressed as the union of two proper closed sets, it follows that X is 
separable. Let D be a countable dense subset of X. Now every point of X has a 
proper closed neighborhood F Since F is compact and hereditarily Lindelof, 
and therefore first countable, it follows that X is first countable. We now show 
that there exists a point d e D such that {Fe 2 : d£F} is uncountable. For D is 
dense, so each of the sets X - F , for F in 2, contains some element d of D. 
Since |2| = <o1 and D is countable, the pigeon-hole principle implies the 
existence of such an element d, say d0. Let 2 0 = { F e 2 : d0£F}. Thus |20 | = <*>i. 
Let {Gn : n e <o} be a countable neighborhood base for d0 in X. For each F in 
So, X - F is an open set containing d0, and so there exists an n e w such that 
Gn^X-F. Since \%0\ = <*>1, it follows that there exists an integer k such that 
{Fe 2 0 : F ç X - Gk} is uncountable. Let 2X = { F e 2 0 : F ç X - G J , and let R = 
X - G k . Then R is a proper closed subset of X and F e S i ^ F ç i ? . That is, 
Si Ç exp JR. Since 2i Ç 2, it follows that exp R contains an uncountable discrete 
subset, which is a contradiction. 

2.3 COROLLARY (MA + —CH). Let X be a space whose superextension AX 
contains no uncountable discrete subsets. Then X is compact and metrizable. 

Finally we look at the square X x X . 

2.4 THEOREM (MA+—CH). Let X be a compact space whose square XxX 
contains no uncountable discrete subsets. Then X is metrizable. 
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Proof. By a theorem due to Zenor in (14), if X x Y contains no uncountable 
discrete subsets then either X is hereditarily Lindelof, or Y is hereditarily 
separable. In the present case this implies that either X is hereditarily Lindelof 
or X is hereditarily separable. Now, by Theorem 3 of (12), MA + ~ C H implies 
that any compact, hereditarily separable space is hereditarily Lindelof. Com­
bining this with Zenor's theorem we conclude that X is hereditarily Lindelof. 
Therefore X is first countable, and so X x X is first countable. Therefore X x X 
is a first countable compact space containing no uncountable discrete subsets. 
By Theorem 5.6 of (4), cited above, this implies that X x X is hereditarily 
separable. Applying Theorem 3 of (12) once again, we conclude that X x X 
must be hereditarily Lindelof. Therefore every closed subset of X x X is a 
Gô-set in X x X . In particular X has a G8-diagonal and so X is metrizable. 

Remarks. Using the continuum hypothesis CH, examples have been con­
structed of non-metrizable compact spaces whose squares contain no uncounta­
ble discrete subsets; the reader is referred to (5) and (8). Thus the existence of 
a non-metrizable compact space whose square contains no uncountable dis­
crete subsets is independent of the usual axioms of set theory. The authors 
have been unable to establish the independence of Theorem 2.1. 

We note that, although the compactness of X is part of the conclusions of 
2.1 and 2.3, it is part of the hypothesis of 2.4. To see that the assumption of 
compactness in 2.4 is not entirely specious, we observe that the square of any 
countable space contains no uncountable discrete subset. 

Finally, it is worth noting that the metrizability of a compact space X does 
not follow simply from the assumption that X itself contains no uncountable 
discrete subsets. The well-known "double-arrow" space of Alexandroff and 
Urysohn (1), (see also 9C of (2)—this space is the same as the top and bottom 
of the lexicographically ordered unit square), serves as a counterexample. 
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