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1. Introduction. Let (£ be a group-theoretic property. We say a group has a finite
covering by (£-subgroups if it is the set-theoretic union of finitely many ©-subgroups. The
topic of this paper is the investigation of groups having a finite covering by nilpotent
subgroups, /i-abelian subgroups or 2-central subgroups.

R. Baer [12; 4.16] characterized central-by-finite groups as those groups having a
finite covering by abelian subgroups. In [6] it was shown that [G: ZC(G)] finite implies the
existence of a finite covering by subgroups of nilpotency class c, i.e. 3?c-groups. However,
an example of a group is given there which has a finite covering by S'Vgroups, but Z2(G)
does not have finite index in the group. These results raise two questions, on which we
will focus our investigations.

1. Can one characterize groups with [G.ZC{G)\ finite in terms of certain finite
coverings by subgroups of nilpotency class c?

2. For a given property (£, can one find a characteristic subgroup E of G such that G
has a finite covering by ©-subgroups if and only if E has finite index in G?

Several other characterizations of central-by-finite groups can be given. A very
interesting one is due to B. H. Neumann in [11]: A group is central-by-finite if and only if
every subset of pairwise noncommuting elements is finite. Two other characterizations
can be easily given: A group is central-by-finite if and only if it has only finitely many
maximal abelian subgroups, and if and only if every maximal abelian subgroup has finite
index in the group. Theorem 2.1 summarizes these characterizations. Theorem 2.2
contains the affirmative answer to our first question together with the analogues of the
other characterizations given in Theorem 2.1. A slightly stronger result can be given for
2-Engel groups. However, a 2-Engel group can have a finite covering by 9?2~surjgroups
even if the second center has infinite index in the group (Theorem 2.4).

Turning to our second question, Baer's result shows that for (£ abelian the center is
the desired characteristic subgroup. In [6], the question was answered for the property
2-Engel, denoted by (£2- It was established that

the subgroup of right 2-Engel elements, has finite index in G if and only if G has a finite
covering by (£2-subgroups.

In Sections 3 and 4 we investigate the properties n-abelian, 2-central and nilpotency
of class 2 in the context of the second question. In all four cases where there is an
affirmative answer, the characteristic subgroups are what have been called ^-embedded
normal subgroups for the respective properties @, [4]. There, A. Dietrich discusses
S-embedded normal subgroups in the context of finite groups with emphasis on
properties for which there exists a unique maximal (S-embedded normal subgroup. In
reference to [4], we make the following definition:

DEFINITION 1.1. Let @ be a group-theoretic property. A subgroup H of G is called
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^-embedded if {H,x) e © for all x in G. A property © is called rigid if there exists a
unique maximal ©-embedded normal subgroup for every group G. This unique maximal
subgroup will be called the rigid ^-kernel of G, denoted by K(G, ©).

The margin of a variety sl$ is always a 23-embedded normal subgroup, but it is not
necessarily maximal. It can easily be seen that the existence of an ©-embedded normal
subgroup of finite index is equivalent to the existence of a finite ©-covering of the group
(Proposition 3.1). Such normal subgroups need not be characteristic in the group, as we
will see in the case of the property sJl2 (Theorem 4.3).

For easier reference, we conclude this introduction with a quote of B. H. Neumann's
Lemma, which is basic for our investigations.

n

THEOREM 1.2. ([10; 4.4]) Let G = U #,g, where / / , , . . . , / / „ are (not necessarily

distinct) subgroups of G. Then if we omit from the union any coset //,-§,- for which [G: //,]
is infinite, the union of the remaining cosets is still all of G.

2. Groups with ZC(G) of finite index. In this section we characterize groups in
which a term of the upper central series has finite index in the group, analogous to the
characterizations given for central-by-finite groups in the following theorem:

THEOREM 2.1. For a group G the following conditions are equivalent:
(i) G is central-by-finite;

(ii) G = \JHh where H;=l;

(iii) any subset S of pairwise noncommuting elements of G is finite;
(iv) G has only finitely many maximal abelian subgroups;
(v) every maximal abelian subgroup has finite index in G.

Proof. The equivalence of (i), (ii) and (iii) is due to R. Baer [12; 4.16] and B. H.
Neumann [11]. Obviously (i) implies (iv) and (v). Next, note that every x e G is contained

in a maximal abelian subgroup of G. Assume (iv). Then G = [J Mh where M, is a
/=i

maximal abelian subgroup of G. Thus (iv) implies (ii). Finally, assume (v). Let x e M, a
maximal abelian subgroup. Then M c Cc(x). Since [G:M]< <x>, it follows [G: CG(x)] <
°°. Thus G is an FC-group. By Lemma 2 in [11] it follows that G is central-by-finite.
Hence (v) implies (i).

A group having a finite covering by 9?2-
subgroups does not necessarily have Z2(G) of

finite index [6]. However, the existence of finite coverings by 3?c-subgroups which are
specially embedded in the group, is equivalent to having ZC(G) of finite index. Consider
the following set of subgroups of a group G:

Obviously, HeX(G,c) implies H e9Jc. One can easily see that 2i?(G,c) has maximal
elements. We denote this subset of #f(G, c) by M(G, c). Since Z0(G) = 1, we see that the
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elements in M(G, 1) coincide with the maximal abelian subgroups of the group. If c > 1,
the maximal sJ?c-subgroups are not necessarily contained in M{G,c).

The following theorem characterizes groups with ZC(G) of finite index. The case
c = 1 is exactly the statement of Theorem 2.1.

THEOREM 2.2. For a group G and a positive integer c the following are equivalent:
(i) G/ZC(G) is finite;

(ii) G = \jHi,HieX(G,c);
/= 1

(iii) any subset S of G, where [x, y] $ Zc-t(G) for all distinct x,y e S, is finite;
(iv) M(G,c) is finite;
(v) the elements of M(G, c) have finite index in G.

For the proof of Theorem 2.2 and later results we need a lemma in context with
marginal subgroups. P. Hall in [5] introduced the margin i/>*(G) of a word V(*i> • • • > *«)•
For the definition of a partial margin and the margin ipU.G) of a variety 93 defined by the
set of laws V, see [6].

LEMMA 2.3. Let G be a group and H a subgroup of G. In addition, let 93 be a variety
and <t>l(G) the marginal subgroup o/93 in G. If H e 93, then H<pUG) e 93. / / GI<j>UG) is
finite, then G has only finitely many maximal ^-subgroups, each of finite index.

Proof. This is an immediate consequence of the definition of a marginal subgroup.

Proof of Theorem 2.2. Let G = GIZC_X{G). We will show that G satisfies (2.1.n) for
n = i,. . . , v of Theorem 2.1 if and only if G satisfies the corresponding condition (2.2.n)
of Theorem 2.2. Since (2.1.1) through (2.1. v) are equivalent by Theorem 2.1, it will follow
that (2.2.i) through (2.2.v) are equivalent.

Now [G:Z(G)] = [G/Zc^l(G):Zc(G)/Zc^(G)] = [G:Zc(G)]. Thus (2.1.i) holds for
G if and only if (2.2.i) holds for G.

Let H = X(G,c), huh2eH, xux2eZc(G), g,, . . . , & _ , e G. Consider HZC{G).
Then [xihux2h2,gu. . . ,gc-X] = [huh2,gu . . . ,gc_,] = l, since ZC(G) is the margin of
the variety sJlc and H' ^Zc_i(G). Thus (WZc(G))'cZc.,(G), and hence HZc(G)e

Assume (2.2.H), i.e. G = U H,, Ht e W{G, c). Since ZC^{G) c ZC(G) it follows by

the above that /f,Zc_,(G) e X(G, c), and hence G = U //,ZC_,(G). So G = U #,-, where
;=i 1=1

Ht = //,Zc_,(G)/Zc_i(G), and hence (2.2.ii) for G implies (2.1.ii) for G. Similarly, (2.1.H)
for G implies (2.2.ii) for G.

Suppose there exists an infinite set S of pairwise noncommuting elements in G. This
is equivalent to the existence of an infinite set S of elements in G such that
[a,b]$Zc-i(G) for distinct a,b eS. Hence G satisfies (2.1.iii) if and only if G satisfies

To prove the equivalence of the last two statements, we observe that there is a
one-one correspondence between the elements in M{G, c) and the maximal abelian
subgroups of G. Thus it follows that M(G, 1) is finite if and only if M(G, c) is finite, and
hence (2.1.iv) holds in G if and only if (2.2.iv) holds in G.
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Observing that for M e M(G,c) and M/ZC^(G) = Me M(G, 1), we have

[G:M] = [GIZC.X{G): M/ZC_,(G)] = [G:M],

we obtain that (2.1.v) is satisfied in G if and only if (2.2.v) is satisfied in G.

For 2-Engel groups we can prove a stronger result. The existence of only finitely
many maximal 9J2-subgroups is equivalent to [G: Z2(G)] < °°. However, the existence of a
finite 9(?2-covering alone does not imply that Z2(G) has finite index even in the case of an
(£2-group. The following lemma is used in the proof of our theorem:

LEMMA 2.4. Let G be a 2-Engel group. Then CC{G') = Z2(G).

Proof. It follows from the Jacobi identity that for any group Z2(G)cCG(G'). If
Ge(52 and a,x,y eG, then [a,x,y]3 = l and [a, x,y]2 = [a, [x,y]]. If a eCG(G'), then
[a,x,y] = l. Hence CG(G')^Z2(G).

THEOREM 2.5.' Let G be a 2-Engel group. Then G has finitely many maximal
^-subgroups if and only if G/Z2(G) is finite. In addition, each such maximal
yi2subgroup has finite index in G. A 2-Engel group possessing a finite covering by
^-subgroups does not necessarily have a second center of finite index.

Proof. Since Z2(G) is the margin of the variety %l2, we obtain by Lemma 2.3 that for
any group G, the finiteness of G/Z2(G) implies the existence of only finitely many
maximal 9?2-subgroups. Assume now that G e (£2 and has finitely many maximal
SJVsubgroups. Denote this set by M^ = {//,}f=i. Fix x e G and let six = {//, e M^ \ x e / / , } .
For any y e G we have (x,y)e3l2, since (x,y) is a 2-generator group in (£2. So
(x,y) QHI for some i, and x e (x,y) implies //, e s&x. Since y was arbitrary, it follows
that the elements in $lx form a covering of G. Theorem 1.2 implies that %x =
{//, e sAx\ [G:Ht] <°°} is already a covering of G. Let Nx = D #, and N = (~) H,.

W.eSB, |G:H,|<°°

Then N c H Nx. Consider yeNx, geG, then y,x,geHt for some H,e98x, so
xeC

[x,g,y] = \. Thus NxcCc{[x,G\), where [x, G] = ([x,g] \g e G), and N c f l ^ c
xeG

f]CG([x,G]) = Cc(G'). Since [G:N]<™ and CC(G') = Z2(G) by Lemma 2.4, it
x<=G

follows that [G: Z2(G)] < «. Another application of Lemma 2.3 shows [G: Ht] < « for all
^ e Mt.

The group H(3) constructed in the last section of this paper is a 2-Engel group which
has a finite covering by S^-subgroups, but as shown in Proposition 5.1, Z2(//(3)) does not
have finite index in H(3).

3. Finite coverings by n-abelian and 2-central subgroups. In this section we discuss
our second question for the cases of n-abelian and 2-central subgroups. The following
proposition, basic in this context, will be stated without proof.

PROPOSITION 3.1. Let (£ be a group-theoretic property inherited by subgroups. A group
G has a finite covering by ^-subgroups if and only if G has an ^-embedded normal
subgroup of finite index.

1 We want to thank H. Heineken for his contribution to the proof of Theorem 2.5.
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Let n be an integer. Two elements x,y in a group G n-commute if (xy)" = x"y" and
(yx)n =y"x" [2]. A group is n-abelian if any two elements in the group n-commute. The
class of /z-abelian groups will be denoted by %n. R. Baer in [1] introduced the n-center
Z(G, n) of a group as the set of those elements which /i-commute with every element in
the group. In [8] it was shown that

Z(G, n) = {a e G \ (ag)" = a"g" Vg e G}.

By replacing Z(G) by Z(G, n), we get the following analogue to Baer's result [12; 4.16].

THEOREM 3.2. Let G be a group and n a positive integer. Then:
(1) Z(G,n) = K(G,%n);
(2) G has a finite ^In-covering if and only if Z(G,n) has finite index in G.

Proof. We observe that (2) is a consequence of (1) and Proposition 3.1. Now
consider (1). Theorem 2.3 in [8] states that a e Z(G, n) if and only if (a, x) is rc-abelian
for all x e G. Thus Z(G, n) is an 91,,-embedded normal subgroup of G. Conversely, if N is
an ?ln-embedded normal subgroup of G, then (a,x) is n-abelian for all x e G and all
aeN. Hence NcZ(G,n). Thus Z(G,n) is the unique maximal 21,,-embedded normal
subgroup of G, and Z(G,n) = K(G, «„).

Groups with a finite covering by normal abelian subgroups are exactly the
central-by-finite 2-Engel groups [3; Theorem 2], or alternatively the central-by-finite
groups with all normal closures (xG) abelian. Thus our next proposition is a direct
analogue of Theorem 2 in [3] in the case /i-abelian.

PROPOSITION 3.3. A group G has a finite covering by normal n-abelian subgroups if
and only if [G: Z{G, n)] is finite and (xG) is n-abelian for all x e G.

k

Proof. Assume G = \jHh with Ht<\G and tf.-eSL,. By Theorem 3.2 we have
/=i

[G:Z{G, n)]<°°. Let xeHh then <A: G )CH, , SO (XC) e 2In for all x e G.
On the other hand, assume [G:Z(G,n)]<°°, and {xc) rt-abelian for all* e G. In [8;

Theorem 3.1] it has been shown that Z{G,n) is the margin for the rt-commutator word
Pn{x,y) = {xy)"y~"x~". Thus by Lemma 2.3 we have that (xG)Z(G,n) is an n-abelian
normal subgroup of G. By Proposition 3.1 it follows that G has a finite covering by
n-abelian normal subgroups.

In [7], the characterization of groups with abelian normal closures has been extended
to the case of groups with 3-abelian normal closures. Thus in the case n = 3, a more
explicit characterization can be given than the one in Proposition 3.3. This leads to the
following corollary.

COROLLARY 3.4. A group G has a finite covering by normal 3-abelian subgroups if
and only if [G: Z(G, 3)] is finite and one of the following conditions holds:

(i) G is 3-Levi, i.e. [x,y3] = [x, yf for all x,y e G;
(ii) G is 3-Bell, i.e. [x,y3] = [x\y] for allx,yeG;

(iii) G is 3-Engel and [x, y,y]3 = 1 for all x,y e G.

Proof. This follows immediately from Proposition 3.3 and Theorem 1 in [7], where
each of the conditions (i), (ii) and (iii) has been shown to be equivalent to the statement
that (xc)e%foral\xeG.
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Let n be an integer. A group G is called /i-central if [x,_y"] = 1 for all x,y e G. The
class of n -central groups will be denoted by $„• It is well-known that a group is 2-central if
and only if G is 2-Engel and G' has exponent 2. In particular, 2-central groups are
nilpotent of class 2. We will show next that the property 2-central is rigid.

THEOREM 3.5. Let G be a group and £2 the class of 2-central groups. Then:
(1) L(G)nCc(G

2) = K(G,32);
(2) G has a finite covering by ^-subgroups if and only if L{G) D CG(G2) has finite

index in G.

As a preparation for the proof of Theorem 3.5 we need a lemma which shows in
addition that the rigid 82-kernel of a group is in general neither its 32-margin nor a
partial 32-margin, but it contains the $2-margin and is contained in one of the partial
margins.

LEMMA 3.6. Denote with r(x, y) = [x, y2] the 2-central word and let G be a
group. Let rf(G) = {a e G; [ax,y2] = [x,y2] Vx,y e G} and r |(G) = {a e G; [x, (ay)2] =
[x,y2] Vx,y e G} be the respective partial margins, and r*(G) = x*(G) n x2(G) its
&2-margin. Then:

(i) rf (G) = CG(G2);
(ii) i2 ' (G)cZ2(C);
(iii) r*(G) c L(G) fl CC(G2) c T*(G), where containment in both cases can be

proper.

Proof. The proof of (i) is straightforward and will be omitted here. To show (ii), let
a e x2(G). Then [y, (ax)2] = [y,x2] for all x,y eG. Expansion and cancellation leads to
[y,axax~l] = 1, and hence [y,[a~\x~l](a*~')2] = l. Since [y,b2] = l for all yeG and
b e x2(G), we conclude [y, [a~\ x~1]] - 1 for all x,yeG, and hence aeZ2(G). So
T | ( G ) c Z2(G), proving (ii).

To show (Hi), we first observe that the inclusion L(G) PI CG(G2) c x*(G) is obvious.
To see that it can be proper, consider S3, the symmetric group on 3 letters. We have
rf(53) = ^ 3 and L(S3) = 1, hence rf(53) n L(S3) ± x*{S3).

To prove the left hand side inclusion, we observe x*(G)c.x2(G). Thus T * ( G ) C
Z2(G) by (ii). Since Z2(G) c L(G), we have x*{G) c L{G) D CC(G2).

To show that x*(G) can be properly contained in L(G) D CC(G2), we consider the
counterexample given in [6]. There, a p-group H of nilpotency class 3 was constructed for
every prime p, where [H:L(H)] <°°, but Z2(H) had infinite index in H. For our purpose
consider the case p = 2. It can be shown that L(H) n CH(H2) = L(H). Now x*(H) c
Z2(H) by the above. Thus [H: x*(H)] = °°, hence x*(H) * L{H) n CH(H2).

Proof of Theorem 3.5. Observe that (2) is a consequence of (1) and Proposition 3.1.
Now consider (1). Let N be a ^2-emDec'ded normal subgroup of G. Then (x, N) e $2 for
all xeG, hence [a,x2] = l for xeG and aeN, thus JVcCc(G2). Since 822^2 , we
have [a, x, x] = 1 for all x e G and aeN. Thus /V c L(G), and hence N c L(G) n CG(G2).

Set T = L(G) n CC(G2). We have to show that T is 82-embedded, i.e. [ax', (bx')2] =
1 for all x eG,i,jeZ, and a,b eT. By Theorem 1 in [6] we can assume that T, as a
subgroup of L(G), is an ©2-embedded normal subgroup of G. Thus (x, T) e @2. This
leads to the following expansion: [fl*1, (bx1)2] = [a, (fccOTI*. ^ T ' = ([*, ̂ f ) 2 ' = [*, bf.
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But [x, bf = [b,x, x] for b e CC(G2) and xeG. Hence we obtain [ax', (bx>)2] = [x, b]2' =
[b,x,x]' = 1. Thus T is a 32-enibedded normal subgroup and we conclude K(G,Q2) =
L(G) n CG(G2).

The properties shown to be rigid so far are all varieties defined by a 2-variable law.
Specifically, in the case of the varieties abelian and n-abelian, defined by symmetric laws,
the rigid kernel turned out to be the respective margin. As shown in [6], in the case of (£2

we have K(G, (£2) = L{G), which is a partial margin for @2. In the case of 2-central we
have yet another situation. As shown in Theorem 3.5 and Lemma 3.6, K(G, Q2)

 c a n

strictly contain the 32-marg'n a nd c a n be properly contained in one of its partial margins.
The outcome seems to depend very much on the structure of the individual law in
question. In the next section we consider a variety defined by a 3-variable law.

4. Finite coverings by subgroups of class 2. In this section we focus on the property
nilpotency of class 2 in the context of our second question. The main result is that 3l2 is
not a rigid property. This does not preclude the existence of a characteristic subgroup in
every group whose finite index characterizes groups having a finite S^-covering. Our
result only says that such a characteristic subgroup is not the rigid kernel for the property
?J2. Here is the main result of this section.

THEOREM 4.1. (i) A group G can have more than one maximal 3l2-embedded normal
subgroup, (ii) If G is 3-torsionfree, then L(G) is the unique maximal 3l2-embedded normal
subgroup of G.

Proof. An example of a finite group having more than one maximal ift2-embedded
normal subgroup is B = 5(3, 3), the 3-generator Burnside group of exponent 3. We have
Be 9?3, B' = Z2(B). It can easily be shown that (g,Z2(B)) is a maximal 9?2-embedded
normal subgroup of B for every g e B\B'.

The group H(3) constructed in the next section possesses maximal sJJ2-embedded
normal subgroups of finite as well as of infinite index, as shown in Proposition 5.1.

(ii) We observe that by [6; Theorem 1] we have (g, L(G)) e @2 for all g e G. Now
assume that G has no elements of order 3. Then (g, L(G)) e 9?2. Thus L{G) is an
9?2-embedded normal subgroup of G.

Conversely, assume N<\G and (g, N) e W2 for all g e G. Then [a, g, g] = 1 for a e N
and all g e G, hence N c L(G). If G is 3-torsionfree, then L(G) e 9?2, and thus L(G) is
the unique maximal sJ?2-embedded normal subgroup of G.

A reformulation of Theorem 4.1.ii together with Proposition 3.1 gives us the
following corollary.

COROLLARY 4.2. Let G be a 3-torsionfree group. Then G has a finite covering by
sJl2-subgroups if and only if L(G) has finite index in G.

The last result of this section shows that groups having a finite covering by
9?2-subgroups can be characterized by the existence of a suitably embedded normal
subgroup of finite index, though this subgroup need not be characteristic.

THEOREM 4.3. A group G has a finite covering by ^Jl2-subgroups if and only if G has a
normal subgroup N of finite index with N c L(G) and N' c Z(G).
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k

Proof. Assume G = U Hit H, e 3l2. By Theorem 1.2 we may assume [G :
/ k \ '=1

Then N = coi[C>\ Hj) is a normal subgroup of finite index. Let n,n' eN, geG. Then

g e / / , for some i. Thus [n,g,g] = l and [«,n' ,g] = l. Hence N^L(G) and AT cZ(G) .
Conversely, assume N<\G,NcL(G) and N'cZ(G). By [6; Theorem 1] we have

(g, A/) G @2 for all geG, since N c L(G). We need to show (g, Af) e 9fl2>
 o r equivalently

[gi'nl,g'2n2,g
hn3] = l for geG, i1;i2, I 3GZ, and nun2,n3eN. Let xe(g,N) and

n, n' e N. Since (g, N) e @2 and N' s Z(G), we obtain

[x,n,n'] = [n,x,n']~1 = [n,n',x] = l.

Observing [ghni,g'2n2,g'3n3]eZ((g,N)), we may expand linearly and obtain together
with the above that [g"rt,, g'2n2, g'3n3] = 1. Thus <g, N) e 3i2 for all geG. Hence AA is an
9f2-embedded normal subgroup of G. If in addition [G: N] < °°, it follows by Proposition
3.1 that G has a finite covering by 9f2-subgroups.

5. A counterexample. In this section a 3-group H(3) is constructed whose relevant
properties are stated in Proposition 5.1. The construction of H(3) follows usual practice,
and in this case it is similar to the one given in [6]. Starting from a group isomorphic to
the commutator subgroup of H(3), we will reach H(3) by three split extensions.

Construction of the Counterexample. Let £3 denote an elementary abelian 3-group of
countable rank. Set V= (vuv2,. . .), W = (wu w2,. . .) and Z = (z,, z2,. . .) with
V = W = Z = E3. Define X = (u) x V x W x Z with (M>SSC3.

Let A = [X](a), the semidirect product of X with a cyclic group {a) = C3. The
automorphism induced by a on X has order 3, where the action of a on the generators of
X is given as follows:

[u,a] = [vha] = [zha] = l, [wi,a\ = zh j = l , 2 , . . . . (1)

The defining relations of A are those of X, (1), and a3 = 1.
Similarly, let B = [A](b) with (b) = C3, where 6 induces an automorphism of order

3 on A. The action of b on the generators of A is given as follows:

[a,b] = u, [u,b] = [wha] = [z,,b] = l, [vitb\ = zj\ i = l , 2 , . . . (2)

The defining relations of B are those of A, (2), and b3 = 1.
For the last extension we set C = (c,, c2,. . .) s= £3. Let H(3) = [B]C The elements

of C induce automorphisms of order 3 on B. The action of the generators of C on the
generators of B is given as follows:

( = 1 , 2 , . . . j

The defining relations of H(3) are those of B, (3), and those of C. This concludes the
construction of H{3).

For the notation in Proposition 5.1 we refer to that used in the construction of H{3).
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PROPOSITION 5.1. Let H = H(3) be the group constructed above. Then:
(i) H = (a, b, C) and c(H) = 3, precisely;
(ii) H is a 2-Engel group and exp H = 3;
(iii) H' = Z2(H) and [H:Z2(H)] is infinite;
(iv) H has maximal ^-embedded normal subgroups of finite and infinite index. In

particular, H has infinitely many maximal 3l2-embedded normal subgroups of
infinite index;

(v) H has maximal ^-subgroups of finite and infinite index. In particular, H has
infinitely many maximal ^-subgroups of infinite index;

(vi) H has a finite covering by 3l2-subgroups.

Proof. The verification of (i) is straightforward and will be omitted here.
(ii) Let h = aabpcx, a, /? e Z, c e C, x e X. By (i) we can expand linearly and, using

the relations of H, we obtain [c,, h,h] = ([vh b][wh a])~ali = (z~lzi)~
aP = 1. Hence

C c L(H). Every c eC can be written as c = II cf', where p, e Z and Ic is a finite index

set. We write v = H vf, w = W wf, and z = II zf. Using the relations of H, we obtain

with this notation

[a, h, h] = [H, C ] > , C, b] = (z[v, b\Y = (zz~y = 1,

and similarly [b, h, h] = 1. We conclude a, b e L(H), and hence H = (a, b, C) c. L(H).
Thus H e (£2- It follows that exp H = 3, since H is generated by elements of order 3.

(iii) By (i) we obviously have H' c Z2(H). Let y =aabpcy' e Z2(H), where a, fi e Z,
ceC, and y' e H'. Then [y, g, h] = 1 for all g,h e H. By linear expansion this leads to

\ = [a,g,hnb,g,hY{c,g,h}. (4)

Setting h = cx and g = 6 or g = a in (4), we obtain [a,b,C\]a'=1 or [6,0,0,]^ = 1,
respectively. Hence a- = /? = 0 mod 3. By setting g = a and h = b, (4) becomes [c, a, b] =
1. It remains to be shown that c = 1. Linear expansion together with the relations of H

yield l = [c,a,b]= U [cha,b]p'= U zf' = z. Now z = l implies p ,=0mod3. But then

c = n cf = 1. Hence y = y' e f/', and thus Z2(tf) c // ' . It can easily be seen that H' = X.
isle

Since [H:X] = 00, it follows that [H: Z2{H)\ = °°.
(iv) Consider By = <6cy, Z2(H)), j = 1,2, We observe that (g, 6cy> e W2 for all

g e // as a 2-generator group in (£2- Thus, by Lemma 2.3, (g, Bj) e sJl2 for all g e H. Now
Bj<\H by (iii). Hence By is an sJJ2-embedded normal subgroup of H. Assume Bj is not
maximal in that respect. Then there exists geH\Bj, such that By=(g,By) is 9^-
embedded, i.e. (y,fiy)e9?2 for all yeH. Without loss of generality let g = aabpc,
a, f3 e Z, and c e C. By linear expansion we obtain

[g,6cy,y] = [f l,6,y]>,cy,y]>,cy,yHc,fo,y]. (5)
If a-^0mod3, let y = b, and hence [g,bcj,b] = z~a^l. Similarly, if a = /3 =
and c ^ l , let y = a, and hence [g,bcjya] = z~l # 1 . Thus we can assume g = bp.c,
j8^0mod3. Setting y = a, the relations of H and (5) yield [g,/>c,,a] = zfz~\ If
[g,6cy,a] = l, we obtain z = zf, and hence 0 = ^ . This implies g = b^cf e Bj. We
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conclude that Bj is a maximal 9?2-embedded normal subgroup of H, and obviously
[H.Bj] = °o. Thus {fiy}y°°=i is an infinite set of sJJ2-embedded normal subgroups of H, each
having infinite index.

Consider N = CZ2(H). Then jVesJ?2 and N<H by Lemma 2.3 and (iii), and
obviously [H: N] = 32. To prove (g,N) e sJl2 for all g e / / , we need to show [xux2, x3] = 1
for all xux2,x3e (g, N). Let jc,- = g''/iy-, / , eZ and n; e/V, j = 1,2,3. Without loss of
generality we can assume rijeC. Then, observing (ii) and using linear expansion, we
obtain [JC,, x2, x3] = 1. Thus (g, N) e 3l2 for all geH. li g$N, then (g, iV) is a maximal
subgroup of H. By (i), it follows that N is a maximal 9?2-embedded subgroup of finite
index.

(v) From the preceding remark in (iv) we immediately see that {g, CZ2(H)) is a
maximal sJ?2-subgroup of H of finite index, provided g $ CZ2(H). Consider A/, = (a,Bj),
7 = 1 ,2 , . . . . By (iv), we obviously have A/, e 3l2. We have to show that A/, is a maximal
^2-subgroup, or equivalently {g,Mj)esJl2 implies g e Mj. Let g-aab^cy'', a,fleZ,
c e C, y' e H', and assume (g, Mj) e ^l2. Using the relations of H, we obtain by linear
expansion 1 = [a, be,, g] = z . z~p. Thus zf = z, and hence c = cf. But then g e A/,. As in
(iv) we conclude that {Mj}J=l is an infinite set of maximal sJJ2-subgroups of infinite index.

(vi) By (iv), we have that CZ2{H) is an 3J2-embedded normal subgroup of finite
index in H. Thus Proposition 3.1 implies that H has a finite covering by "^-subgroups.
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