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Abstract

In the paper we consider the density functions of random variables that can be written
as integrals of exponential functions of Gaussian random fields. In particular, we
provide closed-form asymptotic bounds for the density functions and, under smoothness
conditions, we derive exact tail approximations of the density functions.
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1. Introduction

Consider a Gaussian random field f (t) living on a d-dimensional compact set T . We say
that f (t) is a Gaussian random field if, for any finite subset {t1, . . . , tn} ⊂ T , (f (t1), . . . , f (tn))

follows a multivariate Gaussian distribution. In this paper we consider the random variable

log

(∫
T

eσ(t)f (t) dϑ(t)

)
(1)

for some positive function σ(t) and a finite measure ϑ . Of interest is the tail behavior of the
density function of (1).

The integral of exponential functions of Gaussian random fields plays an important role in
both applied probability and statistics, such as spatial point process, portfolio risk analysis, and
option pricing (see [8] and [9]). As we focus on the theoretical development in this paper, we do
not elaborate the applications, a detailed discussion of which can be found in Section 2 of [14].

The literature of extreme behavior of Gaussian random fields focuses mostly on the tail
probabilities of supT f (t). The results contain general bounds as well as sharp asymptotic
approximations as b → ∞. A general upper bound for the tail of sup f (x) is developed in [7]
and [21], which is known as the Borel–TIS lemma. Several methods have been introduced to
obtain bounds and asymptotic approximations (see [4], [16], [18], and [19]), each of which
imposes different regularity conditions on the random fields. The density functions of sup f (t)

have also been studied in [6] and [20].
The distribution of the random variable in (1) is studied in the literature when f (t) is a

Brownian motion (see [10] and [22]). The tail approximation of the finite sum of correlated
log-normal random variables has been studied in [3]. The corresponding simulation is studied
in [5]. There are other general studies on heavy-tailed random variables that include the sum
of log-normal random variables as special cases (see [11] and [15]). Recently, Liu [13] derived
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the asymptotic approximations of P(
∫
T

ef (t) dt > b) as b → ∞ for three times differentiable
and homogeneous Gaussian random fields. Liu and Xu [14] further extended the results to the
case when the process has a varying mean function.

The density function of (1) for a general Gaussian random field is still unexplored, which is
the main target of this paper. The results derived in this paper lead immediately to bounds and
approximations of the tail probabilities P(

∫
T

eσ(t)f (t) dϑ(t) > b) by integrating the density on
[b, ∞). In addition, such a kind of local results provides technical support for the theoretical
analysis of simulation studies, in which one typically needs to simulate a discrete process to
approximate the continuous process. As shown in the technical development in [2] (focusing
on the simulation of the tail probabilities of supT f (t)), to provide bounds on the bias caused
by the discretization, one needs local results (bounds of the density functions) of supT f (t).

The contribution of this paper is to develop asymptotic bounds and approximations of the
density functions of (1). Our results consist of several theorems. Asymptotic upper bounds are
given in Theorems 1 and 2 under different conditions. An exact approximation of the density
is given in Theorem 3 when f (t) is three times differentiable. In addition, during the proof of
the theorems, a bound of F ′(a) for all a ∈ R is derived (the results in Section 3.1.3).

The basic technique is to use the Karhunen–Loève expansion f (t) = ∑∞
i=1 xiφi(t) by

developing bounds for fN(t) = ∑N
i=1 xiφi(t) and sending N to ∞. For fN(t), we consider

it to be a function of (x1, . . . , xN) and develop bounds of the integral on the surface
{(x1, . . . , xN) : log

∫
eσ(t)fN (t) dϕ(t) = a} (endowed with a standard Gaussian measure). Part

of the analysis technique is inspired by Tsirel’son [20], who presented a bound of the density
of supT f (t). The current analysis is more complicated in that Hf is not a sublinear function
of f , which is a crucial condition in the proof of [20]. Sun [18] also used this representation to
derive an approximation of the tail probability of supT f (t). In addition, a change-of-measure
technique is used to derive explicit forms of the bounds and the asymptotic approximations.

The organization of the rest of this paper is as follows. In Section 2 we present the main
results. Proofs of the theorems are given in Section 3. Technical proofs of several lemmas are
provided as supplemental material.

2. Main results

Consider a Gaussian random field, f (t), living on a d-dimensional compact domain T ⊂ Rd .
For a finite measure ϑ on T and a function σ(t) ∈ (0, ∞) satisfying σT = supt∈T σ (t) < ∞,
let

Hf := log

(∫
T

eσ(t)f (t) dϑ(t)

)
, F (a) := P(Hf ≤ a).

Of interest is the probability density function F ′(a). To facilitate the discussion, we present a
list of conditions that we will refer to in later discussions.

(C1) The index domain T is a d-dimensional compact subset of Rd . The boundary ∂T =
T − T o is a piecewise smooth manifold, where T o is the interior of T . The measure ϑ

is positive and ϑ(T ) = 1.

(C2) The process f (t) is almost surely continuous with zero mean and unit variance.

Furthermore, we impose two types of structures on the covariance function, under each of
which we derive more precise bounds or approximations of F ′(a).

(C3) The variance is constant, i.e. σ(t) ≡ σ . The measure ϑ has a positive and continuous
density function with respect to the Lebesgue measure. The process f (t) is homogeneous.
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The covariance function is C(t) = E(f (s)f (s + t)), which satisfies the following two
conditions.

(C3a) C(t) satisfies the expansion

C(t) = C(0) − |t |α + o(|t |α) as t → 0 for α ∈ (0, 2].
(C3b) For each t ∈ Rd , C(λt) is a monotone decreasing function of λ ∈ R+.

(C4) The process f (t) is almost surely at least three times continuously differentiable with
respect to t . The Hessian matrix of C(t) at the origin is −I , where I is the d × d identity
matrix.

Theorem 1. Suppose that conditions (C1) and (C2) are satisfied. Then, F ′(a) exists almost
everywhere and

lim sup
a→∞

σ 2
T a−1ea2/2σ 2

T F ′(a) ≤ 1,

where σT = supt∈T σ (t) < ∞.

Remark 1. Under conditions (C1) and (C2) (very weak conditions), Theorem 1 establishes
the existence and an asymptotic bound of F ′(a). It also includes the case when ϑ is a
discrete measure and, therefore, this bound is applicable to the finite/infinite sum of log-
normal random variables. The following simple example implies that, without additional
assumptions, the bound in Theorem 1 is efficient up to a polynomial term of a. Consider
a constant field f (t) ≡ Z, where Z ∼ N(0, 1). Let σ(t) take a constant value σ . Then
F ′(a) = exp(−a2/(2σ 2))/(

√
2πσ).

Under more regularity conditions, we further improve the bound.

Theorem 2. Suppose that conditions (C1)–(C3) are satisfied. According to (C3), there exists
some continuous function µf (t) on T such that

dϑ(t) = eµf (t)∫
T

eµf (s) ds
dt. (2)

For each ε and a, let uε (as a function of a) be the solution to the equation

eσuεudε−d/2α
ε = ea

∫
T

eµf (t) dt. (3)

Then, for any ε ∈ (0, 1/(2α)),

udε−d/2α−1
ε eu2

ε/2F ′(a) → 0 as a → ∞. (4)

Remark 2. Note that, when a is large, (3) generally has two solutions. One is on the order of
a/σ ; the other one is close to 0. We choose the larger solution as our uε.

In (3), if we replace the integral
∫

eµf (t) dt by 1 (or any other constant) then uε will be
shifted by approximately a constant. Denote the corresponding solution by ũε. Note that the
results hold for all sufficiently small ε. For large enough uε, we have ũε < uε/2. Thus, the
bound in (4) holds by replacing uε with ũε.
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The exact asymptotic approximation of F ′(a) can be derived when f is homogeneous and
three times differentiable (condition (C4)). The statement of the theorem needs the following
notation. Let ‘∂’ denote the gradient and ‘
’ denote the Hessian matrix with respect to t . The
notation ‘∂2’ is used to denote the vector of second derivatives with respect to t , i.e. ∂2f (t) is
a d(d + 1)/2-dimensional vector. The difference between ∂2f (t) and 
f (t) is that 
f (t) is a
d × d symmetric matrix whose diagonal and upper triangle consist of elements of ∂2f (t).

It is well known that, for each given t ∈ T , (f (t), ∂2f (t)) is a multivariate Gaussian random
vector with mean zero and covariance matrix

� =
(

1 µ20
µ02 µ22

)
, (5)

where µ20 is the vector containing the spectral moments of order two and µ22 is the matrix
containing the spectral moments of order four. Both µ20 and µ22 are arranged in an appropriate
order according to the order of ∂2f (t). See, e.g. the standard textbook [1, Chapter 5.5] for
more details of µ20 and µ22.

Theorem 3. Suppose that conditions (C1)–(C4) are satisfied (with the expansion in (C3a)
replaced by (C4)). Let ϑ be defined as in (2), and let µf (t) be three times differentiable. Then
the following approximation holds as a → ∞:

F ′(a) = (1 + o(1))σ−1ũd

∫
T

exp

(
− (ũ − µf (t)/σ )2

2

)
CH (µf , σ, t) dt.

Here ũ (as a function of a) is the solution to

(
2π

σ

)d/2

ũ−d/2eσ ũ = ea

∫
T

eµf (t) dt,

the function CH is defined as

CH (µf , σ, t) = |�|−1/2

(2π)(d+1)(d+2)/4

× exp

(
1�µ221 + ∑

i ∂4
iiiiC(0)

8σ 2 + dµf (t) + Tr(
µf (t))

2σ 2 + |∂µf (t)|2
σ 2

)

×
∫

z∈Rd(d+1)/2
exp

(
−1

2

[ |µ20µ
−1
22 z|2

1 − µ20µ
−1
22 µ02

+
∣∣∣∣µ−1/2

22 z − µ
1/2
22 1
2σ

∣∣∣∣
2])

dz,

µ20, µ02, µ22, and � are defined in (5), and

1 = (1, . . . , 1︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
d(d−1)/2

)�.

Remark 3. For condition (C1), if ϑ(T ) �= 1, we can always perform the transformation

log
∫

T

eσf (t) dϑ(t) = log

(
1

ϑ(T )

∫
T

eσ(t)f (t) dϑ(t)

)
+ log ϑ(T )

and let ϑ ′(·) = ϑ(·)/ϑ(T ).
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Condition (C2) assumes the zero expectation function. For any continuous function µ(t),

log
∫

T

eσ(t)f (t)+µ(t) dϑ(t) = log
∫

T

eσ(t)f (t) dϑ ′(t),

where dϑ ′(t) = eµ(t) dϑ(t). Therefore, this problem setting includes the situation when the
mean is not a constant.

Condition (C3b) is imposed for technical reasons to localize the integration around the
maximum t∗ = arg supt∈T f (t). In particular, under condition (C3b), the integral on the region
|t − t∗| > ε can be ignored in the analysis when f (t∗) achieves a very high value. Condition
(C3) includes quite a large class of homogeneous processes. One of the widely employed
families is

C(t) = e−|t |α

for some α ∈ (0, 2]. Another more concrete example is given by

f (t) = Z1 cos(t) + Z2 sin(t)

for t ∈ [0, 2π ], where Z1 and Z2 are independent standard Gaussian random variables.
Condition (C4) implies that C(t) is at least six times differentiable and the first, third, and

fifth derivatives at the origin are all 0. For the above exponential covariance functions, (C4)
is satisfied when α = 2. The assumption that the Hessian matrix is the identity is introduced
to simplify the notation. For any Gaussian process g(t) with covariance function Cg(t) and

Cg(0) = −� and det(�) > 0, this assumption can be obtained by an affine transformation
by letting g(t) = f (�1/2t) and

log
∫

T

eσg(t)+µf (t) dt = log det(�−1/2) + log
∫

{s : �−1/2s∈T }
eσf (s)+µf (�−1/2s) ds,

where, for each positive semidefinite matrix �, we let �1/2 be a symmetric matrix such that
�1/2�1/2 = �.

3. Proofs

In this section we present the proofs of the theorems. We organize the proofs as follows.
In Section 3.1 we develop a proposition that is central to the proofs of all the three theorems.
The theorems are proved in Section 3.2 based on the results in Section 3.1. To streamline the
discussion, we present the statements of lemmas where they are applied and postpone their
proofs to Appendix A.

Throughout the discussion, we use the following notation for the asymptotic behaviors. We
say that 0 ≤ g(a) = O(h(a)) if g(a) ≤ ch(a) for some constant c ∈ (0, ∞) and all a ≥ a0 > 0;
similarly, g(a) = o(h(a)) if g(a)/h(a) → 0 as a → ∞.

3.1. A general bound for F ′(a)

Proposition 1. Under the conditions of Theorem 1, F ′(a) exists almost everywhere. Choose
b < a (depending on a) such that a − b → 0 and a(a − b) → ∞ when we send a to ∞. Then

lim sup
a→∞

√
2πσT exp

(
σ 2

T t2
b + 2(a − b)b

2σ 2
T

)
F ′(a) ≤ 1, (6)

where σT = supt∈T σ (t), tb = 
−1(F (b)), and 
(·) is the cumulative distribution function of
the standard Gaussian distribution.
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We dedicate the rest of this subsection to proving this proposition. According to the
Karhunen–Loève representation theorem (see Chapter 3 of [1]), f (t) has the expression

f (t) =
∞∑
i=1

xiφi(t),

where {xi, i ∈ N} are independent and identically distributed standard Gaussian random
variables and

∑
i φi(t)

2 = 1. For any positive integer N , let fN(t) be the partial sum of
the first N terms. Note that fN(t) can be viewed as a function of (x1, . . . , xN). We slightly
abuse the notation and write

fN(x, t) =
N∑

i=1

xiφi(t),

where x := (x1, . . . , xN). When writing fN(t), we consider it to be a random function; when
writing fN(x, t) or fN(x, ·) we emphasize that it is a function of x mapping from RN to C(T ).
Similarly, we redefine function HfN

: RN → R as

HfN
(·) : x �→ HfN

(x) = log

(∫
T

eσ(t)fN (x,t) dϑ(t)

)
.

Let µN be the standard Gaussian measure on the probability space (RN, B(RN), µN) with
density function

ϕN(x) = (2π)−N/2 exp
(− 1

2 |x|2), (7)

that is, µN(A) = ∫
A

ϕN(x) dx, where | · | is the Euclidean distance.
We first establish a bound for the density of fN(t) and then send N to ∞. On the probability

space (RN, B(RN), µN), we define the sets

VN,a := {x ∈ RN : HfN
(x) ≤ a}, WN,a :=

{
x ∈ RN : sup

t∈T

{σ(t)fN(x, t)} ≤ a
}
, (8)

and the distribution functions

FN(a) := P(HfN
≤ a) = µN(VN,a),

GN(a) := P

(
sup
t∈T

{σ(t)fN(t)} ≤ a
)

= µN(WN,a).

We prove Proposition 1 in four steps. In steps 1 and 2, we derive a ‘not-so-friendly’ bound for
F ′

N(a). In step 3 we send N to ∞ and develop the corresponding bound for F ′(a). Finally,
inequality (6) is proved in step 4 based on the results in step 3.

3.1.1. Step 1. Let ∇ HfN
(x) be the gradient field of HfN

(x) with respect to x, and define

lx = 1

|∇ HfN
(x)| .

Furthermore, let Sa be the surface on which HfN
(x) = a, i.e.

Sa = {x : HfN
(x) = a}.

We write
f̃N (x, t) = σ(t)fN(x, t).
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For a ∈ R, the density function F ′
N(a) can be written as a surface integral as follows:

F ′
N(a) = lim

ε→0

FN(a + ε) − FN(a)

ε

= lim
ε→0

µN(Va+ε) − µN(Va)

ε

=
∫

Sa

lxϕN(x) dSa(x). (9)

Here ϕN is defined as in (7) and dSa(x) denotes the surface integral element on Sa ⊂ RN .
The next lemma gives a basic inequality that bounds the surface integral by an integral on

the set VN,a . Its proof follows a similar derivation as in [20].

Lemma 1. Consider the probability space (RN, B(RN), µN). Under the conditions in
Theorem 1, we have the bound

∫
Sa

lxϕN(x) dSa(x) ≤
∫

V c
N,a

lh(x)(c
+
h(x) + 1) dµN(x), (10)

where V c
N,a = RN \ VN,a , h(x) = arg minz∈Sa |x −z| is the projection of x onto the surface Sa ,

cx = 〈x, nx〉, c+
x = max{cx, 0},

〈·, ·〉 is the inner product, and nx is the unit vector orthogonal to the surface Sa pointing towards
the side where HfN

(x) has larger values.

3.1.2. Step 2. We start with deriving bounds for lh(x) and ch(x), where h(x) is defined as in
Lemma 1. Note that

∂iHfN
(h(x)) = e−a

∫
T

σ (t)φi(t)e
f̃N (h(x),t) dϑ(t)

and, since h(x) ∈ Sa ,

l−1
h(x)ch(x) = 〈h(x), ∇HfN

(h(x))〉
= e−a

∫
T

f̃N (h(x), t)ef̃N (h(x),t) dϑ(t)

≤ sup
t∈T

{f̃N (h(x), t)}e−a

∫
T

ef̃N (h(x),t) dϑ(t)

= sup
t∈T

{f̃N (h(x), t)}. (11)

This implies that

c+
h(x) ≤ lh(x)

(
sup
t∈T

{f̃N (h(x), t)}
)+

. (12)

The following two lemmas provide a bound for lh(x).

Lemma 2. VN,a is a convex set and HfN
: RN → R is a convex function.
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Lemma 3. For each b < a and x ∈ Sa ,

lx = |∇HfN
(x)|−1 ≤ ρ(x, VN,b)

a − b
,

where VN,b = {z ∈ RN : HfN
(z) ≤ b} and ρ(x, VN,b) = infz∈VN,b

|x − z|.
According to (12) and Lemma 3, for each x ∈ V c

N,a , the integrant in (10) is bounded by

lh(x)(c
+
h(x) + 1) ≤ ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
,

which implies that

F ′
N(a) ≤

∫
V c

N,a

lh(x)(c
+
h(x) + 1) dµN(x)

≤
∫

V c
N,a

ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
dµN(x). (13)

By the fact that, for any x,

log

(∫
t∈T

ef̃N (x,t) dϑ(t)

)
≤ sup

t∈T

{f̃N (x, t)},

we obtain WN,a ⊆ VN,a for all a, where WN,a is defined as in (8). Now, for some constant
M ≥ 1, partition V c

N,a = RN \ VN,a into two parts:

V c
N,a = V c

N,a,1 ∪ V c
N,a,2,

where
V c

N,a,1 =
{
x + λnx : λ ≥ 0, x ∈ Sa, and sup

t∈T

{f̃N (x, t)} < Ma
}

and
V c

N,a,2 =
{
x + λnx : λ ≥ 0, x ∈ Sa, and sup

t∈T

{f̃N (x, t)} ≥ Ma
}

with nx defined as in Lemma 1. Figure 1 illustrates the relative geometric positions of all the
relevant sets.

We split the integral in (13) into two parts:

F ′
N(x) ≤

∫
V c

N,a,1

ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
dµN(x)

+
∫

V c
N,a,2

ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
dµN(x)

= I1 + I2.

We consider the integrals I1 and I2 separately. When GN(a) = P(supt∈T {f̃N (t)} ≤ a) ≤ 1
2 , we

take M = 1. Note that in this case, by the fact that WN,a ⊆ VN,a , the first term on the right-hand
side of the above display vanishes and we only need to consider the second integral. Then, for
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VN,a WN,Ma WN,a VN,b WN,b

VN,a,1
c

VN,a,2
c

VN,a,2
c

x

h(x)

Zx

Figure 1: An illustration of the relative positions of different sets used in the proof. The legends indicate
the boundary of each set.

the first integral, we only consider the case in which GN(a) > 1
2 (note that GN(a) > 1

2 implies
that a > 0).

A bound for I1. By the definition of V c
N,a,1, x ∈ V c

N,a,1 implies that supt∈T {f̃N (h(x), t)} <

Ma and, therefore, we have, for a > 0,

I1 ≤
∫

V c
N,a,1

ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b
Ma + 1

)
dµN(x). (14)

The following lemma provides a bound for I1.

Lemma 4. For any a > b with GN(b) > 1
2 and increasing function J (·), we have∫

V c
N,a,1

J (ρ(x, VN,b)) dµN(x) ≤
∫ ∞

τM,a,b+tN,b

J (u − tN,b) d
(u),

where

tN,b = 
−1(µN(VN,b)), τM,a,b = a − b

Ma

(
a − b

Ma
+ 1

)
t ′N,b

with
t ′N,b = 
−1

(
P

(
H

f̃N
< b, sup

t∈T

{f̃N (t)} < Ma
))

.

According to Lemma 4, for any b < a such that GN(b) > 1
2 , the right-hand side of (14)

satisfies the inequality∫
V c

N,a,1

ρ(h(x), VN,b)

a − b

(
ρ(h(x), VN,b)

a − b
Ma + 1

)
dµN(x)

≤
∫ ∞

τM,a,b+tN,b

u − tN,b

a − b

(
u − tN,b

a − b
Ma + 1

)
d
(u). (15)

This integral can be further bounded by the following inequality, whose proof is given in [20].
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Lemma 5. For the standard normal distribution, we have

∫ ∞

t+r

(u − t)k d
(u) ≤ (1 − 
(t + r))rkk!
k∑

i=0

1

(k − i)! ri(t + r)i
for k ∈ N, r > 0.

Applying Lemma 5 to (15) we obtain

I1 ≤ (1 − 
(τM,a,b + tN,b))C1(a, b, τM,a,b), (16)

where

C1(a, b, τM,a,b) = Ma

(a − b)2 τ 2
M,a,b + τM,a,b

a − b
+ 2MaτM,a,b + a − b

(a − b)2(τM,a,b + tN,b)

+ 2Ma

(a − b)2(τM,a,b + tN,b)2 .

A bound for I2. Choose another constant b̃ < a. Given the fact that W
N,b̃

⊆ V
N,b̃

, we have

I2 ≤
∫

V c
N,a,2

ρ(x, W
N,b̃

)

a − b̃

(
ρ(x, W

N,b̃
)

a − b̃

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
dµN(x). (17)

We use the following lemma to further bound I2.

Lemma 6. Consider the probability space (RN, B(RN), µN) and a positive measure set B.
For any increasing function J on R+ and r > 0, we have

∫
Bc

r

J (ρ(x, B)) dµN(x) ≤
∫ ∞

tB+r

J (u − tB) d
(u),

where Bc
r = RN \ Br = {x : ρ(x, B) > r} and tB := 
−1(µN(B)).

In order to use Lemma 6 with B = W
N,b̃

, we need to derive a lower bound for ρ(x, W
N,b̃

)

for x ∈ V c
N,a,2 (so that each x ∈ V c

N,a,2 is reasonably far away from W
N,b̃

and V c
N,a,2 ⊆ Bc

r )
and an upper bound for supt∈T {f̃N (h(x), t)}, h(x) ∈ Sa .

Let φN(t) = (φ1(t), . . . , φN(t)). For any z ∈ W
N,b̃

, any unit-length vector v and scalar λ,

sup
t∈T

{f̃N (z + λv, t)} = sup
t∈T

{σ(t)〈z + λv, φN(t)〉}

≤ sup
t∈T

{σ(t)〈z, φN(t)〉} + sup
t∈T

{σ(t)〈λv, φN(t)〉}

≤ b̃ + λσT . (18)

Let λ < (Ma − b̃)/σT . For any unit-length vector v, we have

sup
t∈T

{
f̃N

(
z + Ma − b̃

σT

v, t

)}
< Ma.

Thus, for any point x ∈ RN , if ρ(x, W
N,b̃

) < (Ma − b̃)/σT then supt {f̃N (x, t)} < Ma. There-
fore, for any x ∈ V c

N,a,2, we have ρ(h(x), W
N,b̃

) ≥ (Ma − b̃)/σT . Given that W
N,b̃

⊆ VN,a
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and that VN,a is a convex set, we obtain 〈h(x) − y, nh(x)〉 > 0 for all y ∈ W
N,b̃

. Thus, we
obtain

ρ(x, W
N,b̃

) ≥ ρ(h(x), W
N,b̃

) ≥ Ma − b̃

σT

.

Thus, we have derived a lower bound of ρ(x, W
N,b̃

) for x ∈ V c
N,a,2. See Figure 1 for an

illustration.
For x ∈ V c

N,a and h(x) ∈ Sa , let zx = arg infz∈W
N,b̃

ρ(h(x), z) and ñx,z = (h(x) −
zx)/|h(x) − zx | (see Figure 1). An upper bound for supt∈T {f̃N (h(x), t)} is

sup
t∈T

{f̃N (h(x), t)} = sup
t∈T

{f̃N (zx + ρ(h(x), W
b̃
)ñxz , t)} ≤ ρ(x, W

b̃
)σT + b̃,

where the last step follows exactly the same argument as in (18). Thus, substituting the above
bound for supt∈T {f̃N (h(x), t)} into (17), we have∫

V c
N,a,2

lh(x)(c
+
h(x) + 1) dµN(x)

≤
∫

V c
N,a,2

[(
ρ(x, W

N,b̃
)

a − b̃

)2

(ρ(x, W
N,b̃

)σT + b̃+) + ρ(x, W
N,b̃

)

a − b̃

]
dµN(x).

Then, by Lemma 6 (B = W
N,b̃

and V c
N,a,2 ⊆ Bc

(Ma−b̃)/σT
), the inequality∫

V c
N,a,2

[(
ρ(x, W

N,b̃
)

a − b̃

)2

(ρ(x, W
N,b̃

)σT + b̃+) + ρ(x, W
N,b̃

)

a − b̃

]
dµN(x)

≤
∫ ∞

r
M,a,b̃

+tW
N,b̃

[(
u − tW

N,b̃

a − b̃

)2

((u − tW
N,b̃

)σT + b̃+) + u − tW
N,b̃

a − b̃

]
d
(u),

holds, where

tW
N,b̃

= 
−1(GN(b̃)) and r
M,a,b̃

= Ma − b̃

σT

.

By Lemma 5, the above integral is bounded by

(1 − 
(r
M,a,b̃

+ tW
N,b̃

))C2(a, b̃, r
M,a,b̃

), (19)

where

C2(a, b̃, r
M,a,b̃

) := r
M,a,b̃

a − b̃
+ 1

(a − b̃)(tW
N,b̃

+ r
M,a,b̃

)

+ b̃+

(a − b̃)2

2∑
i=0

r2
M,a,b̃

2!
(2 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

+ σT

(a − b̃)2

3∑
i=0

r3
M,a,b̃

3!
(3 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

. (20)

Combining (16) and (19), we have, for a such that GN(a) > GN(b) > 1
2 and b̃ < a,

F ′
N(a) ≤ min

M≥1
{(1 − 
(τM,a,b + tN,b))C1(a, b, τM,a,b)

+ (1 − 
(r
M,a,b̃

+ tW
N,b̃

))C2(a, b̃, r
M,a,b̃

)}, (21)
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and, for a satisfying GN(a) ≤ 1
2 , by taking M = 1 we have, for constant b̃ < a,

F ′
N(a) ≤

∫
V c

N,a,2

ρ(h(x), V
N,b̃

)

a − b̃

(
ρ(h(x), V

N,b̃
)

a − b̃

(
sup
t∈T

{f̃N (h(x), t)}
)+ + 1

)
dµN(x)

≤ (1 − 
(r
a,b̃

+ tW
N,b̃

))C2(a, b̃, r
a,b̃

),

with r
a,b̃

= (a − b̃)/σT .

3.1.3. Step 3: extension to f (t). From the above derivations, the FN(a) are continuously
differentiable on R. Let

D+F ′
N(a) := lim sup

ε→0

F ′
N(a + ε) − F ′

N(a)

ε
.

By Lemma 8 (presented in Appendix A), the total variation of F ′
N on any interval [a1, a2]

satisfies

a2∨
a1

F ′
N ≤ sup

a∈[a1,a2]
F ′

N(a) + 2(a2 − a1) sup
a∈[a1,a2]

D+F ′
N(a) ≤ m1 + m2(a2 − a1)

for some constants m1, m2 > 0. Therefore, F ′
N(a) is continuous on [a1, a2] except for a

countable set. Also, F ′
N(a) is bounded in the L1 norm on the interval [a1, a2]. Then, by Helly’s

selection theorem, there exists a subsequence {F ′
Ni

}i such that it converges almost everywhere
(and also in the L1 norm) to a function F̃ ′ of bounded total variation on [a1, a2]. Note that
FN(a) converges uniformly to F(a) on the interval [a1, a2] (see Theorem 3.1.2 of [1]). Thus,

F(a2) − F(a1) = lim
i

FNi
(a2) − FNi

(a1) = lim
i

∫ a2

a1

F ′
Ni

(b) db =
∫ a2

a1

F̃ ′(b) db,

which implies that F̃ ′ = F ′ almost everywhere on [a1, a2]. Therefore, by the convergence
result, we obtain an upper bound of F ′(a) by sending N to ∞ on both sides of (21), i.e. for
G(a) > G(b) > 1

2 and b̃ < a (where G(a) = P(supt f̃ (t) ≤ a)), we have

F ′(a) ≤ min
M≥1

{(1 − 
(τM,a,b + tb))C1(a, b, τM,a,b)

+ (1 − 
(r
M,a,b̃

+ tW
b̃
))C2(a, b̃, r

M,a,b̃
)}, (22)

and, for a such that G(a) ≤ 1
2 and b̃ < a ,

F ′(a) ≤ (1 − 
(r
a,b̃

+ tW
b̃
))C2(a, b̃, r

a,b̃
),

where tb = 
−1(F (b)), tW
b̃

= 
−1(G(b̃)), r
M,a,b̃

= (Ma − b̃)/σT , r
a,b̃

= (a − b̃)/σT , and,
with a slight abuse of notation,

τM,a,b = a − b

Ma

(
a − b

Ma
+ 1

)
t ′b with t ′b = 
−1

(
P

(
Hf < b, sup

t∈T

f (t) < Ma
))

.
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3.1.4. Step 4. Based on the result in (22), we now prove Proposition 1 in step 4.
By the Borel–TIS lemma (Lemma 9 in Appendix B; see also [7], [21], and Theorem 2.1.1

of [1]), we have

lim inf
a→∞

ta

a
≥ lim

a→∞
tWa

a
= σ−1

T and tWa − σ−1
T a = O(1).

Now choose b = b(a) < a such that, as a → ∞, a − b → 0 and a(a − b) → ∞, and

M = σT

(
1 + C

a

)
tb

b
> 1

with a large enough constant C (note that tb ≥ tWb
≥ b/σT + O(1)). In addition, let b̃ be a

fixed constant. Under the above settings, as a → ∞, we simplify the functions

C1(a, b, τM,a,b) = (1 + o(1))
t ′b

2

Ma
,

C2(a, b̃, r
M,a,b̃

) = σT (Ma − b̃)3

(a − b̃)2σ 3
T

(1 + o(1)) = M3a

σ 2
T

(1 + o(1)).

We now show that the second term in (22) is of a smaller order, that is,

(1 − 
(r
M,a,b̃

+ tW
b̃
))C2(a, b̃, r

M,a,b̃
) = o(1)(1 − 
(τM,a,b + tb))C1(a, b, τM,a,b). (23)

By choosing b̃ as a constant and sending a to ∞, for some λ > 0, we have

(r
M,a,b̃

+ tW
b̃
)2 − (tb + τM,a,b)

2

=
(

Ma − b̃

σT

+ tW
b̃

)2

−
(

tb + a − b

Ma

(
a − b

Ma
+ 1

)
t ′b

)2

≥ (2 + o(1))a

(
Ma − b̃

σT

+ tW
b̃
− tb − a − b

Ma

(
a − b

Ma
+ 1

)
t ′b

)

≥ (2 + o(1))a

(
Ma

σT

− tb + (tW
b̃
− σ−1

T b̃) + o(1)

)

≥ (2 + o(1))
λ

2σT

a,

where the second inequality follows from the following argument. By the fact that tWb
≤ t ′b ≤ tb,

we have

a − b

Ma

(
a − b

Ma
+ 1

)
t ′b =

(
1 + a − b

σT (a + C)tb/b

)
a − b

σT (a + C)tb/b
t ′b

= (1 + o(1))
a − b

σT tb
t ′b

= o(1). (24)

Therefore, we obtain (23), and the second term in (22) can be ignored. Furthermore, by (24),
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we have

(tb + τM,a,b)
2 =

(
tb +

(
1 + a − b

σT (a + C)tb/b

)
a − b

σT (a + C)tb/b
t ′b

)2

≥ t2
b + 2

(a − b)b

σT (a + C)
t ′b

≥ t2
b + 2

(a − b)b

σ 2
T

+ o(1),

where the last step follows from the fact that t ′b ≥ tWb
= σ−1

T b + O(1). Therefore,

(1 − 
(τM,a,b + tb))C1(a, b, τM,a,b)

≤ (1 + o(1))
t ′b

2

Ma

1√
2π

1

τM,a,b + tb
exp

(
− t2

b + 2(a − b)b/σ 2
T

2

)

≤ (1 + o(1))
1√

2πσT

exp

(
− t2

b + 2(a − b)b/σ 2
T

2

)
,

where the last inequality follows from the fact that t ′b < tb < tb + τM,a,b and t ′b < Ma/σT =
(a + C)tb/b. This completes the proof of Proposition 1.

3.2. Proofs of the theorems

In this section we prove our theorems based on Proposition 1. We propose a change of
measure Q which is central to the proof of our theorems. Let P be the original measure. The
probability measure Q is defined such that P and Q are mutually absolutely continuous with
the Radon–Nikodym derivative being

dQ

dP
=

∫
T

exp(−(f (t) − u)2/2)

exp(−f (t)2/2)
dϑ(t) (25)

for some u ∈ R. Note that Q depends on u. To simplify the notation, we omit the index of u in Q

when there is no ambiguity. One can verify that (25) is a valid Radon–Nikodym derivative. We
will provide further description in Section 3.2.2. See also [14], where this change of measure
was used to derive the asymptotic approximation of P(

∫
T

exp(σf (t) + µf (t)) dt > b) with
µf (t) being a deterministic function.

3.2.1. Proof of Theorem 1. In order to use Proposition 1, we first derive a lower bound for ta .
For each u, we rewrite

dQ

dP
=

∫
T

exp

(
2uf (t) − u2

2

)
dϑ(t).

We have

P

(
log

∫
T

eσ(t)f (t) dϑ(t) > a

)
= EQ

(
dP

dQ
; log

∫
T

eσ(t)f (t) dϑ(t) > a

)

= eu2/2EQ

(
1∫

T
euf (t) dϑ(t)

; log
∫

T

eσ(t)f (t) dϑ(t) > a

)
,

where EQ is the expectation under measure Q. Note that

log
∫

T

eσ(t)f (t) dϑ(t) > a
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implies that, for large enough a,∫
T

eσT f (t) dϑ(t) ≥
∫

T ∩{f (t)≥0}
eσ(t)f (t) dϑ(t)

≥ ea −
∫

T ∩{f (t)<0}
eσ(t)f (t) dϑ(t)

≥ ea − 1.

Then by Jensen’s inequality we have, conditioning on log
∫
T

eσ(t)f (t) dϑ(t) > a with large
enough a, ∫

T

euf (t) dϑ(t) ≥ (ea − 1)u/σT , (26)

and, therefore,

P

(
log

∫
T

eσ(t)f (t) dϑ(t) > a

)
= eu2/2 EQ

(
1∫

T
euf (t) dϑ(t)

; log
∫

T

eσ(t)f (t) dϑ(t) > a

)

≤ eu2/2(ea − 1)−u/σT

= (1 − e−a)−u/σT eu2/2−ua/σT .

This bound holds for all u, and exp(u2/2 − ua/σT ) is minimized when u = a/σ . Thus, for
sufficiently large a, the bound of the tail is

1 − F(a) = P

(
log

∫
T

eσ(t)f (t) dϑ(t) > a

)
≤ (1 + o(1)) exp

(
− a2

2σ 2
T

)
.

According to the above inequality, we have

ta ≥ 
−1
(

1 − exp

(
− a2

2σ 2
T

))
= a

σT

− σT

log a − log σT

a
+ C̃

a
+ o

(
1

a

)
,

where C̃ satisfies (1/
√

2π) exp(−C̃/σT ) = 1. Then, by Proposition 1, taking b = a − 1/
√

a,
we have

F ′(a) ≤ (1 + o(1))
1√

2πσT

exp

(
− t2

b + 2(a − b)b/σ 2
T

2

)

≤ (1 + o(1))
a

σ 2
T

exp

(
− a2

2σ 2
T

)
,

which completes our proof.

3.2.2. Proof of Theorem 2. Under the assumptions of Theorem 2, σ(t) ≡ σ and dϑ(t) =
eµf (t) dt/

∫
T

eµf (t) dt . Then

P

(
log

∫
T

eσf (t) dϑ(t) > a

)
= P

(
log

∫
T

eσf (t)+µf (t) dt > a + log
∫

T

eµf (t) dt

)
.

Similarly to the proof of Theorem 1, we prove Theorem 2 by deriving an upper bound for

P

(
log

∫
T

eσf (t)+µf (t) dt > a

)
,

which helps to get a lower bound for ta (then replace a by a + log
∫

eµf (t) dt).
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Consider the change of measure:

dQ

dP
= 1

mes(T )

∫
T

exp(−(f (t) − u)2/2)

exp(−f (t)2/2)
dt = 1

mes(T )

∫
T

exp

(
2uf (t) − u2

2

)
dt, (27)

where mes(T ) is the Lebesgue measure of T . It is more intuitive to describe the measure Q from
a simulation point of view (see [14]). One can simulate f (t) under the measure Q according
to the following two steps.

1. Simulate a random variable τ uniformly over T with respect to the Lebesgue measure.

2. Given the realized τ , simulate the Gaussian process f (t) with mean uC(t − τ) and
covariance function C(t).

The second step is equivalent to first sampling f (τ) from N(u, 1) and then sampling {f (t) : t �=
τ } from its original conditional distribution under the measure P given f (τ). It is not hard
to verify that the above two-step procedure is consistent with the Radon–Nikodym derivative
in (27). Under Q, a random variable τ is first sampled uniformly over T , then f (τ) is simulated
with a large mean at level u. This implies that the high value of the integral

∫
T

eσf (t) dt is mostly
caused by the fact that the field reaches a high level at one location t∗, and such a location t∗
is very close to τ . Therefore, the random index τ localizes the maximum of the field. We can
write the tail probability as

P

(
log

∫
T

eσf (t)+µf (t) dt > a

)

= mes(T )eu2/2 EQ

(
1∫

T
euf (t) dt

; log
∫

T

eσf (t)+µf (t) dt > a

)

= eu2/2
∫

T

EQ

(
1∫

T
euf (t) dt

; log
∫

T

eσf (t)+µf (t) dt > a

∣∣∣∣ τ

)
dτ. (28)

According to step 2 of the simulation, conditional on τ and under the measure Q, the process

f̄ (t) = f (t) − uC(t − τ)

follows the same law as f (t) under P.
Let u be the solution to ea−σu ud/2α−dγ = 1 with 0 < γ < ε, where ε is chosen as in the

theorem statement. Choose δ such that e− supt∈T µf (t) ud/2α+dγ = mes(s ∈ T : |s| < uδ). Keep
in mind that δ ≈ 1/2α + γ . Let

L =
{

sup
t∈T

f̄ (t) < a1/2+η
}
.

For any η satisfying 0 < η < αδ − 1
2 , by Jensen’s inequality we have (28) on Lc:

P

(
log

∫
T

eσf (t)+µf (t) dt > a, Lc

)

= mes(T )eu2/2 EQ

(
1∫

T
euf (t) dt

; log
∫

T

eσf (t) dt > a − sup
t∈T

µf (t) and Lc

)
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≤ exp

(
u2

2
− u(a − supt∈T µf (t) − log mes(T ))

σ

)

× Q

(
log

∫
T

eσf (t) dt > a − sup
t∈T

µf (t) and sup
t∈T

f̄ (t) > a1/2+η

)

= o(1)e−u2/2.

Here the inequality follows thanks to (26) and the last step follows from the Borel–TIS lemma
(applied to f̄ ). Therefore, we have

P

(
log

∫
T

eσf (t)+µf (t) dt > a

)

≤ eu2/2
∫

T

EQ

(
1∫

T
euf (t) dt

; log
∫

T

eσf (t) dt > a − sup
t∈T

µf (t) and L

∣∣∣∣ τ

)
dτ

+ o(1)e−u2/2. (29)

In what follows, we derive an upper bound for the conditional expectation in (29). We first
consider the set {log

∫
T

eσf (t) dt > a − supt∈T µf (t)} in (29). Let εu = u−1/α+δ (recall that δ

is some constant such that e− supt∈T µf (t) ud/2α+dγ = mes(s ∈ T : |s| < uδ)). We can split the
integral log

∫
T

eσf (t) dt into two parts:
∫

T

eσf (t) dt = eσuT1 + eσuT2,

where

T1 =
∫

|t−τ |<εu

eσf (t) dt =
∫

|t−τ |<εu

eσ f̄ (t)+σu(C(t−τ)−C(0)) dt

and

T2 =
∫

|t−τ |≥εu

eσf (t) dt =
∫

|t−τ |≥εu

eσ f̄ (t)+σu(C(t−τ)−C(0)) dt.

Thus, log
∫

eσf (t) dt > a − supt∈T µf (t) if and only if

T1 + T2 > e− supt∈T µf (t)udγ−d/2α. (30)

For T1, since C(0) − C(t − τ) = |t − τ |α + R(t − τ), where R(t − τ) = o(|t − τ |α),

T1 =
∫

|t−τ |<εu

eσ f̄ (t)+σu(C(t−τ)−C(0)) dt

=
∫

|t−τ |<εu

exp(σ f̄ (t) − σu(|t − τ |α + R(t − τ))) dt

= u−d/α

∫
|s|<uδ

exp(σ f̄ (τ + u−1/αs) − σ |s|α − uσR(u−1/αs)) ds. (31)

For T2, by the condition that supt∈T \N0
C(t) < C(0) = 1, where N0 is a neighborhood of 0,

we have, for large enough u,

T2 ≤ e−σuδα

∫
T

eσ f̄ (t) dt,
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and on the set L we have
T2 < mes(T )eσa1/2+η−σuδα

. (32)

For the term
∫
T

euf (t) dt in (29), we have∫
|t−τ |<εu

euf (t) dt = eu2
∫

|t−τ |<εu

eu(f̄ (t)+u(C(t−τ)−C(0))) dt

= eu2
u−d/α mes(|s| < uδ)

1

mes(|s| < uδ)

×
∫

|s|<uδ

exp(u(f̄ (τ + u−1/αs) − |s|α − uR(u−1/αs))) ds. (33)

By Jensen’s inequality and (30), on the set {log
∫

eσf (t) dt > a}, we have

1

mes(|s| < uδ)

∫
|s|<uδ

exp(u(f̄ (τ + u−1/αs) − |s|α − uR(u−1/αs))) ds

≥
(

1

mes(|s| < uδ)

∫
|s|<uδ

exp(σ f̄ (τ + u−1/αs) − σ |s|α − σuR(u−1/αs)) ds

)u/σ

=
(

ud/αT1

mes(|s| ≤ uδ)

)u/σ

=
(

ud/αT1

e− supt∈T µf (t) ud/2α+dγ

)u/σ

≥ (1 − esupt∈T µf (t) ud/2α−dγ T2)
u/σ

≥ (1 − esupt∈T µf (t) ud/2α−dγ mes(T )eσa1/2+η−σuδα

)u/σ . (34)

The first equality in the above display is due to (31); the second equality is due to the definition
of δ; the second inequality is due to (30); and the last step is due to (32). Now, combining (31),
(32), (33), and (34), we obtain

EQ

(
1∫

T
euf (t) dt

; log
∫

T

eσf (t) dt > a − sup
t∈T

µf (t) and L

∣∣∣∣ τ

)

≤ EQ

(
1

eu2 e− supt∈T µf (t) u−d/2α+dγ (1 − mes(T )esupt∈T µf (t) ud/2α−dγ eσa1/2+η−σuδα
)u/σ

;

ud/2α−dγ T1 > 1 − mes(T )esupt∈T µf (t) ud/2α−dγ eσa1/2+η−σuδα

and L

)

≤ (1 + o(1))esupt∈T µf (t) ud/2α−dγ e−u2
.

Note that u is the solution to ea−σuud/2α−dγ = 1. Then following (29) we can obtain

P

(
log

∫
T

eσf (t) dt > a

)
≤ (mes(T ) + o(1))esupt∈T µf (t) ud/2α−dγ e−u2/2,

which implies that

1 − F(a) = P

(
log

∫
T

eσf (t)+µf (t) dt > a + log
∫

T

eµf (t) dt

)

≤ (mes(T ) + o(1))esupt∈T µf (t) uγ
d/2α−dγ e−uγ

2/2,
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where uγ is the solution to ∫
T

eµf (t) dtea−σuγ ud/2α−dγ
γ = 1.

Then

ta ≥ 
−1(1 − mes(T )esupt∈T µf (t) ud/2α−dγ
γ e−u2

γ /2)

= uγ − (d/2α − dγ + 1) log uγ

uγ

− log(
√

2π mes(T )esupt∈T µf (t))

uγ

+ o

(
1

a

)
.

Therefore, by Proposition 1, taking b = a − 1/
√

a, we have

F ′(a) ≤ (mes(T ) + o(1))esupt∈T µf (t)σ−1u1+d/2α−dγ
γ e−u2

γ /2.

Then, for any ε ∈ (0, 1/2α), taking γ such that γ < ε, we have

lim sup
a→∞

udε−d/2α−1
ε eu2

ε/2 F ′(a) = 0,

which completes the proof of Theorem 2.

3.2.3. Proof of Theorem 3. We cite the following result (see Theorem 3.4 of [14]) that provides
an approximation of F(a) for three-time differentiable fields.

Lemma 7. Under the assumptions and notation of Theorem 3,

P

(
log

∫
T

eσf (t)+µf (t) dt > a

)

= (1 + o(1))ud−1
∫

T

exp

(
− (u − µf (t)/σ )2

2

)
CH (µf , σ, t) dt,

where u is the solution to (
2π

σ

)d/2

u−d/2eσu = ea.

By Lemma 7, for a three times differentiable Gaussian random field satisfying the conditions
in Theorem 3, we have

1 − F(a) = P

(
log

∫
T

eσf (t)+µf (t) dt > a + log
∫

T

eµf (t) dt

)

= (1 + o(1))ũd−1
∫

T

exp

(
− (ũ − µf (t)/σ )2

2

)
CH (µf , σ, t) dt, (35)

where ũ is the solution to (
2π

σ

)d/2

ũ−d/2eσ ũ = ea

∫
T

eµf (t) dt.

Therefore, we obtain

ta = 
−1
(

ũd−1
∫

T

exp

(
− (ũ − µf (t)/σ )2

2

)
CH (µf , σ, t) dt

)
+ o

(
1

a

)
,

https://doi.org/10.1239/aap/1370870124 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870124


On the density functions of integrals of Gaussian random fields 417

which implies that ta/a → σ−1. Then, by Proposition 1, letting b = a − 1/
√

a, we have

F ′(a) ≤ (1 + o(1))σ−2a(1 − F(a)).

The right-hand side of the above display is precisely the approximation in the theorem.
In order to prove the theorem, we need to show that the right-hand side of the above equality

is also an asymptotic lower bound of the density. According to the approximation in (35), we
have

1 − F(a) =
∫ ∞

a

F ′(x) dx ≤ (1 + o(1))

∫ ∞

a

σ−2x(1 − F(x)) dx = (1 + o(1))(1 − F(a)).

(36)

We prove the lower bound by reaching a contradiction to (36). If our conclusion does not
hold, there exists ε > 0 and {ai, i ≥ 1} such that limi ai → ∞ and

F ′(ai)

σ−2ai(1 − F(ai))
< 1 − ε.

Then ∫ ∞

ai

[σ−2x(1 − F(x)) − F ′(x)] dx ≥ (1 + o(1))

∫ ãi

ai

ε

2
σ−2x(1 − F(x)) dx, (37)

where
ãi = inf

{
x > ai : σ−2x(1 − F(x)) − F ′(x) > 1

2εσ−2ai(1 − F(ai))
}
.

We have a lower bound for ãi as

ãi ≥ ai + (ε/2)σ−2ai(1 − F(ai))

supa≥ai
D+F ′(a) + |∂σ−2a(1 − F(a))/∂a|a=ai

| .

Following the result in Lemma 8 (see Appendix A), we derive an upper bound for D+F ′(ai)

as in steps 3 and 4 in the last section. Under the conditions of this theorem, we have M =
σ(1 + C/a)ta/a → 1; then, for b = a − 1/

√
a,

D+F ′(a) ≤ (1 − 
(τM,a,b + tb))C3(a, b, rM,a,b)

+ (1 − 
(rM,a,b + tWb
))C4(a, b, rM,a,b)

= (1 + o(1))(1 − 
(τM,a,b + tb))C3(a, b, rM,a,b)

= (1 + o(1))σ−4a2(1 − 
(τM,a,b + tb))

= (1 + o(1))σ−4a2(1 − F(a)).

Therefore,

ãi ≥ ai + (1 + o(1))
(ε/2)σ−2ai(1 − F(ai))

2σ−4a2
i (1 − F(ai))

= ai + (1 + o(1))
εσ 2

4ai

.

Thus, for the right-hand side integral in (37), we have

(1 + o(1))

∫ ãi

ai

ε

2
σ−2x(1 − F(x)) dx ≥ (1 + o(1))ηε(1 − F(ai)), (38)
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where ηε > 0 depends on ε and σ . Then (37) and (38) indicate that, for all ai ,∫ ∞

ai

[σ−2x(1 − F(x)) − F ′(x)] dx ≥ (1 + o(1))ηε(1 − F(ai)).

This contradicts the fact (implied by (36)) that
∫ ∞

a

[σ−2x(1 − F(x)) − F ′(x)] dx = o(1 − F(a)).

This completes the proof.

Appendix A. Proofs of the lemmas

Proof of Lemma 1. Lemma 1 follows from a similar argument as in [20]. For (9), the
inequality

exp

(
− t2

2

)
≤ (t+ + 1)

∫ ∞

t

exp

(
−u2

2

)
du

implies that∫
Sa

lxϕN(x) dSa(x)

=
∫

Sa

lx(2π)−N/2 exp

(
−|x|2 − c2

x

2

)
exp

(
−c2

x

2

)
dSa(x)

≤
∫

Sa

lx(2π)−N/2 exp

(
−|x|2 − c2

x

2

)
(c+

x + 1)

∫ ∞

cx

exp

(
−u2

2

)
du dSa(x)

=
∫

Sa

lx(c
+
x + 1)

∫ ∞

0
ϕN(x + λnx) dλ dSa(x).

The last step is due to a change of variable u = cx + λ and the fact that

|x + λnx |2 = |x|2 + λ2 + 2λcx.

The above surface integral can be bounded by a volume integral, i.e.
∫

Sa

lx(c
+
x + 1)

∫ ∞

0
ϕN(x + λnx) dλ dSa(x)

≤
∫

Sa

∫ ∞

0
lx(c

+
x + 1)

N−1∏
i=1

(1 + λki(x))ϕN(x + λnx) dλ dSa(x)

=
∫

V c
N,a

lh(x)(c
+
h(x) + 1)ϕN(x) dx,

where the ki(x) are the principle curvatures of Sa at x. The above inequality results from the
fact that curvatures are nonnegative in that Sa is the border of a convex set. Therefore, we
obtain

F ′
N(a) ≤

∫
V c

N,a

lh(x)(c
+
h(x) + 1) dµN(x).
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Proof of Lemma 2. For any two functions f and g, if log(
∫
T

exp(f (t)) dϑ(t)) ≤ a and
log(

∫
T

exp(g(t)) dϑ(t)) ≤ a then

log

(∫
T

exp

(
f (t) + g(t)

2

)
dϑ(t)

)
≤ log

(
1

2
exp(a) + 1

2
exp(a)

)
≤ a.

Therefore, Hf = log(
∫
T

exp(f (t)) dϑ(t)) is a convex function.

Proof of Lemma 3. By Taylor’s expansion, the norm of the gradient can be defined as

|∇HfN
(x)| = sup

|v′|=1
lim

ε→0+
HfN

(x) − HfN
(x + εv′)

ε
.

For each b < a, HfN
(x) = a, and x∗ = arg infz∈VN,b

|x − z|, let v∗ = (x∗ −x)/|x∗ −x|. Then

|∇HfN
(x)| ≥ lim

ε→0+
HfN

(x) − HfN
(x + εv∗)

ε
.

By the convexity of H (Lemma 2) and the fact that fN(x + εv∗, ·) is a linear function of ε,
HfN

(x + εv∗) is a convex function of ε and, therefore,

HfN
(x) − HfN

(x + εv∗)
ε

is a positive and decreasing function of ε. We choose ε = |x∗ − x| = ρ(x, VN,b). Then
|HfN

(x) − HfN
(x + εv∗)| = a − b. Thus, we obtain the bound

|∇HfN
(x)| ≥ a − b

ρ(x, VN,b)
.

As the proof of Lemma 4 requires Lemma 6, we prove Lemma 6 first.

Proof of Lemma 6. Lemma 10 (stated in Appendix B; see also [17] and Theorem 3.1 of [7])
implies that the following inequality holds:∫

Bc

J (ρ(x, B)) dµN(x) ≤
∫ ∞

tB

J (u − tB) d
(u).

In view of this, we have∫
Bc

r

J (ρ(x, B)) dµN(x) ≤
∫

Bc

[J (ρ(x, B))I (ρ(x, B) ≥ r) + J (r)I (ρ(x, B) < r)] dµN(x)

−
∫

Br\B
J (r)I (ρ(x, B) ≤ r) dµN(x)

≤
∫ ∞

tB

[J (u − tB)I (u − tB ≥ r) + J (r)I (u − tB < r)] d
(u)

− J (r)[µN(Br) − µN(B)]. (39)

Note that

1 − µN(Br) =
∫

Bc

I (ρ(x, B) ≥ r) dµN(x) ≤
∫ ∞

tB

I (u − tB ≥ r) d
(u) = 1 − 
(tB + r).
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Then, µN(Br) ≥ 
(tB + r) and further µN(Br) − µN(B) ≥ 
(tB + r) − 
(tB). Substitute
this result into (39) and note that

∫ ∞

tB

J (r)I (u − tB < r) d
(u) = J (r)[
(tB + r) − 
(tB)].

We then obtain ∫
Bc

r

J (ρ(x, B)) dµN(x) ≤
∫ ∞

tB+r

J (u − tB) d
(u).

Proof of Lemma 4. Let

a′ = a − b

Ma
b + b and V ′

N,b =
{
z : HfN

(z) < b and sup
t∈T

{fN(z, t)} < Ma
}
.

Thanks to the convexity of VN,b, ρ(x, VN,b) ≥ ρ(h(x), VN,b) for all x ∈ V c
N,a,1. We want to

apply Lemma 6 by considering B = VN,b and V c
N,a,1 ⊂ Bc

τM,a,b
. Thus, we only need to show

that, for each x ∈ Sa ∩ {sup{f̃N (x, t)} < Ma},

ρ(x, VN,b) ≥ τM,a,b = a − b

Ma

a′

b
t ′N,b.

By Lemma 3 and inequality (11), we have

ρ(x, VN,b) ≥ (a − b)lx ≥ a − b

Ma
cx.

Therefore, we only need to show that

cx ≥ a′

b
t ′N,b.

For any z ∈ V ′
N,b,

log
∫

T

exp

(
f̃N

(
z
a′

b
, t

))
dt = log

∫
T

exp

(
f̃N

(
z + z

a′ − b

b
, t

))
dt

≤ log
∫

T

exp(f̃N (z, t)) dt + sup
t∈T

{
f̃N

(
z
a′ − b

b
, t

)}

≤ b + a′ − b

b
Ma

= a.

Thus, we have µN({za′/b : z ∈ V ′
N,b}) ≤ FN(a). Thanks to Lemma 11 (see Appendix B, and

also Theorem 1 of [12]), we have




(
t ′N,b

a′

b

)
≤ µN

({
z
a′

b
: z ∈ V ′

N,b

})
≤ FN(a). (40)

Consider an x ∈ Sa and its unit vector nx orthogonal to the tangent plane of Sa at x, denoted
by Tx . According to the convexity of VN,a , the entire set of VN,a lies on one side of Tx , which
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is the side opposite to nx . The above statement is equivalent to VN,a ⊂ {z : 〈z, nx〉 < cx},
where cx = 〈x, nx〉. Thus,

FN(a) = µN(VN,a) ≤ µN({z : 〈z, nx〉 < cx}) = 
(cx).

Combining the above inequality with (40), we obtain, for each x ∈ Sa ∪ V c
N,a,1, 
(t ′N,ba

′/b) ≤
FN(a) ≤ 
(cx) and, thus, cx ≥ t ′ba′/b. Therefore,

ρ(x, VN,b) ≥ (a − b)lx ≥ a − b

Ma
cx ≥ a − b

Ma

a′

b
t ′N,b,

which completes the proof of Lemma 6.

The next lemma provides a bound for the second derivative of F(a):

D+F ′
N(a) := lim sup

ε→0

F ′
N(a + ε) − F ′

N(a)

ε
.

Lemma 8. Consider the probability space (RN, B(RN), µN). Under the conditions of
Theorem 1, when GN(a) > 1

2 , for b̃ < a and b < a such that GN(b) > 1
2 , we have

D+F ′
N(a) ≤ min

M≥1
{(1 − 
(τM,a,b + tN,b))C3(a, b, τM,a,b)

+ (1 − 
(r
M,a,b̃

+ tW
N,b̃

))C4(a, b̃, r
M,a,b̃

)},
and when GN(a) ≤ 1

2 , we have

D+F ′
N(a) ≤ (1 − 
(r

a,b̃
+ tW

N,b̃
))C4(a, b̃, r

a,b̃
),

where tWN,b
= 
−1(GN(b)), r

M,a,b̃
= (Ma − b̃)/σ , r

a,b̃
= (a − b̃)/σ ,

τM,a,b = a − b

Ma

(
a − b

Ma
+ 1

)
t ′N,b,

C3(a, b, τM,a,b) = 1

(a − b)2

(
10

3

2∑
i=0

τ 2
M,a,b2!

(2 − i)! τ i
M,a,b(tN,b + τM,a,b)i

+ a2M2

(a − b)2

4∑
i=0

τ 4
M,a,b4!

(4 − i)! τ i
M,a,b(tN,b + τM,a,b)i

)
,

C4(a, b̃, r
M,a,b̃

) = 10

3(a − b̃)2

2∑
i=0

r2
M,a,b̃

2!
(2 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

+ b̃2

(a − b̃)4

4∑
i=0

r4
M,a,b̃

4!
(4 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

+ 2σ b̃

(a − b̃)4

5∑
i=0

r5
M,a,b̃

5!
(5 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

+ σ 2

(a − b̃)4

6∑
i=0

r6
M,a,b̃

6!
(6 − i)! ri

M,a,b̃
(tW

N,b̃
+ r

M,a,b̃
)i

.
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Proof. As in step 1 in Section 3.1.1, we have a volume integral bound for F ′
N(a):

D+F ′
N(a) ≤

∫
V c

N,a

l2
h(x)

(
(c+

x )2 + 10

3

)
dµN(x).

The proof the above bound follows an argument in [20] (in particular, pages 850–851 therein)
and is therefore omitted.

Similarly to the proof in Section 3, consider the partition of V c
N,a : V c

N,a = V c
N,a,1 ∪ V c

N,a,2
for M ≥ 1. We have

D+F ′
N(a) ≤

∫
V c

N,a,1

l2
h(x)

(
(c+

x )2 + 10

3

)
dµN(x) +

∫
V c

N,a,2

l2
h(x)

(
(c+

x )2 + 10

3

)
dµN(x). (41)

Similarly as in the above derivation for (14), we have, for a and b such that GN(a) > GN(b) >
1
2 , ∫

V c
N,a,1

l2
h(x)

(
(c+

x )2 + 10

3

)
dµN(x)

≤
∫

V c
N,a,1

ρ(h(x), VN,b)
2

(a − b)2

(
ρ(h(x), VN,b)

2

(a − b)2

(
sup
t∈T

{fN(h(x), t)}
)2 + 10

3

)
dµN(x)

≤
∫ ∞

τM,a,b+tN,b

(u − tN,b)
2

(a − b)2

(
(u − tN,b)

2

(a − b)2 (Ma)2 + 10

3

)
d
(u)

= (1 − 
(τM,a,b + tN,b))C3(a, b, rM,a,b). (42)

Similarly as in the above derivation of (19), we have, for b̃ < a,

∫
V c

N,a,2

l2
h(x)

(
(c+

x )2 + 10

3

)
dµN(x)

≤
∫

V c
N,a,2

ρ(h(x), V
N,b̃

)2

(a − b̃)2

(
ρ(h(x), V

N,b̃
)2

(a − b̃)2

(
sup
t∈T

{fN(h(x), t)}
)2 + 10

3

)
dµN(x)

≤
∫ ∞

r
M,a,b̃

+tW
N,b̃

(u − tW
N,b̃

)2

(a − b̃)2

(
(u − tW

N,b̃
)2

(a − b̃)2
((u − tW

N,b̃
)σ + b̃)2 + 10

3

)
d
(u)

≤ (1 − 
(r
M,a,b̃

+ tW
N,b̃

))C4(a, b̃, r
M,a,b̃

), (43)

where tW
N,b̃

= 
−1(GN(b̃)), r
M,a,b̃

= (Ma − b̃)/σ , and the last inequality follows from
Lemma 5. Note that, when GN(a) < 1

2 , we take M = 1 and our conclusion holds.

Appendix B. Supplementary material

We present the Borel–TIS lemma that is proved by [7] and [21].

Lemma 9. (Borel–TIS.) Let f (t), t ∈ U (U is a parameter set), be a mean zero Gaussian
random field; f is almost surely bounded on U. Then

E

(
sup
U

f (t)
)

< ∞
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and
P

(
max
t∈U

f (t) − E

(
max
t∈U

f (t)
)

≥ b
)

≤ e−b2/2σ 2
U ,

where
σ 2

U = max
t∈U

var(f (t)).

The following well-known isoperimetric inequality is due independently to Borell [7] and
Sudakov and Tsirel’son [17].

Lemma 10. Let B be a measurable set of positive measure in RN , and let

µN(B) = 
(a).

Then we have, for every r ≥ 0,
µN(Br) ≥ 
(a + r),

where Br = B + rU = {x + ry : x ∈ B, y ∈ U} and U is the unit ball in RN .

The following result follows from Theorem 1 of [12].

Lemma 11. For any convex set B in Rn and half-space H = {x ∈ RN : 〈x, n〉 ≤ a} with some
real number a and some unit vector n such that

µN(B) ≥ µN(H) = 
(a),

we have, for every r ≥ 1,
µN(rB) ≥ µN(rH) = 
(ra),

where rB = {rx : x ∈ B}.
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https://doi.org/10.1239/aap/1370870124 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870124


424 J. LIU AND G. XU

[13] Liu, J. (2012). Tail approximations of integrals of Gaussian random fields. Ann. Prob. 40, 1069–1104.
[14] Liu, J. and Xu, G. (2012). Some asymptotic results of Gaussian random fields with varying mean functions

and the associated processes. Ann. Statist. 40, 262–293.
[15] Mitra, A. and Resnick, S. I. (2009). Aggregation of rapidly varying risks and asymptotic independence. Adv.

Appl. Prob. 41, 797–828.
[16] Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields. American

Mathematical Society, Providence, RI.
[17] Sudakov, V. N. and Tsirel’son, B. S. (1974). Extremal properties of half-spaces for spherically invariant

measures. Zap. Nauchn. Sem. LOMI 41, 14–24.
[18] Sun, J. Y. (1993). Tail probabilities of the maxima of Gaussian random fields. Ann. Prob. 21, 34–71.
[19] Taylor, J. E. and Adler, R. J. (2003). Euler characteristics for Gaussian fields on manifolds. Ann. Prob. 31,

533–563.
[20] Tsirel’son, V. S. (1975). The density of the distribution of the maximum of a Gaussian process. Theory Prob.

Appl. 20, 847–856.
[21] Tsirel’son, B. S., Ibragimov, I. A. and Sudakov, V. N. (1976). Norms of Gaussian sample functions. In Proc.

3rd Japan-USSR Symp. on Probability Theory (Tashkent, 1975; Lecture Notes Math. 550), Springer, Berlin,
pp. 20–41.

[22] Yor, M. (1992). On some exponential functionals of Brownian motion. Adv. Appl. Prob. 24, 509–531.

https://doi.org/10.1239/aap/1370870124 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870124

	1 Introduction
	2 Main results
	3 Proofs
	3.1 A general bound for F'(a)
	3.1.1 Step 1.
	3.1.2 Step 2.
	3.1.3 Step 3: extension to f(t).
	3.1.4 Step 4.

	3.2 Proofs of the theorems
	3.2.1 Proof of Theorem 1.
	3.2.2 Proof of Theorem 2.
	3.2.3 Proof of Theorem 3.


	A Proofs of the lemmas
	B Supplementary material
	Acknowledgement
	References

