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Summary

To comprehensively investigate the genetic architecture of growth and obesity, we performed
Bayesian analyses of multiple epistatic quantitative trait locus (QTL) models for body weights at
five ages (12 days, 3, 6, 9 and 12 weeks) and body composition traits (weights of two fat pads and
five organs) in mice produced from a cross of the F1 between M16i (selected for rapid growth rate)
and CAST/Ei (wild-derived strain of small and lean mice) back to M16i. Bayesian model selection
revealed a temporally regulated network of multiple QTL for body weight, involving both strong
main effects and epistatic effects. No QTL had strong support for both early and late growth,
although overlapping combinations of main and epistatic effects were observed at adjacent ages.
Most main effects and epistatic interactions had an opposite effect on early and late growth. The
contribution of epistasis was more pronounced for body weights at older ages. Body composition
traits were also influenced by an interacting network of multiple QTLs. Several main and epistatic
effects were shared by the body composition and body weight traits, suggesting that pleiotropy
plays an important role in growth and obesity.

1. Introduction

Obesity is a highly prevalent condition with adverse
health effects and multifactorial aetiology. Though
highly heritable, the genetic architecture of obesity is
quite complex and remains to be fully elucidated
(Allison et al., 2002; Dong et al., 2003; Pomp et al.,
2004). Some genes involved in predisposition to
obesity may only be detectable with models that
accommodate epistasis. Indeed, some studies have
shown that obesity and other diseases in both humans
and rodents are influenced by epistasis (Brockmann
et al., 2000, 2004; Allison et al., 2002; Yi et al.,
2004a, b ; Carlborg & Haley, 2004). These studies
have shown that some QTLs may lack marginal
effects but significantly affect the trait if they are
evaluated jointly with other loci. Therefore, more

explicit analysis of complex interactions among
multiple genes is desired in discovering of genes
underlying obesity and in better understanding how
genetic predisposition is regulated.

We report here the detection of epistatic QTLs
for growth and obesity in a backcross population
derived from two diverse mouse populations: an
inbred line (M16i) derived by brother–sister mating
from a line that had undergone long-term selection
for rapid post-weaning weight gain, and an inbred
line (CAST/Ei) derived from wild mice. Using tra-
ditional interval mapping and multivariate techniques
(Lander & Botstein, 1989; Haley & Knott, 1992),
several genomic regions have been identified to
harbour QTLs influencing principal components of
organ weights and limb bone lengths in this backcross
(Pomp, 1997; Leamy et al., 2002). However, other
obesity-related traits that were measured in this
population, such as body weights and fat pads,
have not been investigated. Furthermore, statistical
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methods for mapping multiple and epistatic QTLs
were not previously employed to analyse these data.
In this study, we used the Bayesian model selection
method developed by Yi et al. (2005) to comprehen-
sively investigate the genetic architecture of body
weights, fat pad measurements and organ weights.

2. Materials and methods

(i) Mouse lines and crosses

Mice used in this study were from two distinct genetic
backgrounds: the inbred high-growth selection line,
M16i, and the inbred line of wild origin,Mus musculus
castaneus (CAST/Ei; The Jackson Laboratory, Bar
Harbor, ME). M16i originated from an ICR base and
was derived from M16, which underwent long-term
selection for rapid post-weaning (3–6 weeks) weight
gain (Hanrahan et al., 1973; Eisen, 1975). ICR stands
for Institute for Cancer Research, an albino random-
bred mouse line. The M16 line is characterized by
increased growth rates and body weights and moder-
ate obesity (Allan et al., 2004). CAST/Ei (CAST),
one of the four morphologically and biochemically
distinct Mus musculus subspecies, exhibits small size
and a lean body composition.

Development of the backcross population and
details of animal husbandry have been described
earlier (Leamy et al., 2002). Briefly, CAST males were
mated to M16i females, and seven F1 males were
backcrossed to M16i females, resulting in 54 litters
with a total of 421 mice (213 males, 208 females)
reaching adult age (12 weeks). All mice were reared in
an environment of 21 xC, 55% relative humidity, and
a 12 : 12 h light : dark cycle, following NIH guidelines
for animal care. At birth (day 0), litters were stan-
dardized to a postnatal fraternity size of 10. Pups were
weaned at day 21 and housed in groups of 2–4 per
cage by sex. Mice were provided ad libitum access
to water and feed (Purina Mouse Chow 5015 from
mating until weaning and Purina Laboratory Chow
5001 from weaning and throughout phenotypic
evaluation).

(ii) Phenotypic traits and markers

Body weights were recorded on all backcross mice at
day 12 and at 3, 6, 9 and 12 weeks of age (12 d, 3 wk,
6 wk, 9 wk and 12 wk). Each mouse was killed at
12 wk of age, and a tail clip was frozen for later
extraction of genomic DNA. Heart (HRT), liver
(LIV), spleen (SPL), right kidney (KID), right epidi-
dymal (males) or perimetrial (females) fat pad (GON)
and right hindlimb subcutaneous fat pad (SUB) were
weighed (wet weights) in all mice. An additional trait
analysed was FAT, the sum of GON and SUB. The
right testis (TES) was weighed in male mice.

Ninety-two fully informative microsatellite markers
spanning the 19 autosomes were genotyped in the
backcross sample (Leamy et al., 2002) (Table 1).
Genotypes were determined by standard PCR and
agarose gel electrophoresis protocols. The mating
design used in this study did not enable screening of
the sex chromosomes. Marker linkage maps were
generated with MAPMAKER/EXP (Lincoln et al.,
1992) as described by Leamy et al. (2002).

(iii) Statistical analyses

Prior to QTL analyses, phenotypic data were adjusted
by obtaining residuals from a general linear model
including environmental effects attributed to sex,
litter size, sire and family. Residuals were used as
new phenotypes in the QTL analysis. To search for
QTLs across the entire genome, we partitioned each
chromosome with a 1 cM grid, resulting in 1214 (=H)
possible loci across the genome, and assumed that the
possible QTLs occur at these fixed loci. The problem
of inferring the number and locations of multiple
QTLs is equivalent to the problem of selecting a
subset of 1214 possible loci that fully explains the
genetically determined proportion of the phenotypic
variation. Although any complex trait may be influ-
enced by many QTLs, the number of detectable QTLs
is much smaller than H. Using the Bayesian model
selection framework of Yi et al. (2005), we placed a
constraint on the upper bound of detectable QTLs (L)
and restricted attention to models with fewer than
L QTLs. The phenotypic values can be expressed as

yi=m+ g
L

q=1
cqxiqaq+ g

L

q1<q2

cq1q2
xiq1xiq2bq1q2+ei,

i=1, 2, � � � , n,

where n is the number of mice; yi is the phenotypic
value of the ith mouse; m is the overall mean; xiq is the
indicator variable denoting the genotype of putative
QTL q for mouse i and is defined by 0.5 or x0.5 for
the two genotypes, CM and MM, where C and M
represent the CAST and M16i alleles, respectively; aq
represents the main effect of putative QTL q ; bq1 q2 is
the epistatic effect between QTLs q1 and q2 ; cq is a
binary indicator variable for the main effect of puta-
tive QTL q, taking value 1 if QTL q has a main effect
and 0 otherwise, and cq1 q2 is a binary indicator vari-
able for the epistatic effect between QTLs q1 and q2,
taking value 1 if QTLs q1 and q2 interact and 0
otherwise; and ei is the residual error assumed to
follow N(0, s2), where s2 is the residual variance.
Note that the introduction of the effect indicators
facilitates setting up Markov chain Monte Carlo
(MCMC) algorithms (Yi et al., 2005).

In the above model, the main effect, aq, quantifies
the difference between genotypic values of CM and
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MM. Therefore, a positive (negative) main effect
implies that the CAST allele promotes (reduces) the
phenotype. Similarly, a positive (negative) epistasis
promotes (reduces) the phenotypes of mice with
double homozygotes (MM/MM) and double hetero-
zygotes (CM/CM) at the corresponding two loci.
Additionally, QTL analyses for all the fat pads and
the organ weights were performed including 12 wk as
a covariate in the above model. This adjustment can
remove any linear influence of body weight on the fat

pads and the organ weights and thus attempts to
identify alternate sets of QTLs involved in different
pathways responsible for the fluctuating patterns of
phenotypic and genetic correlations observed among
the various traits.

Based on the above multiple epistatic QTL model,
we used the Bayesian model selection method devel-
oped by Yi et al. (2005) to jointly infer the number,
positions, main and epistatic effects of multiple QTLs.
Our approach proceeded by setting up a likelihood

Table 1. Microsatellite markers genotyped and their chromosomal
locations in Haldane units (cM)a

Chromosome Marker cM Chromosome Marker cM

1 D1MIT4 12 10 D10MIT16 16
D1MIT9 45 D10MIT31 29
D1MIT140 55 IGF-1 41
D1MIT17 97 D10MIT13 57

2 D2MIT1 1 11 D11MIT63 2
D2MIT79 13 D11MIT5 37
D2MIT120 15 D11MIT11 67
D2MIT157 30 12 D12NDS11 6
D2MIT61 34 D12MIT5 41
D2MIT37 43 D12MIT20 75
D2NDS1 53 13 D13MIT15 10
D2MIT103 58 D13MIT181 16
D2MIT133 60 D13MIT311 20
D2MIT164 63 D13MIT314 29
D2MIT224 65 D13MIT169 31
D2MIT166 70 D13MIT36 37
D2MIT22 73 D13MIT51 41
Agouti 75 D13MIT53 50
GHRH 76 D13MIT263 52
D2MIT49 80 14 D14MIT10 3
D2MIT25 90 D14MIT32 30
D2MIT147 93 D14MIT42 48
D2MIT174 101 15 D15MIT11 10
D2MIT200 105 D15MIT131 12

3 D3MIT46 14 D15MIT86 19
D3MIT10 35 D15MIT121 23
D3MIT31 75 D15MIT3 30

4 D4MIT39 11 D15MIT64 35
D4MIT27 36 D15MIT29 39
D4MIT33 78 D15MIT107 44

5 D5MIT48 1 PPAR 48
D5MIT24 60 D15MIT34 62
D5MIT51 92 16 D16MIT29 13

6 D6MIT50 3 D16MIT14 33
D6NDS5 36 D16MIT7 45
D6MIT14 70 17 D17MIT22 19

7 D7MIT55 15 D17MIT7 33
D7MIT37 57 D1739 45
D7MIT46 97 18 D18MIT19 2

8 D8MIT4 14 D18MIT10 17
D8MIT25 21 D18MIT51 27
D8MIT75 26 D18NDS1 73
D8MIT42 110 19 D19MIT29 4

9 D9MIT2 17 D19MIT11 38
D9MIT10 43 D19MIT1 52
D9MIT18 75 D19MIT6 64

a The location of the first marker on each chromosome was taken from the Mouse
Genome Database.
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function for the phenotype based on the above model
and assigning prior distributions to all unknowns in

the model. These induced a posterior distribution on
the unknown quantities that contains all the available

information for inference of the genetic architecture

of the trait. We first analysed the data using the
interval mapping method based on a single-QTL

model (Lander & Botstein, 1989), and then used the
number of significant QTLs detected in the interval

mapping to choose an upper bound of detectable
QTLs and specify prior distributions for the indicator

variables of main and epistatic effects. A LOD score
of 3.3 was used to assess statistical significance at the

5% genome-wide level (Lander & Kruglyak, 1995).

This threshold value approximately equalled those
obtained by permutation tests (Leamy et al., 2002).

The upper bound of detectable QTLs was then set to
be L=lm+2+3

ffiffiffiffiffiffiffiffiffiffiffiffi
lm+2

p
, where lm is the number of

main-effect QTLs detected in the interval mapping.
The prior probabilities for the indicators of main

effects and epistatic interactions were chosen to be

lm/L and 1x 1x(lm+2)=L
1xlm=L

h i1=Lx1
, respectively (Yi et al.,

2005). The positions of QTLs were independent and
uniformly distributed over the H possible loci. We
used non-informative distributions for m and s2. The
prior for each genetic effect was chosen to be the
hierarchical mixture prior N(0, cs2(xT x)x1), where c
and x are the effect indicator and the vector of the

coefficients for the corresponding effect, respectively.
The MCMC algorithm developed by Yi et al.

(2005) was employed to generate posterior samples
from the joint posterior distribution of all unknowns,
by updating each parameter from its conditional
posterior distribution in each of iterations. The
MCMC algorithms were started with no QTL in the
model. In each analysis, the MCMC sampler was run
for 4r105 cycles after discarding the first 2000 cycles
for the burn-in period. The chain was thinned (one
iteration in every 20 cycles was saved) to reduce serial
correlation in the stored samples, so that the total
number of samples kept in the posterior analysis was
2r104. The stored samples (posterior samples) were
used to infer the genetic architecture of the trait
analysed. Convergence diagnostics assessed by the R
package CODA (Plummer et al., 2005) showed that
our algorithm performed well.

Each locus may affect the trait through its main
effects and/or interactions with other loci (epistasis).
Therefore, the larger the main effect and/or epistatic
effects of a locus, the more frequently the locus is
included in the model. This can be measured by the
posterior inclusion probability of each possible locus
fh (h=1, 2, … ,H), p(fh|y), estimated as the frequency
with which the locus fh appeared in the posterior

samples, where y is the vector of phenotypic values.
The most likely position of QTLs in a certain region

was estimated as the locus that produces the highest
posterior inclusion probability. From p(fh|y), we

obtained the cumulative distribution function per
chromosome, defined as Fc(xjy)=gx

fh=0p(fhjy) for any
position x on chromosome c. The fact that the
cumulative distribution function at the last position
is greater than 1 provides evidence of multiple QTLs
at the corresponding chromosome. The posterior
inclusion probability of an epistatic effect between
two loci was estimated as the frequency which
the epistasis appeared in the posterior samples. We
reported all epistatic effects with the cumulative
posterior inclusion probabilities for the correspond-
ing chromosomes greater than 10%. The Bayes
factors of these interactions, defined as the ratio
of posterior and prior probabilities, are fairly high
(>20) (Yi et al., 2005). The main effect and the
proportion of phenotypic variance explained by the
main effect at any locus were calculated using
the posterior samples containing the locus. Similarly,
we estimated the epistatic effect and the proportion of
phenotypic variance explained by the epistasis.

3. Results

(i) Body weights

Interval mapping detected significant chromosomal
intervals for all age-specific body weights : chromo-
somes 4 and 18 for 12 d, chromosomes 1 and 18 for
3 wk, chromosomes 1 and 2 for 6 wk, chromosomes 2
and 15 for 9 wk, and chromosomes 2, 11 and 15 for
12 wk (Table 2). There were additional suggestive
QTLs detected for body weight at each age, with LOD
scores close to the threshold used (not shown here).
Some chromosomes (e.g. 2 and 15) showed two peaks.

There was strong evidence for age-dependent
genetic regulation, with no single main-effect QTL
being present at all ages. A QTL present in proximal
chromosome 4 affecting weight at the preweaning age
of 12 d was not present at older ages. Two other QTLs
with strong main effects on body weights of mice at
weaning (3 wk), but not on older mice, were located
in the central regions of chromosomes 1 and 18,
respectively. Conversely, a significant and strong
QTL located in the central region of chromosome 2
for body weights of older mice (6 wk, 9 wk and 12 wk)
was not evident for body weights of younger mice.
In addition, chromosomes 11 and 15 also harboured
QTLs affecting body weight of older mice only.

Profiles of posterior inclusion probabilities for each
locus across the genome and cumulative posterior
probabilities for each chromosome are depicted in the
top panel of Fig. 1. The main effects of QTLs detected
in the interval mapping were also detected in the
Bayesian analysis of the epistatic model. Peaks of the
profiles of posterior inclusion probability overlapped
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those of LOD scores. The epistatic analyses found
further age-specific QTLs. For example, the non-
epistatic analysis failed to detect QTLs on chromo-
somes 1 and 18 affecting body weights of older mice,
but the presence of such QTLs was found in the
epistatic model with a high posterior inclusion prob-
ability (y70%) for 9 wk and 12 wk. The posterior
modes of these two epistatic QTLs were close to
the markers D1MIT140 and D18NDS1, respectively,
for both 9 wk and 12 wk. Although the main effects
of these QTLs were relatively weak, they affected
body weights of older mice mainly through epistatic
interactions. The epistatic interaction between
chromosomes 1 and 18 was included in the epi-
static model with probability of y60% and y50%,
respectively, for 9 wk and 12 wk (Table 3). However,
this interaction did not affect body weights of
younger mice.

The number of epistatic interactions varied tempo-
rally. Variations of body weight at older ages (6 wk,
9 wk and 12 wk) included more epistatic effects than
at younger ages (12 d and 3 wk). For all ages, there
were a total of eight chromosomes involved in inter-
actions. The most active was chromosome 1, which
interacted with four other chromosomes for body
weights at different ages. Other frequently involved
chromosomes included 2, 13 and 18. Three two-way
interactions (chromosomes 1 and 18, 1 and 4, and 2
and 13) were observed at both 9 wk and 12 wk.

However, other detected epistatic interactions affec-
ted body weight at only one time point.

Detected QTLs showed a complex pattern of
genetic effects on body weight. Profiles of the
location-wise main effects and the proportion of
phenotypic variance explained by the main effects are
displayed in the bottom panel of Fig. 1. Almost all
loci across the genome showed positive main effects
on body weights of younger mice but negative main
effects on body weights of older mice. This finding
implies that inheriting a CAST allele at any locus
increased body weights at younger ages but reduced
body weights of older mice. The main effects of
the strongest QTL on chromosome 2 accounted for
y15% of the phenotypic variances at 9 wk and
12 wk. The proportions of the phenotypic variances
contributed by the main effects of other detected
QTLs ranged from 1 to 11%.

Estimates of epistatic effects and proportions of
phenotypic variances explained by these epistatic
interactions (Table 3) demonstrate that each inter-
action explained a low (but detectable) percentage of
the phenotypic variance, ranging from 1.3% to 4.1%.
A positive (negative) epistasis promotes (reduces) the
phenotypes of mice that are double homozygotes
(M16i/M16i and M16i/M16i) and double hetero-
zygotes (M16i/CAST and M16i/CAST) at the corre-
sponding two loci. All interactions detected at
younger ages (12 d, 3 wk and 6 wk) were estimated to
be negative. For body weights of older mice (9 wk and
12 wk), both positive and negative epistatic effects
were observed. For example, the interaction of
chromosomes 1 and 18 was positive for 9 wk and
12 wk, while the interaction of chromosomes 2 and 13
was negative for bodyweights at 6 wk, 9 wk and 12 wk.

(ii) Fat pad weights

Maximum likelihood (ML) interval mapping detected
significant QTLs for individual fat pad weights (GON
and SUB) and the composite trait FAT on chromo-
somes 2, 13 and 15 (Table 4). The strongest QTL was
identified on chromosome 2 at 77 cM with LOD
scores ranging from 17 to 20 for the three fatness
traits. This QTL also had the largest main effect on
body weights at 9 wk and 12 wk. As observed
for body weight, chromosome 15 showed multiple
peaks; the highest peak (LOD of y5) is observed at
35 cM, while additional sub-peaks are seen above
the significance threshold in the interval 14–25 cM.
Chromosome 13 was detected to influence the fatness
traits. This fat-specific region did not influence body
weights or weights of the organs measured in this
study.

As shown in the profiles of posterior inclusion
probability and cumulative function, QTLs on
chromosomes 2, 13 and 15 were also detected in the

Table 2. Interval mapping of body weight: locations
(cM), LOD scores and confidence intervals (CI) of
QTLs

Traita Chromosome Location LODb CIc

12 d 4 17 3.41 11–41
18 22 3.34 6–72
18 48 4.27 19–65

3 wk 1 72 5.74 57–86
18 45 4.71 13–60

6 wk 1 68 7.26 52–81
2 43 3.40 36–64
2 60 3.34 36–64

9 wk 2 62 13.65 54–66
2 78 10.63 72–85
15 42 3.54 32–62
15 58 3.36 32–62

12 wk 2 66 16.20 59–68
2 77 15.21 74–83
11 23 4.14 7–52
15 43 4.16 34–62
15 56 3.93 34–62

a Body weights at day 12 and at 3, 6, 9 and 12 weeks of age
(12 d, 3 wk, 6 wk, 9 wk and 12 wk).
b The LOD 3.3 criterion is used for significance.
c cM location where the LOD score is one less than the
peak.
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Bayesian analysis of the epistatic model (Fig. 2).
Peaks of the profiles of posterior inclusion probability
overlapped those of LOD scores. Similarly to body
weights at older ages, the QTLs on chromosomes 2
and 15 had negative main effects. However, the
fat-specific QTL on chromosome 13 had positive
effects, indicating that the presence of a CAST
allele increased fat. The three main-effect QTLs on
chromosomes 2, 13 and 15 were estimated to explain
y18%, 4% and 3% of the phenotypic variances,
respectively.

Analyses of epistasis found strong evidence for
QTLs on chromosomes 1, 18 and 19 with high
cumulative probabilities (close to 1) for all three fat
depot traits, unadjusted for body weight, and
suggestive evidence of QTLs on chromosomes 6, 7, 11
and 14. The QTLs on chromosomes 1, 18 and 19 were
estimated to have weak main effects and thus were
detected in the epistatic model mainly due to epistatic
interactions. The posterior modes of these three epi-
static QTLs were close to the markers D1MIT140,
D18NDS1 and D19MIT11, respectively, for all three
fat pads. Table 5 shows epistatic interactions between
chromosomes with >10% of posterior inclusion
probability. There were a total of 10 chromosomal

regions involved in interactions, including the regions
with strong main effects on chromosomes 2, 13 and
15 as well as several other regions with weak main
effects. As for body weights, interactions among
the chromosomal regions with strong main effects
(chromosomes 2, 13 and 15) were negative and,
conversely, all other interactions involving at least
one region with weak main effect were positive.

The strongest interaction for fat occurred between
QTLs on chromosomes 1 and 18, which also strongly
influenced the phenotypic variation of body weights
at 9 wk and 12 wk. This interaction was included
in the epistatic model with high probabilities and
explained y5% of the phenotypic variances for all
three fat phenotypes. A region of chromosome 19 was
found to interact with chromosomes 15 and 7. The
interaction between the regions of chromosomes 19
and 15 was included in the model with y50% and
65% of probability, and explained y2% and 3%
of the phenotypic variances for FAT and GON,
respectively. Two interactions involving two main-
effect QTLs, chromosomes 2 and 13 and chromo-
somes 13 and 15, were found to influence the fat
traits. The first was included in the epistatic model
with y96% and 55% of probabilities and explained
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y3% and 2% of the phenotypic variances for GON
and FAT, respectively. The latter appeared to affect
all three traits and explained y2% of the phenotypic
variances.

As seen in the bottom panels of Table 4 and Fig. 3,
the inclusion of 12 wk as a covariate in the analyses
influenced detection of QTLs for fat depots. When
removing variation due to 12 wk from the fat traits,
both interval and Bayesian mapping revealed activity
of QTLs on chromosomes 5, 14 and 17, where there
had been no QTL detected previously for the
unadjusted traits. These fat-specific main effects were
positive on chromosomes 5 and 17 and negative on
chromosome 14, and explained 3–6% of the pheno-
typic variances. When adjusted by 12 wk, the QTL on
chromosome 2 still influenced fat traits, indicating
that this QTL probably has pleiotropic effects on
body weight and fatness. Conversely, the main effect
on chromosome 15 was eliminated after adjustment
for body weight, suggesting that this locus had
increased fat pad weights simply in proportion to
increases in overall weight. Most of the strong epi-
static interactions detected for unadjusted fat traits,
such as chromosomes 1 and 18, 2 and 13, and 15
and 19, were still found to influence fatness after
adjustment for body weight (Table 5). The posterior
modes of these epistatic QTLs and the sign of these
pleiotropic interactions remained unchanged.

(iii) Organ weights

Interval mapping for organ weights identified
significant main-effect QTLs influencing LIV on
chromosomes 2 and 11, SPL on chromosomes 4 and

9, and KID on chromosomes 1 and 18 (Table 6).
Inclusion of 12 wk as a covariate in the model did not
influence the results for HRT and TES, but greatly
influenced the detection of QTLs for LIV, SPL and
KID. The significant QTLs on chromosomes 2 and 11
for LIV were removed and lessened, respectively,
when adjusted by 12 wk. However, new QTLs were
found for KID on chromosomes 2 and 3 and for SPL
on chromosomes 2 and 10 (Table 6).

Bayesian analysis of the multiple epistatic model
identified all main-effect QTLs detected by interval
mapping for both the unadjusted and the adjusted
traits (Figs. 4 and 5). Peaks on the profiles of the
posterior inclusion probability overlapped those of
the LOD curves. As seen for body weights and fat
traits, however, the curves of the posterior inclusion
probability were much sharper than the LOD curve
and thus provided more precise estimation of QTL
locations. For both unadjusted and adjusted KID, for
example, LOD score curves on chromosome 1 sig-
nificantly spanned the whole chromosome, but curves
of the posterior inclusion probability concentrated on
a narrow region near D1MIT140 with high posterior
cumulative probabilities. For unadjusted LIV and
adjusted KID, there were three peaks on the profiles
of the posterior inclusion probability on chromosome
2, and the posterior cumulative probabilities were 1.4,
indicating the possibility of multiple QTLs.

The posterior mean profiles of location-wise main
effects and variances explained by the main effects are
displayed in Figs. 4 and 5. For LIV and SPL, main
effects in all significant regions were negative, similar
to the patterns for body weights at older ages and fat
traits. Conversely, main effects in most chromosomal
regions for HRT and TES were positive, indicating
that a CAST allele promotes HRT and TES but
reduces LIV and SPL. For KID, some chromosomes
(e.g. 1, 2 and 3) showed positive effects and others
(e.g. 18) negative effects. Main effects explainedy5%
to 17% of the phenotypic variances.

Organ weights are influenced by epistatic inter-
actions (Table 7). The strongest interaction occurred
between chromosomes 1 and 18 for KID, which also
greatly influenced the variations of body weights at
older ages and fat traits. This interaction was included
in the models with 99% and 30% of posterior prob-
ability and explained y5% and 2% of the pheno-
typic variances for unadjusted and adjusted KID,
respectively.

4. Discussion

(i) Bayesian epistatic QTL mapping

The introduction of genome-wide screening to detect
QTLs affecting complex traits has recently drawn
renewed interest to the importance of epistasis in the
evolution and aetiology of disease-associated traits

Table 3. Epistatic analysis of body weights:
cumulative posterior inclusion probability, posterior
mean of epistatic effect and proportion of phenotypic
variance explained by the epistasis (PPV%)

Traita
Chromosome
pair

Posterior
probability Epistasis PPV

12 d 2r14 0.244 x0.499 1.8
3 wk 3r13 0.252 x0.619 2.7
6 wk 1r2 0.471 x0.627 2.8

2r13 0.145 x0.435 1.3
13r18 0.252 x0.718 3.5

9 wk 1r4 0.121 0.467 1.6
1r11 0.424 0.598 2.3
1r18 0.631 0.817 4.1
2r13 0.402 x0.573 2.2

12 wk 1r4 0.434 0.680 3.1
1r18 0.530 0.722 3.4
2r13 0.210 x0.485 1.6
13r15 0.107 x0.410 1.2

a Body weights at day 12 and at 3, 6, 9 and 12 weeks of age
(12 d, 3 wk, 6 wk, 9 wk and 12 wk).
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Table 4. Interval mapping of fat traits: locations (cM), LOD scores and confidence intervals (CI) of QTLs

Traita Chromosome

Location LODb CIc

Unadjustedd Adjustede Unadjusted Adjusted Unadjusted Adjusted

FAT 2 77 81 20.60 6.83 72–83 70–90
13 40 30 4.60 3.65 27–47 21–47
15 35 4.54 31–42
15 24 3.63 12–28
5 31 3.56 6–61

GON 2 77 77 17.02 4.94 72–83 70–88
13 41 29 4.59 3.47 27–47 22–47
15 35 4.48 31–43
15 25 3.62 20–30
17 22 3.32 19–37

SUB 2 78 84 18.87 5.61 72–86 71–101
13 34 3.56 26–47
15 35 3.49 10–43

14 3.41 10–43
14 30 3.70 16–43

a GON, SUB and FAT represent perimetrial fat pad, right hindlimb subcutaneous fat pad and the sum of the two fat pads,
respectively.
b The LOD 3.3 criterion is used for significance.
c cM location where the LOD score is one less than the peak.
d No adjustment for body weight at 12 weeks of age.
e Adjustment for body weight at 12 weeks of age.
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Fig. 2. Genome-wide epistatic analysis of fat traits under model without adjustment for body weight at 12 weeks: profiles
of posterior inclusion probability, cumulative probability function, posterior means of main effect and proportion of
phenotypic variance explained by main effect (PPV%). On the x-axis, outer tick marks represent chromosomes and inner
tick marks represent markers. GON, SUB and FAT represent perimetrial fat pad, right hindlimb subcutaneous fat pad
and the sum of the two fat pads, respectively.
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such as obesity and type 2 diabetes (Warden et al.,
2004; Carlborg & Haley, 2004; Chesler et al., 2005;
Moore, 2005; Segrè et al., 2005). This interest has
fuelled research into statistical models traditionally
used to interpret epistasis (Yang, 2004; Zeng et al.,
2005) and has led to refined methods of estimating
epistasis in QTL analyses (Carlborg et al., 2000; Yi &
Xu, 2002; Yi et al., 2003, 2005; Zhang & Xu, 2005).

We adopted a Bayesian model selection method
(Yi et al., 2005) to search for epistatic QTLs across the
entire genome with effects on body weight, obesity
and organ weights. Our Bayesian method used
multiple QTL models and jointly inferred the number
of QTLs, their genomic positions, and their main
and epistatic effects simultaneously. Therefore, this
Bayesian mapping method could detect multiple
QTLs with any combination of main and pairwise
epistatic effects in an interactive fashion. The
Bayesian framework incorporates our prior infor-
mation into analysis, and provides a robust inference
of genetic architecture that incorporates model

uncertainty by averaging over all possible models
(Yi et al., 2005).

Our present Bayesian method separately analyses
each of multiple traits. However, the phenotypes
investigated in this study present significant corre-
lations (not shown here), showing that joint analysis
of these phenotypes may improve power for detecting
QTLs. In particular, body weights at five ages
describe growth and should be better treated as a
function-valued trait (Wu et al., 2005). Joint analysis
of multiple phenotypes can provide formal proce-
dures to investigate the genetic mechanisms such as
pleiotropy and close linkage (Jiang & Zeng, 1995;
Wu et al., 2005). Extension of our Bayesian method to
multiple traits will be pursued.

(ii) Body weight QTLs

At least three subsets of QTLs influencing growth in
mice were found, including those that act early in life,
those that act later in life, and those with effects

Table 5. Epistatic analysis of fat traits: cumulative posterior inclusion probability, posterior mean of epistatic
effect and proportion of phenotypic variance explained by the epistasis (PPV%)

Traita
Chromosome
pair

Posterior probability Epistasis PPV

Unadjustedb Adjustedc Unadjusted Adjusted Unadjusted Adjusted

FAT 1r18 0.942 0.719 0.931 0.722 5.4 3.2
2r13 0.543 0.158 x0.541 x0.388 1.8 0.9
2r14 0.155 0.125 0.523 0.420 1.7 1.1
5r13 0.122 0.118 0.541 0.535 1.8 1.7
7r19 0.231 0.114 0.618 0.471 2.3 1.3
13r15 0.476 0.105 x0.557 x0.393 1.9 1.0
15r19 0.452 0.423 0.579 0.563 2.1 1.9
6r13 0.158 x0.568 2.0
2r5 0.424 x0.604 2.2
2r7 0.179 0.479 1.4

GON 1r18 0.814 0.271 0.886 0.663 4.9 2.7
2r13 0.959 0.591 x0.687 x0.543 2.9 1.8
13r15 0.465 0.168 x0.588 x0.454 2.1 1.2
15r19 0.641 0.745 0.659 0.674 2.7 2.8
5r13 0.112 0.534 1.8
5r15 0.159 x0.651 2.6
6r8 0.120 0.666 2.7
6r13 0.219 x0.583 2.1
6r15 0.119 0.480 1.4
1r7 0.125 x0.529 1.7

SUB 1r18 0.630 0.324 0.839 0.658 4.3 2.7
2r14 0.288 0.162 0.575 0.415 2.0 1.1
7r19 0.275 0.686 2.9
13r15 0.102 0.332 x0.438 x0.704 1.1 3.0
1r5
2r3 0.251 x0.609 2.3
2r5 0.456 x0.688 2.9
2r7 0.137 0.498 1.5

a GON, SUB and FAT represent perimetrial fat pad, right hindlimb subcutaneous fat pad and the sum of the two fat pads,
respectively.
b No adjustment for body weight at 12 weeks of age.
c Adjustment for body weight at 12 weeks of age.
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throughout ontogeny. Such findings confirm previous
reports (Cheverud et al., 1996; Vaughn et al., 1999;
Morris et al., 1999; Rocha et al., 2004a ; Brockmann
et al., 2004). The presence of such subsets of genes is
not surprising given the low phenotypic and genetic
correlations that were found between early and late
body weights or growth rates in these data (Leamy
et al., 2002) and other studies (Rutledge et al., 1972;
Atchley et al., 1984; Cheverud et al., 1996). Atchley
et al. (1997) provided further evidence for indepen-
dent genes affecting early and late growth by success-
fully using selection indexes to modify early growth
while constraining changes in growth at a later age.
Furthermore, it is clear that early and late growth are,
in part, regulated by different underlying physiologi-
cal mechanisms (Cheverud, 2005).

For the most part, QTLs influencing early growth
were manifested by larger body weights in hetero-
zygotes, or those mice with a genetic contribution
from CAST, while QTLs affecting later growth almost
always led to higher body weight when in the homo-
zygous M16i genotype. Larger body weights for
heterozygotes compared with homozygous M16 mice
may represent a fitness advantage in that larger mice

would have a higher survival rate than smaller mice
during preweaning growth. The larger body weights
of M16i-based alleles for later growth stages are not
surprising. The basis for selection in the M16i line was
for weight gain during the period of major postnatal
growth from 3 to 6 weeks of age, and a correlated
response to this selection is that the mice are
late-maturing (Eisen, 1986). Therefore, it would be
expected that loci influencing growth rates from 3 to 6
weeks as well as at later stages would be positive for
M16i homozygous mice. This influence was the case
for most growth rate QTLs, with a clear exception on
chromosome 1, where the heterozygous genotype led
to faster growth rate between 3 and 6 weeks of age,
and the advantage for the M16i homozygous geno-
type was not manifested until mid-to late-life. The
advantage for heterozygotes and/or CAST-based
alleles at early growth periods (mainly preweaning)
may be due to two interrelated explanations. First,
CAST mice originated as a natural wild population
and have probably had selective pressure placed on
very early growth rate due to increased prenatal and
neonatal competition and death. Furthermore, over-
dominance is likely to be of greater importance for
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Fig. 3. Genome-wide epistatic analysis of fat traits under model including adjustment for body weight at 12 weeks:
profiles of posterior inclusion probability, cumulative probability function, posterior means of main effect and proportion
of phenotypic variance explained by main effect (PPV%). On the x-axis, outer tick marks represent chromosomes and
inner tick marks represent markers. GON, SUB and FAT represent perimetrial fat pad, right hindlimb subcutaneous fat
pad and the sum of the two fat pads, respectively.
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traits influencing fitness (Lerner, 1954) and would
thus have greater importance in early as opposed to
later growth rates. Indeed, Cheverud et al. (1996) have
shown that overdominance was most prevalent for

QTLs affecting early growth rate in their specific cross
between LG and SM lines of mice. While we cannot
separate overdominance from an additive effect with
an advantage to the CAST allele, our data are again

Table 6. Interval mapping of organ weights: locations (cM), LOD scores and confidence intervals (CI) of QTLs

Traita Chromosome

Location LODb CIc

Unadjustedd Adjustede Unadjusted Adjusted Unadjusted Adjusted

LIV 2 64 17.61 59–69
11 25 6.49 14–53

SPL 4 49 44 6.51 5.35 24–67 23–64
9 28 30 7.87 8.37 17–40 18–40
2 73 3.97 65–77
10 29 3.54 20–40

KID 1 71 76 6.89 7.09 53–87 60–90
18 73 73 6.95 5.10 61–73 60–73
2 86 8.49 66–100
3 65 3.54 47–75

a LIV, SPL and KID represent weights of heart, spleen and kidney, respectively.
b The LOD 3.3 criterion is used for significance.
c cM location where the LOD score is one less than the peak.
d No adjustment for body weight at 12 weeks of age.
e Adjustment for body weight at 12 weeks of age.
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Fig. 4. Genome-wide epistatic analysis of organ weights under model excluding adjustment for body weight at 12 weeks:
profiles of posterior inclusion probability, cumulative probability function, posterior means of main effect and proportion
of phenotypic variance explained by main effect (PPV%). On the x-axis, outer tick marks represent chromosomes and
inner tick marks represent markers. HRT, LIV, SPL, TES and KID represent weights of heart, liver, spleen, testis and
kidney, respectively.
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in general agreement with those of Cheverud et al.
(1996).

The epistatic QTL effects on body weight in general
agree with previous findings in mice (Cheverud et al.,
1996; Brockmann et al., 2000, 2004; Ishikawa et al.,
2005). In a backcross between M. m. castaneus and
C57BL/6J, Ishikawa et al. (2005) detected a higher
degree of epistatic QTLs for juvenile growth com-
pared with adult growth, which contrasts with the
greater degree of epistasis for adult body weights than
for juvenile weights found in the present study. The
contrasting results may be associated with selection
for post-weaning growth in M16 causing the build-up
of epistatic complexes as ontogeny progresses.

(iii) Adiposity QTLs

The present study adds to the growing compilation
of QTLs affecting adiposity in mice (e.g. Brockmann
& Bevova, 2002; Rocha et al., 2004b). Most QTLs
affecting fatness have small additive effects, and
several can be modified by diet, age and sex (Bünger
& Hill, 2005). However, several studies have found
significant epistatic interactions for fat deposits and
related traits in mice and other mammalian species

(Brockmann et al., 2000, 2004; Cheverud et al.,
2001; Yi et al., 2004a, b). Dong et al. (2003, 2005)
reported two instances of epistasis between obesity-
susceptibility loci in humans. Four pairs of interacting
loci for non-insulin-dependent diabetes were detected
in the Otsuka Long-Evans Tokushifa fatty rat
(Yamada et al., 2001).

The present data clearly indicate two types of adi-
posity genes with respect to body mass. One set of
adiposity QTLs exhibit pleiotropy with body weight,
which was expected based on positive genetic corre-
lations and positive realized correlated responses
previously reported (Eisen & Leatherwood, 1978a, b ;
Eisen, 1987). The other type of QTL for fatness is
independent of body weight. Eisen et al. (1995) pro-
vided support for adiposity genes that are indepen-
dent of body weight by successfully applying
restricted selection to increase gonadal fat without
altering body weight. Reducing fat content while
holding body weight constant proved more elusive,
possibly due to sensitivity of the index to changes in
genetic parameters (Eisen et al., 1995).

An interesting finding from this study was that
epistatic interactions involving CAST alleles seemed
to increase obesity (see Table 4). However, results
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Fig. 5. Genome-wide epistatic analysis of organ weights under model including adjustment for body weight at 12 weeks:
profiles of posterior inclusion probability, cumulative probability function, posterior means of main effect and proportion
of phenotypic variance explained by main effect (PPV%). On the x-axis, outer tick marks represent chromosomes and
inner tick marks represent markers. HRT, LIV, SPL, TES and KID represent weights of heart, liver, spleen, testis and
kidney, respectively.
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may again be confounded with dominance given that,
in this backcross, all CAST alleles must appear in
conjunction with an M16i allele. Evaluation of epi-
stasis in an F2 intercross would be more powerful than
the current design, as it would enable comparison of
the additive and dominance nature of epistatic inter-
actions. We are currently performing such analyses
using the cross described by Rocha et al. (2004a, b).
Although the presence of CAST alleles on chromo-
some 2 appeared to outweigh the impact of the CAST
alleles from other chromosomes on epistatic inter-
actions, this probably reflects the very strong role of
chromosome 2 on growth and obesity in this and
other crosses involving the M16i line (Rocha et al.,
2004a, b). This region of the mouse genome appears
to contain many genes involved in regulation of
energy balance (Pomp et al., 2004; Jerez-Timaure
et al., 2005).

Other consistencies of results can be found with the
study of Rocha et al. (2004a, b), who crossed M16i
and a second line selected for low 6 week body weight
(L6). Our results reproduced the findings regarding
coincidence of QTL locations affecting obesity traits.
The QTLs for adiposity index located on chromo-
somes 2, 7, and 15 appeared to be in common. Also,
the magnitude of concordance regarding QTLs for

liver weight was very high. In contrast, it is not sur-
prising that there were some discrepancies between
the various studies employing the M16i line, due to
different lines used for the cross (i.e. CAST/Ei versus
L6), different adjustments of phenotypic data, and the
lack of statistical detection of epistatic interactions in
the study of Rocha et al. (2004a, b).

The QTL data here provide a possible explanation
as to why selection for increased body weight in mice
does not always lead to a positive correlated response
in adiposity (e.g. Eisen et al., 1978), even though the
two traits are genetically positive correlated. If the
QTL alleles that have a positive pleiotropic effect on
adiposity and body weight are fixed or are at a low
frequency such that genetic drift could cause loss of
these alleles in early generations of selection, then
directional selection for growth would lead to an
absence of a correlated response in obesity.

Except for the interaction between chromosomes
1 and 18, which was shared for body weight and
adiposity, different epistatic interactions were de-
tected for different traits. Given that genetic corre-
lations among these traits are high but far from unity
(Eisen & Prasetyo, 1988), this evidence for partially
independent pathways of interactive genetic control in
addition to shared covariance is to be expected.

Table 7. Epistatic analysis of organ weights: cumulative posterior inclusion probability, posterior mean of
epistatic effect and proportion of phenotypic variance explained by the epistasis (PPV%)

Traita
Chromosome
pair

Posterior probability Epistasis PPV

Unadjustedb Adjustedc Unadjusted Adjusted Unadjusted Adjusted

HRT 3r15 0.259 0.192 x0.689 x0.689 2.9 2.9
LIV 2r13 0.136 x0.500 1.5

4r16 0.140 x0.645 2.6
10r15 0.359 0.419 1.1
11r19 0.215 0.472 1.3

SPL 4r5 0.439 0.109 0.771 0.607 3.7 2.3
4r9 0.425 0.282 0.656 0.601 2.6 2.2
5r9 0.197 0.622 2.4
6r11 0.291 0.651 2.6
11r12 0.131 x0.633 2.5
3r9 0.122 0.553 1.9
12r19 0.167 x0.583 2.1

TES 1r15 0.128 0.106 0.882 0.836 4.8 4.3
2r6 0.158 0.196 x0.789 x0.725 3.8 3.2
11r15 0.121 0.109 0.866 0.807 4.6 4.1
2r4 0.104 x0.837 4.3
2r5 0.103 0.446 1.2
2r14 0.236 x0.878 4.8
3r15 0.114 x0.877 4.8

KID 1r18 0.990 0.277 0.902 0.501 5.1 1.5
1r11 0.394 0.632 2.4

a HRT, LIV, SPL, TES and KID represent weights of heart, liver, spleen, testis and kidney, respectively.
b No adjustment for body weight at 12 weeks of age.
c Adjusted by covariance analysis for body weight at 12 weeks of age.
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(iv) Organ QTLs

Leamy et al. (2002) estimated QTLs for organ weights
using these data and an interval mapping analysis
(Haley & Knott, 1992). Although they detected more
significant QTLs, probably due to use of principal
components of all organ weights as a ‘new’ pheno-
type, the chromosomal regions detected by the two
analyses appear to be very similar, for example
chromosomes 1, 2, 4, 9, 11 and 18. Although QTLs
for liver weight on chromosomes 2 and 11 were highly
associated with total body mass, all QTLs for heart
and testes weights, and some QTLs for weights of
kidney and spleen, were independent of body weight.
Results were comparable to those reported by
Brockmann et al. (2000).

(v) Conclusions

The primary objective of this work was to apply
Bayesian analyses of multiple epistatic QTLmodels to
data on body weight and body composition in mice.
Although we have uncovered statistical evidence for
epistatic interactions contributing to the control of
body weight and fatness, comprehensive functional
analyses in the relevant regions must be undertaken to
determine the underlying loci and how they interact.
Fine-mapping is being actively pursued with congenic
lines (Jerez-Timaure et al., 2005), but this targets
QTLs with large main effects and not necessarily
those with strong involvement on epistasis. The
approach of integrating large-scale transcriptional
phenotypes with QTL mapping (Schadt et al., 2003;
Pomp et al., 2004) may be very powerful in discover-
ing the genes involved in epistatic interactions.

For all analyses, QTLs with strong main effects on
the phenotypes were identified on the same chromo-
somes no matter which method was applied.
However, additional putative QTLs with relatively
small influences on phenotypic variation were dis-
covered only when assessing main effects and epistatic
effects simultaneously, indicating that genes of small
effect may only be detectable in models accommo-
dating epistasis. The results of this study have thus
not only added novel QTLs to the map of obesity
predisposition in the mouse, but have provided some
insights into potential interactions among genes that
contribute to regulation of body weight and fatness.
When comparing these results with other initial
evaluations in other genetic crosses, different patterns
of epistatic interactions emerge, suggesting the possi-
bility of yet higher order interactions, as may be ex-
pected given the complex nature of the biochemical
pathways regulating these traits. Given the important
role that gene–gene interactions may play in regulat-
ing complex traits, it is clear that statistical models
incorporating analysis of epistasis should be a focus
of attention in future QTL analyses.

This research was supported in part by National Institutes
of Health Grants GM069430, ES09912, DK056366 and
DK056336.
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