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THE CONDUCTOR OF POINTS HAVING 
THE HILBERT FUNCTION OF A 

COMPLETE INTERSECTION IN P2 

AMAR SODHI 

ABSTRACT. Let A be the coordinate ring of a set of s points in /*"(&). After examining 
what the Hilbert function of A tells us about the conductor of A, we then determine the 
possible conductors for those coordinate rings which have the Hilbert function of a 
complete intersection in P2(k). 

Let A be the coordinate ring of a set of s points X = {P\,...,PS} in Pn(k) (k an 
algebraically closed field). The integral closure of A in its total ring of quotients is of the 
formÂ = ri/=i k[tt] (where k[tt] is isomorphic to the coordinate ring of P,) and Orecchia 
[9] has shown that as an ideal of Â, the conductor of A, C = {a G Â \ aA C A}, is of 
the form 

C=f[tfk[ti] 

where di is the least degree of any hypersurface which passes through all of X except for 

Pi-

This description of the conductor allows one to determine C solely from knowledge 
of the Hilbert function (of the coordinate ring) of X\ { Pi} for each Pt (see [6], § 4). 

In this paper we consider the following question: 

"What can one say about C given the Hilbert function of A?" 

After giving some general results about Hilbert functions and the conductor, we com­
pletely determine the possible conductors for those sets of points whose coordinate ring 
has the Hilbert function of a complete intersection in P2. 

1. Preliminaries. Throughout, k will denote an algebraically closed field and R — 
k[Xo,... ,Xn] (n > 2) will denote the homogenous coordinate ring of Pn = Pn(k). We 
usually write R = ©;>o/?;, where Rj denotes the (^n)-dimensional fc-space of forms of 
degree i in R, to emphasize that R is a (naturally) graded fc-algebra. By "/ is an ideal 
in /?" we mean "/ = ©;>o // is a homogeneous ideal in R". For any algebraic subset 
V C F1,1(V) C R will denote the ideal of V; that is I(V) is the largest ideal defining V 
as a subscheme of Pn. 

If A = ©;>o At is a graded /:-algebra of finite type, then dim* At < oo Vf G N. The 
Hilbert Function of A,//(A, _) = {//(A,0}r>o, is defined by H(A,t) = dim* At and the 
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difference function of A, A//(A, _) = { AH(A, t)}t>o, is given by 

A//(A, 0 = //(A, 0 - //(A, t - 1) 

(where //(A, - 1 ) = 0). We adopt the convention that H(A, i) = A//(A, /) = 0 if/ is a 
negative integer. Also, if A is the coordinate ring of a set of points X C F, then we 
sometimes write H(X, _) and A//(X, _) for //(A, _) and A//(A, _). 

For any ideal / C P, we set 

a(/) = min{f | It ^ 0} 

and 
/?(/) = min{f| heights > 2} 

where Jt is the ideal generated by \Ji=l If. If 7 is the ideal of a set of points X C F, then 
we write a (X) for a (/) and j3 (X) for /3 (/). 

We also set CJ(X) = min{ r | A//(X, 0 = 0} . 
If X = { P i , . . . , Ps} is a set of points with coordinate ring A, then the conductor of 

A, considered as an ideal of Â, has the form 

Cx = iitfm c f[k[t(] = fiR/KPi) 
i=\ 1=1 1=1 

where dt is the least degree of any hypersurface which passes through all of X except for 
Pi ([9], 4.3). Accordingly we call d{ the degree of conductor of Pi in X and write degx(P,) 
for d(. Also, we refer to Cx as the conductor of X. 

By relabelling if necessary, we assume d\ < d^ < • • • < ds and we write ( d\,..., ds ) 
as a short form for 

n *?'*['«•]• 
1=1 

Finally, if S = { &/}/>o is the Hilbert function of some set of points X C Pb], then 
we set C(S) = {(d\,...9ds) \ Tls

i=i tfk[tt] is the conductor of some sets of points with 
Hilbert function S}. 

2. We begin by reviewing some basic facts about Hilbert functions and the conductor 
of points in F, referring the reader to [2],[3],[5] or [6] for a more complete discussion. 
Throughout this section X will denote a set of s points in F. 

PROPOSITION 1. 

1. H(X,t+l) > H(Xj) > 1, %GiV 
2. H(X, t) = 7/(X, f + 1) => #(X, t + 2) = #(X, 0-
3. H(X,t) = sfort^O. 

IfX C P2 //ien we a/so have: 
4. AH(XJ) = i + 1/orO < / < a(X) 
5. A#(X, /) > A//(X, i + l)/or i > a(X) 

https://doi.org/10.4153/CJM-1992-010-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-010-6


CONDUCTOR OF POINTS 169 

6. AH(X, i) > AH(X, i + I) for 13(X) < i < a(X). 

PROOF. For (1) and (2) see ([5], 1.1) and (3) is a well-known fact from multiplicity 
theory (see, for example, [8] 1.7). For (4)-(6) see ([2], 3.9). 

We note that (3) says that A//(Z, /) = 0 for some / (i.e. a(X) < oo) and (1) says that 
A//(X, i) > 0, VÏ G N. 

It is not hard to show that if Y C X, then AH(Y, i) < A//(X, /), V/ G N. Using this it is 
not hard to establish the following result. 

PROPOSITION 2. For any P e X, 

AH(X\tP\ n - / ^ ( ^ O ^Vdegx(P) 
AH(X\{P},l)-l[mxi)_l i = degx(p) 

PROOF. See ([6], 2.3). 

Since AH(X, i) > AH(X\ { P}, /) > 0, Vi G Â , Proposition 2 tells us that degx(P) < 
cr(X) — 1, \/P G X. The following result allows us to say more. 

PROPOSITION 3. Let P,Q G X and suppose degx(P) ^ degx(g). Then 

degx\{P}(Ô) = degx(G). 

PROOF. Let 5 = { a/};>o be the Hilbert function of X and set q ~ deg x (0 and 
p = degx(P). 

Clearly q > deg x \ { F } (0 , so suppose q > degx^{P}(Q). 
Case 1. q > p. 
Since we are assuming q > degx\ rPj. ( 0 , we have by Proposition 2 that 

H((X\{P})\{Q},q-l) = H(X\{P},q-l)-l. 

Also q> p => q — I >p and so 

/ / ( X \ { P } , 4 - 1 ) = / / ( X , 4 - 1 ) - 1 . 

Consequently, 

tf((X\{P})\{G},<7-l) = a , - i - 2 . 

Now putting F back gives 

# ( X \ { G } , t f - l ) = a , - i - l . 

But this means that q — 1 > deg x (0 = (7 which is absurd. So if q > p then 
degx\{p}(G) = degx(<2)-

Roughly speaking, we have proved that removal of a point with small degree of con­
ductor does not affect the points in X having strictly higher degree. 
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Case 2. p > q. 
Since we are assuming that q > degx\ JP\(Q), p > q => H(X\{P, Q} ,q — 1) = 

aq-\ — 1. Now 
H(X\{Q},q-l) = aq-u 

so we must have 
deSx\{Q}(p)<Q-1-

But by Case 1 (reversing the roles of P and Q) we have degx\ r ̂ } (P) = /? which contra­
dicts the fact that/? > q. So if /? > q then we again have degx\{p}(Q) = degx(<2). 

As an immediate consequence we have: 

COROLLARY 4. For each Ç e N, set 

Yc ={PEX\degx(P)<Ç}. 

Then either Yc = X or degx(P) = degx\ Y(_ (P), VP G l \ F ( . 

COROLLARY5. LetY= {PeX\ degx(P) < a(X)-l}. Then 

\X\Y\>a(X). 

That is, X contains at least a(X) points with degree of conductor = a(X) — 1. 

PROOF. By the definition of Y, we have 

AH(X\ y, a(X) -l) = AH(X, <T(X) - l) ^ 0. 

But X\ Y is a set of distinct points in Pn, so AH(X\ y, /) ^ 0 for 0 < i < a(X) - 1. Thus 

| x \y |> (7 (X) 

as required. 

In the following example, we compute C(S) for a particular Hilbert function S. 

EXAMPLE 6. Let S be the sequence 

1 3 4 5 -+ 

and suppose that Y C P2 is any set of points with Hilbert function S. They y lies on 2 
independent conies, F\ and F2. Since |y| = 5 , by Bezout's Theorem, F\ — LL\ and 
F2 = LL2 for some distinct lines L\, L2 and L. L necessarily contains 4 points of Y. If 
P E y lies on L then degr(P) = 3; otherwise degy(P) = 1. So 

CY=I[i*ik[ti\xt5k[ts] 

for any set of points Y having Hilbert function S. Since S is the Hilbert function of 5 
points in P2 ,4 on a line and one off the line, C(S) is the singleton set 

C(S) = {(1 ,3 ,3 ,3 ,3)} . 
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Building on earlier work of Macaulay, Geramita, et al, have given a simple combi-
natorical characterization of those sequences S = { bi}i>o which are the Hilbert function 
of some set of points in F^1 ([6], 3.3). They have shown that S = { b(}i>o is the Hilbert 
function of a set of points in P^1 if and only if S is a zero-dimensional differentiable 
O-sequence (a zdd-sequence for short). When b\ — 2 or 3 (the cases which will be of 
interest to us in this paper) the zdd's can be described quite simply. We do this in the next 
proposition. The reader wanting more information (or proofs) can refer to [4],[7] or [11]. 

PROPOSITION 7. Let S = { fc;}/>o be a sequence of integers with b0 = 1, b\ — 2 or 
3 and set Abt = b{ — bt-\. Then S is a zdd-sequence if and only if3a, a GiV such that 
M>i = i+lforO<i< cc,Aba>---> àba-i > 0 and Aba = 0, Vi > a. 

PROOF. See ([7], §2). 

Sometimes the above criterion allows us to quickly determine C(S) for a given se­
quence S. 

EXAMPLE 8. Let S = { &;};>o be the sequence 

1 3 5 7 9 9 -» 

By Proposition 7, S is the Hilbert function of some set of nine points in P2. However, 
again by Proposition 7, the sequence S' = { £-}i>o given by 

1 \bi-l i>d 

cannot be the Hilbert function of any set of points unless d — 4. So if X is any set of 
points with Hilbert function S, then degx(P) = 4, VP G X. Therefore 

C(S)= {(4,4,4,4,4,4,4,4,4)}. 

Given a zdd-sequence, S — {^i}/>o, we say that £ is a permissible value for 5 if the 
sequence S' — {b'};>o where 

yj=\bi 0 < i < C 
'" \bi-l i > C 

is a zdd-sequence. For any P EX, degx(P) is necessarily a permissible value for H(X, _). 
There is a simple criterion to determine whether £ is a permissible value for a zdd-

sequence. 

PROPOSITION 9. Let S — { £;};>o be a zdd-sequence with bo = 1, b\ — 2 or 3 and 
let Abt — bt — bt-\. Then £ is a permissible value for S & Abç > Abç+\. 

PROOF. See ([7], p. 35). 

EXAMPLE 10. Let S — { £;};>o be the zdd-sequence 

1 3 6 8 9 9 -> 
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and set ÀZ?/ = bt — bi-\. Using Proposition 9 we have that the permissible values for S 
are 2, 3 and 4. 

The following sets each have Hilbert function S. 

(0 X, : 

(") 

o o o 

o o o 

o o o 

o o o o 

o o o 

o 

o o o o 

o 0 o o 

o 

o o o 0 

o o 

o o 

(///) 

(iv) X4 : 

Xi is the intersection of two cubics and it is well-known that Cxx — IIjLi f?&M- Using 
little more than Bezout's Theorem one can show that 

cX2 = /?*[*!] x ( n *?*[*«•]) x ( I I ^ M ) 
V I = 2 J \=5 J 

and 

S"=l y \=5 J 

So | C(S)\ > 4. Later on we will show that | C(S)\ = 4. 
A set of points X C P2 is said to be a complete intersection of type (a, b) (written 

X — CI. {a, b)) if X is a set of ab points which is the intersection of a curve of degree a 
with a curve of degree b. If X = C I. (a, b), then the ideal ofX,lCR = k[Xo,X\, X2], 
is of the form / = (F, G) where F G Ra and G G f t and it is not hard to show that the 
difference function of X is given by 

f / + 1 0 < / < a - 1 
A//(X, i)= la a-\<i<b-\ 

[a + b — i— 1 b <i <a + b — 1. 

In example 10 above, S was the Hilbert function of a C. /. (3,3). We noted that if X = 
C I. (3,3) then degx(P) = 4, VP G X. More generally, the Cayley-Bacherach Theorem 
(see [3]) tells us that if X = C I. (a, b), then degx(P) = a(X) - l = a + fc-l,VPeX. 
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3. For this section, / = I(X) will denote the ideal of a set of points X C Pn having 
the property that 

D = g.c.d.{Fel\ F a form with degree < (3(X)} 

is a form of degree d < a(X) and we set Y — {P G X \ D(P) = 0} . Our immediate 
goal is to establish a relationship between C*, Cy and Cx\ y- Central to our discussion is 
the following decomposition theorem. 

PROPOSITION 11. 

H(X, i) = H(X\ F, i-d) + H(R/ (D, 7), i) 

PROOF. See ([10], Corollary 5). 

In general 7(F) ^ (7), 7) (see [10] for examples), but if 7(F) = (D,7), then we have 
the following result. 

PROPOSITION 12. IfI(Y) = (D,7), then 

degx(P) = degxU(P) + J 

VP G X\ F. 

PROOF. Let P G X\ Y. Since D(Q) = 0, V<2 G F, we have 

degx(P)<degx U(P) + J. 

So to prove the result, it remains to show that 

d e g x U ( P ) < d e g x ( P ) - J . 

Let 77 G R be a form of least degree which vanishes on all of X except for P. Then 
77 G 7(F), and since I(Y) = (7), 7), 

77 = FD + G 

for some F G P and G G /. Now Vg G (X\ { P} ), both G(Q) = 0 and //(G) = 0. We 
therefore have F7)(0 = 0. But if Q g F, then D(g) ^ 0. Consequently, 

F(Ô) = 0 VgG(X\{P}) \F . 

Gel=> G(P) = 0, and by assumption 77(F) ^ 0; so FD(P) ^ 0. This shows that 

degA rOP)<degxCP)-J. 

PROPOSITION 13. 7/A77(X, 0 = AH(R/ (D, 7), t) for some a < t<0 = /3 (X) tfœn 
(7) 7 (F ) - (D,I)and 
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(2) degx(P) - degy(P), VP G Y 

PROOF. For the proof that I(Y) = (F>, I) see ([10], Theorem 8). 
To show that degx(P) = degr(P) we first show that degK(P) > t — 1: 
Let P G Y and suppose that degy(P) — m < t — 1. Then, 3F G Pm that vanishes on 

all of Y except for P, and we can find two linearly independent linear forms H\, Hi G R 
such that 

HxFeI(Y)m+x 

and 
H2FeI{Y)m+l. 

By assumption, m + I < t and, since /(F) = (Z),7), we have D | H\F and D | / /2F. 
Since H\ and #2 are linear forms and D / F, we have that 7/i | D and //2 | D. Con­
sequently //i 7/2 I # i F which implies that #2 | F contradicting the fact that F(F) ^ 0. 
So degr(P) > f - 1, VF G 7. In particular, if degx(P) = f - 1 (for P G F), then 
degx(P) - degr(P). 

Now the assumption that AH(X, t) = A//(P/ (F>, /), f) means that a(X\ Y) < t - d, 
which in turn means that deg x \ F (0 < t — d — 1, Vg G X\ 7, and so deg x (0 < 
t — 1, Vg G X. Therefore, by repeated application of Proposition 3, if degx(P) > t, 
then degK(F) = degx(P). This proves the theorem. 

REMARK. For a non-reduced analogue of (part of) Proposition 13(1) see Davis ([1], 
4.6). 

PROPOSITION 14. Let Xbea set of points in P2 and set f3 = (3 (X). IfAH(X, f} - 1 ) = 
AH(X,(3) + 1, thenAH(X,(3 - 1) = AH(R/(D,I),(3 - l) . 

PROOF. We first note that 0 ((D, I)) = (3 and /? (X\ Y) < (3 - d - 1, so by Proposi­
tion 1, 

(*) AH(R/(D,I),P - l) > AH(R/(D,I),p) 

and either 
AH(X\Y,f3 -d-l) = 0 

or 
Aff(X\ y,/3 - d - 1) > A//(X\ F,/3 - J). 

Suppose AH(X,f3 - 1) = AH(X,(3) + 1. By Proposition 11, 

A//(X, 0 - A//(P/ (F>, /), i) + A//(X\ y, 1 - </), 

so if AH(X\Y,/3 - d - 1) > àH(X\Y9/3 - d) then Af/(P/(D,/),/? - l) < 

A//(P/(D,/),/?), contradicting (*). So AH(X\Y,p - d - 1) = 0 and accordingly 

AH(R/(D,P),(3 - l) = A//(X,/3 - 1). 

Combining the last results we have the following: 
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PROPOSITION 15. Let X be a set of points with the property that 

A77(X,/3 - 1) = AH(X,(3) + 1 where /? = (3(X). 

Then 

(1) I(Y)=(D,I) 

(2) degx(P) = degr(P), VP G Y 
(3) degx(P) = degA Y(P) + deg D, VP G X\ Y. 

PROOF. From Proposition 14, we have that A77(X,/3 - 1) = A7/(P/ (D,7),/3 - l) 
so by Proposition 13 we have (1) and (2). (3) follows from (1) and Proposition 12. 

If S is the Hilbert function of a C. /. (a, b), then A77(X, /? (X) - l) = A//(x, /3 (X)) +1 
for any set of points X with Hilbert function S. In the next section we will use this (and 
Proposition 11) to compute S where S is the Hilbert function of a C. /. (a, b). Before we 
do this we will first compute C(S) where S is the Hilbert function of C. /. (3,3). 

EXAMPLE 16. Let S be the Hilbert function of a C. /. (3,3). That is, S is the sequence 

1 3 6 8 9 9 -> 

and let X be a set of points with Hilbert function S. The possible values for (3 (X) are 3,4 
and 5. 

If/3(X) = 3, thenXis a C.7.(3,3) and Cx = (4,4,4,4,4,4,4,4,4). 
If p(X) = 4, then degD = 2, Y = C.I.(2,4) and |X\F| = 1. Accordingly, 

degx\ r(P) = 0, VP G X\ F and degr(P) = 4, VP G F; so by Proposition 15 

Cx= (2,4,4,4,4,4,4,4,4). 

If/?(X) = 5,thendegD= 1 ,7= C. 7. (1,5) and X\ Y has the Hilbert function 

1 3 4 4 -> 

Either X\Y = C. 7. (2,2) (so Cx\ F = ( 2,2,2,2) ) or X\ 7 has 3 collinear points (so 
Cx\ Y = ( 1,2,2,2) ). Since degr(P) = 4, VP G Y, by Proposition 15 either 

Cx= (3,3,3,3,4,4,4,4,4) 

or 

C x = (2,3,3,3,4,4,4,4,4). 

This shows that | C(S)\ < 4. In Example 10 we showed that | C(S)\ > 4, so we have that 
|C(5) |=4 . 

https://doi.org/10.4153/CJM-1992-010-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-010-6


176 AMAR SODHI 

4. In this section we determine C(S) where S is the Hilbert function of a C. 1. (a, b). 
Throughout, X will denote a set of points with the Hilbert function of a C. I. (a, b) and 
we set / = I(X) and j3 = /3(X). We have b < (3 < a(X) and if (3 > b we set 

D = g. c. d. { F G 7 I F is a form with degree F < (3 } , 

and 
Y= {P<EX\ D(P) = 0} . 

PROPOSITION 17. Z//3 > fc rten: 
(1) d = AH(X,f3 - 1 ) . 
(2) /(F) =(D, / ) . 
r j ; degx(P) = degy(P), VP G y. 
W degx(P) = degx\ y(P) + d, VP G X\ F. 

(5) Y=C.I.(d,P). 
(6) X\ Y has the Hilbert function of a C. I.(a — d,b — d). 

PROOF. Since X has the Hilbert function of a complete intersection, A//(X, (3 — 1 ) = 
AH(X,(3) + 1. So we have (1) by Proposition 14 and (2)-(4) by Proposition 15. 

From Proposition 11 we conclude that X\ F has the Hilbert function of a C. /. (a—d, b— 
d), and Proposition 11, (2) and the fact that 7(F) = (D, 7) ensures that F = C.I.(d,(3). 

NOTATION. Let S = { &/};>o be a zero-dimensional differentiable O-sequence with 
permissible values 

Ci < 6 < • • • < 0 
and let X be a set of points in P2 with Hilbert function S. 

Suppose X contains precisely qt points with degree £•, (1 < / < t), then we write 

Cx= [tfi,...,tff] 

as a short form for 

c* = (n(ft $*[ty])) c (ft (ft *['*])) * * o 

THEOREM 18. Lef S = { ^}*>o &e f/ie Hilbert function of a C. I. (a, b) and let 

Q = b-2 + i 1 <i<a 

denote the permissible values for S. Set 

qi = (b - a) + 2(i - 1) + 1 1 < / < a 

and define fo = q$ — 0. 77ie« 

C(S) = \\fu . • • ,/fl] l/i = 0 or/- = ^ - £ ( £ ~ qj) 
1 7=0 

a-\ . 
1 < i < a andfa = qa- J2(fj ~ ®) 

7=0 J 
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PROOF. The proof is by induction on a. If a — 1, then S is the Hilhert function of 
a C. I. (a, b), thus the only permissible value for S is ̂  — b — 1, and any set of points 
with Hilbert function S is necessarily q\ — b points on a line. This proves the theorem 
for a—\. Therefore, assume that a > 1 and inductively assume that the theorem is true 
for each d such that 1 < d < a. 

For / = I,..., a— 1 recursively define/; by 

i - i 

fi• = 0 or fi = qi - Y,(fj ~ qj) 
7=0 

and set 
a-\ 

fa = qa- Y,(fj-4j)' 

y=i 

Now if/i = • • • = fa_} — 0, then 

/fl = £*« = £ ( ( * - * ) + 2 ( i - l ) + l ) 
/=0 /= 1 

= a(b — a) + 2 + a 

= ab. 

Soi fX= C./.(a,fc)then 

C*=[f i , . . . Ja-Ufa] 

where/i = • • • = fa-\ = 0. Therefore to prove the theorem we need to show: 
(1) If X C P2 is a set of points with Hilbert function S, and X / C.I. (a, b), then 

C*=[/ i , . . . , / f l] 

for some/i,. . . ,/a as defined above. 
(2) For any choice off\,... ,fa as defined above we can find a set of points X C P2 

with Hilbert function S and conductor Cx = [/!,... ,/«]• 

PROOF OF ( 1 ). If X is a set of points with Hilbert function S and X ^ C. /. (a, b), then 
by Proposition 17, 3d, I < d < a, and a set Y C X such that 

(a) Y= C.I.(d,a + b-d). 
and 

(b) X\ Y has the Hilbert function of aC.I.(a - d,b - d). 
The permissible values for H(X\ Y, _) are £/ = b — d — 2 + / (for 1 < i < a — d) and if 
we set 

^. = (b - d) - (a - d) + 2(i - 1) + 1 

we have by induction hypothesis that Cx\ y is °f tne f ° r m 

Q\y = \f'v-Ja-d\ 
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where for / = 1, . . . , a — d — 1. 

f! = o or y/ = ^ - E ( t f - # 
7=0 

(where/Q = g'0 = 0) and 

a-d-\ 

fa-d = <la-d ~ E Vj ~ ?/)• 
7=0 

Now degy(P) = a + fe - 2, VP G F, degx\ y(P) < a + ft - 2 - 2d, VP G X\ F, so (noting 
that q\ = <?,) by Proposition 17, (3) and (4), 

CX=\fu.-.Ja-u\Y\] 

where/fl_^+i = • • • = /fl_i = 0. Since 

|F| =ab-\X\Y\ 

= t<n-E(fj-<ij) 
i=l 7=0 

(since/a_j ^ 0 and ft = 0 for / = <2 — J + 1, . . . , a — 1), we have that 

Cx — [/l,... ,fa-\ja\ 

proving (1). 
It is not hard to show that for any choice of f\ ,...,fa (as defined above) one can find 

a subset of Z = f C\ Q where f is defined by 

ft(Xi " «b) 

and Ç is defined by 
a+b-l 

II (*2 - iXo) 
/=1 

which has the Hilbert function of a C. /. (a, b) and conductor [/!,... , / J . 
We omit the details. 
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