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NEARLY INTEGRAL HOMOMORPHISMS
OF COMMUTATIVE RINGS

DAVID E. DOBBS

A unital homomorphism f:R—*T of commutative rings is said to be nearly integral if
the induced map R/I —• T/IT is integralfor each ideal I of R which properly contains
ker ( / ) . This concept leads to new characterisations of integral extensions and fields. For
instance, if R is not a field, then an inclusion R —t T is integral if and only if it is nearly
integral and (R, T) is a lying-over pair. It is also proved that each overring extension of
an integral domain R is nearly integral if and only if dim (R) ^ 1 and the integral closure
of R is a Priifer domain. Related properties and examples are also studied.

1. INTRODUCTION

All rings considered in this paper are commutative with identity; and all ring-
homomorphisms and subrings are unital. Our starting point is a result of fundamental
importance: integrality is a universal property (see [2, Proposition 5, p.307], [3, Lemma,
p.160]). This means that if / : R —* T is an integral ring homomorphism and a ring-
homomorphism R —• S is viewed as a change of base (in the sense of [9]), then the
induced ring-homomorphism f(g) • S —* S <S)R T is also integral. Our purpose here is
to study the weakening of the "integral" concept obtained by restricting attention to
algebras of the form 5 = R/I, where / is an ideal of R which properly contains ker(/) .
Specifically, we shall say that a ring-homomorphism / : R —» T is nearly integral in case
the induced map R/I —> R/I <g>R T = T/IT is integral for each ideal / of the above
type. (This work may be contrasted with [1], where we studied the question as to
when certain factors R/I led to integrally closed rings.) Additional characterisations
of "nearly integral" are given in Proposition 2.2; and Corollary 2.3 shows that / : R -> T
is nearly integral if and only if the inclusion f(R) —> T is nearly integral.

Of course, any integral ring-homomorphism is nearly integral. As one would expect,
"nearly integral" behaves much like "integral", and several results establish phenomena
such as transitivity (Proposition 2.7(a)) and stability under localisation (Proposition
2.6(a)). However, such analogies are not perfect. Indeed, although "nearly integral"
admits a globalisation result in the context of integral domains (Proposition 2.6(b)),
this result fails in general (Remark 2.15(a)).
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2 David E. Dobbs [2]

In order to deepen our understanding of nearly integral ring-homomorphisms R —>
T, we next mention some archetypical sufficient conditions: integrality; R a field; and
R = 0 (in which case unitality forces T = 0). A main purpose of our work is to show
how to recover these archetypes from hypotheses that involve "nearly integral". For
instance, it is shown in Theorem 2.13(c) that a ring R is either a field or 0 if (and only
if) the polynomial ring R[X] is nearly integral over R. Characterisations of integrality
in this spirit appear in Theorem 2.13(b), Theorem 2.14, and Proposition 2.16. Indeed,
Theorem 2.14 states that if R is not a field, then a ring extension R —> T is integral
if (and only if) it is nearly integral and (R, T) is a lying-over pair (in the sense of [5]).
Perhaps our deepest result is Corollary 2.11: an integral domain R has the property
that each of its overring extensions is nearly integral if and only if the (Krull) dimension
of R is at most 1 and the integral closure of R is a Priifer domain. This follows in part
from the fact (Proposition 2.10(b)) that nearly integral overring extensions of integral
domains satisfy the incomparability property, INC. As Remark 2.12(a) shows, "nearly
integral" does not satisfy this integral-like behaviour in general.

Any unexplained terminology is standard, as in [2] and [10]. In Proposition 2.16,
we assume some familiarity with the opening pages of [5].

2. RESULTS

We begin with an easy characterisation of integrality that motivates our interest
in hornomorphisms of the type

PROPOSITION 2.1. For a ring-homomorphism f: R —* T, the following conditions

are equivalent

(1) / ( s ) : S —> S <g> RT is integral for each ring-homomorphism R —> 5 ;

(2) /(s) *s integral for each ring-homomorphism R —* S which is not an
isomorphism;

(3) / is integral.

PROOF: (3) => (1) since, as we recalled in the introduction, integrality is a uni-
versal property. Of course, (1) => (2) trivially. Finally, assume (2), and consider
the inclusion map of R into the polynomial ring S — R[X]. By (2), /(S) :

R[X] <8>RT^ T[X] is integral. Thus, for each t in T, we have

t" + / (s)(fe»-i)tn"1 + • • • + f(S)(ho) = 0

for some hi £ R[X]. Applying the T-algebra map T[X] —J T that sends X to 0, we
obtain an integrality equation for t over JZ. Hence, (2) => (3). U

Notice that, in using condition (2) in the above proof, we chose S = R[X]. Another
natural choice would be S = R/I, where / is a nonzero ideal of R. In this case,
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identifies with the canonical map J: R/I —> R/I®RT = T/IT. This observation now

leads us to our main object of study.

PROPOSITION 2.2. For a ring-homomorphism, f:R-+T, the following four con-

ditions are equivalent

(1) T is integral over f(R) + IT for each ideal I of R such that I £ ker(/) ;

(2) J: R/I -> T/IT is integral for each ideal I of R such that I <£ ker(/);

(3) T is integral over f(R) + IT for each ideal I of R such that k e r ( / ) § / ;
(4) fis integral for each ideal I of R such that ker(/) ^ / .

If the above equivalent conditions hold, then we say that / is nearly integral (or
that T is nearly integral over R).

PROOF: Let / be an ideal of JR. Consider the commutative diagram

f{R) + IT -

I
(f(R) + IT)/IT -

> T

- 1
v T/IT

whose horizontal maps are inclusions and whose vertical maps are the canonical surjec-
tions. Notice that the top horizontal map is integral if and only if the bottom horizontal
map is integral. (This may be verified by direct calculation or by appeal to either [8,
proof of Lemma 4.6] or [6, Corollary 1.5(5)].) Moreover, the bottom horizontal map
is integral if and only if /= R/I -> T/IT is integral, since {f{R) + IT)/IT = im(/) .
These observations yield the equivalences (1) <£> (2) and (3) <=> (4). Moreover, it is
trivial that (1) =>• (3) (and, similarly, that (2) => (4)). To complete the proof, we shall
show that (3) => (1).

Let / be an ideal of R such that I <£ ker(/'). Put J - I + ker(/) . Since
ker (/) § J, it follows from (3) that T is integral over f{R) + JT. But JT = IT since
ker(/) • T = 0. Therefore, T is integral over f(R) + IT. 0

COROLLARY 2 .3 . A ring-homomorphism f : R ^ T is nearly integral if and only

if T is nearly integral over f(R).

PROOF: T is nearly integral over f(R) if and only if T is integral over f{R) + JT

for each nonzero ideal J of f(R) • By a standard homoinorphism theorem, such J

are in one-to-one correspondence with ideals of I of R such that ker(/) § / , the
bijection being given by / n f~1(J) and / >—» / ( / ) . Notice that if / = f~1(J), then
JT = f(I)T = IT. Hence, T is nearly integral over f(R) if and only if T is integral
over f(R) + IT for each ideal I of R such that ker(/) ^ / ; that is, by Proposition
2.2, if and only if / is nearly integral. u
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Remark 2.4. (a) It is also of some interest to note the following alternate proof that
(4) => (2) (instead of showing (3) => (1)) in Proposition 2.2. Given an ideal / ^ ker( / ) ,
put J = I + ker(/) and observe that / : R/I —* TjIT is the composite of the integral
maps R/I -> R/J and R/J -> T/JT = T/IT. Thus (see [2, Proposition 6, p.307]), J

is integral. (Notice that the key to both proofs is the observation that JT = IT.)

(b) Corollary 2.3 also admits a proof in the spirit of (a). With J and / as in the
earlier proof of Corollary 2.3, recall that JT = IT, and note that f(R)/J = R/I by
a standard homomorpliism theorem. Thus, f(R)/J —» J /JT may be identified with
R/I — T/IT.

(c) The above technique can be used to explain why a related concept is less
interesting than "nearly integral". To wit: if / : R —• T is a ring-homomorphism such
that / : R/I —> T/IT is integral for all nonzero ideals J of R, then either / is an
injection or / is integral. Indeed, if / is not an injection, take I = ker ( / ) , and notice
that / factors as the composite of integral maps R -» R/I and R/I -» T/IT = T/0 S*
T, whence / is integral.

On the other hand, it does not follow that a ring-homomorphism / : R —<• T is
intgegral given that / is nearly integral and ker(/) ^ 0. To see this, let R be an
integral domain of (Krull) dimension 1, let M be a maximal ideal of R, and let / be the
composite of the canonical surjection R —> F = R/M and the inclusion F —» T = F[X].

We have ker(/) = M ^ 0 and, using condition (3) of Proposition 2.2, / is nearly
integral. (The point is that I = R leads to f(R) + IT = T.) Of course, (X in) T is
not integral over R.

In view of Corollary 2.3, we lose no generality in studying nearly integral extensions,
namely R C T such that ( R is a subring of T and) the inclusion map R —* T is nearly
integral. Accordingly, we shall focus henceforth on such inclusions R C T.

The next result records some useful sufficient conditions for "nearly integral".

PROPOSITION 2.5. Let R C T be a ring extension. Then T is nearly integral over

R in each of the following cases

(a) T is integral over R;

(b) R is a field;
(c) R is an integral domain and T contains the quotient Held of R.

PROOF: (a) follows from the fact that integrality is a universal property. As for
(b), condition (3) of Proposition 2.2 is satisfied since I = R leads to R + IT = T.

(Another proof of (b) is available via condition (4) of Proposition 2.2 since I = R

leads to / : R/I —• T/IT being idendified with 0 —* 0, which is certainly integral.)
Finally, (c) follows via condition (3) of Proposition 2.2. The point is that if J is a
nonzero ideal of R and K is the quotient field of R, then R + IT = T because
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IT = I(KT) = (IK)T = KT = T. D

We next show that "nearly integral" is a local property, at least for integral do-

mains.

PROPOSITION 2.6. Let R C T be a ring extension. Then

(a) if T is nearly integral over R, then Ts is nearly integral over Rs for each

znultiph'catively closed subset S of R;

(b) if TR\M -is nearly integral over RM for each maximal ideal M of R and

R is an integral domain, then T is nearly integral over R.

PROOF: (a) We shall show that Ts is integral over Rs + JTs for all nonzero
ideals J of Rs • Any such J has the form J = IRs, where I is the inverse image
of J under R —* Rs• In particular, 7 ^ 0 . Thus, by hypothesis, T is integral
over R + IT. Applying the homomorphism T —* Ts, we see that Ts is integral over
(R + IT)S = RS + IRSTS = RS + JTS.

(b) Let I be a nonzero ideal of R, and let A denote the integral closure of R -f
IT in T. For each maximal ideal M o{ R, we claim that AR\M = ^H\M • Since
TR\M is nearly integral over RM>

 w e have TR\M integral over RM + IRMTR\M =

(R + IT)RKM . (Notice that IRM ¥= 0 since R is an integral domain.) The claim now
follows since taking integral closure commutes with localisation (see [2, Proposition 16,
p.314]). Hence by globalisation [2, Theorem 1, p.88], A - T; that is, T is integral over
R + IT, and so T is nearly integral over R. U

As Proposition 2.6 suggests, it is useful to study the behaviour of the "nearly
integral" property. In this spirit, we record the following result:

PROPOSITION 2.7. Let R C 5 C T be a. tower of rings. Then

(a) if S is nearly integral over R and T is nearly integral over S, then T is

nearly integral over R;

(b) let T be nearly integral over R, such that ITCiS = IS for each nonzero

ideal I of R; then S is nearly integral over R;

(c) let T be nearly integral over R, such that each nonzero ideal J of S
satisfies J f~l R ^ 0; then T is nearly integral over S.

PROOF: (a) If / is a nonzero ideal of R, then R/I —* T/IT factors as the com-

posite R/I —* S/IS —> T/IT of integral homomorphisms, and so is integral.

(b) This follows from the factorisation noted in the proof of (a) by viewing S/IS

as an fi/I-subalgebra of T/IT.

(c) Let J be a nonzero ideal of 5 and put I — JnR. By hypothesis, R/I —> T/IT

is integral. By composing this with (the integral map) T/IT —* T/JT, we see that
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h: R/I -> T/JT is integral. Since h factors through S/J, it follows that S/J -> T/JT
is integral, and so T is nearly integral over 5 . u

One sufficient condition for the second hypothesis in Proposition 2.7(c) is that R
be an integral domain and S an overring of R. Much of our later work will involve
overrings, and so we pause to record an example of a nearly integral overring extension
that is not integral. By way of contrast, notice that the nonintegral nearly integral
extension underlying the second paragraph of Remark 2.4(c) is F C F\X), which is not
an overring extension.

Example 2.8. Let R be a one-dimensional Priifer domain and T a proper overring of
R. Then T is nearly integral, but not integral, over R.

PROOF: The second assertion follows since R is integrally closed. As for the first,
Proposition 2.6(b) allows us to suppose that R is a (one-dimensional) valuation domain.
Although T, with the change of notation, need not remain proper, it is either R or the
quotient field of R (see [10, Theorem 65]). Apply Proposition 2.5(a), (c) to conclude
that T is nearly integral over R. D

By a result of Richman [11, Theorem 4], an integral domain is a Priifer domain if
and only if each of its overrings is flat. In view of Example 2.8, one might ask whether
each flat overring is nearly integral. The next result shows this is not the case even
for localisations. Indeed, Proposition 2.9 implies that if R is a valuation domain of
dimension at least 2 and P is a nonzero nonmaximal prime ideal of R, then Rp is not
nearly integral over R.

PROPOSITION 2.9. Let R be a quasilocal going-down domain (in the sense of [4])
and let P be a nonzero prime ideal of R. Then Rp is nearly integral over R if and
only if P is the maximal ideal of R.

PROOF: The "if" assertion is trivial, for Rp is then R, which is certainly nearly
integral over itself. Conversely, suppose that Rp is nearly integral over R. Then,
by taking / = P in condition (3) of Proposition 2.2, we see that Rp is integral over
A = R + PRp • However, the hypothesis on R implies that A is integral over R (see
[4, Proposition 2.1]). Therefore, Rp is an integral overring of R. As Rp is also iZ-flat,
it follows that Rp = R (see [11, Proposition 2]), whence P is the maximal ideal of
R. •

In view of the last two results, it seems reasonable to ask which integral domains
R have the property that each overring is nearly integral. The answer will be given in
Corollary 2.11. Before giving a preliminary result, we recall that INC and LO denote
the incomparability and lying-over properties, respectively, as in [10, p.28].
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PROPOSITION 2.10. Let R C T be a nearly integral ring extension. Then

(a) let Qi C Q2 be prime ideals of T such that Q1nR-Q2nR-P;ifRP

is not a Held, then Qi = Q2;

(b) if, in addition, R is an integral domain and T is an overring of R, then

RCT satisfies INC.

PROOF: (a) Proposition 2.6(a) allows us to pass from R C T to Rp C TR\P;
that is, we may assume (R,P) is quasilocal. As R = iZp is not a field, P ^ 0. Set
5 = i? + PT. By condition (3) of Proposition 2.2, T is integral over 5 . Hence, S C T
satisfies INC (see [10, Theorem 44]). Since

P c PT n R c Qi n R = P,

we have PT fl .R = P , and so a standard homomorphism theorem yields S/PT = R/P.

In particular, PT is a maximal ideal of S. Since PT C Qi H 5, it follows that
Qi n 5 = PT = Q2 n 5 , whence Qi = Q2 by INC.

(b) Deny the proposition. Then Qx n R = Qi n -R = P for some distinct primes
Qi C Q2 of T. As Q2 ^ 0 and T is an overring of R, we have P = Q2r\R^0. Then
.Rp is not a field and so, by (a), Qi = Q2, the desired contradiction. D

COROLLARY 2.11. Let R be an integral domain with integral closure R'. Then
the following conditions are equivalent

(1) each overring of R is nearly integral over R;

(2) if A C B are overlings of R, then B is nearly integral over A;

(3) dim(R) < 1 and R' is a Prufer domain.

PROOF: (2) => (1): trivial.

(1) => (3): assume (1). If u is an element of the quotient field of R, then Proposi-
tion 2.10 (b) implies that R C R[u] satisfies INC, and so h(u) — 0 for some polynomial
h 6 R\X] with a unit coefficient (see [5, Theorem 2.3]). It follows from [7, Theorem 5]
that R' is a Prufer domain.

Since R' is integral over R, it follows readily from Proposition 2.7(c) and (1)
that each overring of R' is nearly integral over R'. As dim(i?) = dirn(i?'), we may
assume R = R'; that is, R is a Prufer domain. If M is a maximal ideal of R and
T is an overring of RM , we have T nearly integral over R, and so T = TR\M is
nearly integral over RM , by Proposition 2.6(a). As dim(iZ) = sup{dim(i2M)}> w e

may suppose R quasilocal. In particular, R is a valuation (hence, going-down) domain.
Then Proposition 2.9, in conjunction with (1), yields dim(ii) < 1.

(3) =*• (2): given (3), R has valuative dimension at most 1, and so each overring
of R inherits the hypotheses of (3) (see [10, Theorems 65 and 64]). Therefore it will
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suffice to show that (3) =>• (1). Assume (3), and let 5 be an overling of R. Set
T = R'S. By Example 2.8, T is nearly integral over R'. As R' is (nearly) integral over
R, Proposition 2.7(a) yields that T is nearly integral over R. Hence, R/I —* T/IT is
integral for each nonzero ideal I of R. We shall show that R/I —*• S/IS is integral by
using a "radical" variant of the condition in Proposition 2.7(b).

Let s G 5 . As s + IT is integral over R/I, we have

for some elements rn_ j , . . . , r0 of R. We claim that £ G rads (IS). If so, £N 6 IS for
some integer N > 1, thus producing

for suitable en £ R. It would follow that 3 + 75 is integral over R/I, whence S/IS is
integral over R/I, whence 5 is nearly integral over R.

It remains to verify the claim regarding £. We shall show, in fact, that £ £ P for
each prime ideal P of S which contains IS. As T is integral over 5 , the extension
S C T satisifes LO (see [10, Theorem 44]). Choose Q G Spec(T) such that QnS = P.

Then

£ G IT = 1ST CPT CQ,

whence £ G < ? n S = P , a s desired. D

R e m a r k 2.12. (a) The hypothesis "Rp is not a field" cannot be deleted from Proposi-

tion 2.10(a). To see this, let Rbea. field F, and take T = F[X], Qi = 0, Q2 = XT and

P = 0. Then R C T does not satisfy INC (since Qi %Q2 and <?i D R = Q2 n i* = P ) ,

although Proposition 2.5(b) shows that T is nearly integral over R.

(b) The converse of Proposition 2.10(b) is false. Indeed, if P is a nonzero, non-

maximal prime of a valuation domain R, then R C Rp satisfies INC although, by

Proposition 2.9, Rp is not nearly integral over R.

We next give two results showing that "nearly integral", suitably enhanced, can

be used to recover the archetypes from Proposition 2.5(a), (b). A role for polynomials

is not surprising since a ring extension R C T is integral if and only if R[X] C T[X]

satisfies GU (going-up): see [3, Lemma, p.160].

THEOREM 2.13. (a) Let R C T be a ring extension such that the conductor

(R : T) is nonzero. Then T is integral over R if (and only if) T is nearly integral over

R.

(b) For a ring extension R <ZT the following four conditions are equivalent

(1) T[X] is nearly integral over R[X];
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(2) T[X] is nearly integral over R[X] + XT[X];

(3) T[X] is integral over R[X];

(4) T is integral over R.

(c) For a ring R, the following four conditions are equivalent

(i) R[X] is nearly integral over R;

(ii) R[X] is integral over R + hR\X] for all nonunits h € R[X)\R;

(iii) R[X] is integral over each ring A such that R § A C R[X];

(iv) either R is a field or R = 0.

PROOF: (a) Let I = (R:T). By hypothesis, I ^ 0. Since IT = I and T
is nearly integral over R, it follows that R/I —> T/I is integral. By analysing the
pullback R = T x T/IR/I

 vi& [8] or [6] as in the proof of Proposition 2.2, we conclude
that T is integral over R.

(b) It follows easily from [2, Proposition 13, p.312] that (3) «• (4). Of course, (3)
=> (1). We next show (1) => (4). Assume (1), and let / = XR[X). It follows from (1)
and condition (2) of Proposition 2.2 that A C B is integral, where A — R\X)/I = R
and 5 = T[X]/IT[X] = T[X]/XT[X] S T . In other words, T is integral over fl,
giving (4).

Since (3) => (2) trivially, it suffices to prove (2) => (4). Assume (2). Since J =

XT[X] is a nonzero common ideal of D = R[X] + XT[X) and E = T[X], it follows
from (a) that E is integral over D. Hence, D/J —> E/J is integral; that is, T is
integral over R, yielding (4).

(c) (iv) => (iii) follows from the proof of [5, Proposition 2.9]; and (iii) => (ii)
trivially. We next show (ii) => (iv). Let r E iZ\{0}. By (ii), X is integral over
R + rXR[X]; that is,

Xn + (on_! + r l /n . , ) !""1 + . . . + (oo + rXfo) = 0

for some a n _ i , . . . , a 0 in R a nd / n - i , - - - , / o in i?[X]. Equating coefficients of Xn

leads to 1 € rR. Hence, R is a field, giving (iv).
As Proposition 2.5(b) gives (iv) =£> (i), it now suffices to show (i) =4- (iv). Let

r 6 iZ\{0}. By (i), R + rR[X] —* R[X] is integral. Now, factoring out the common
ideal riZ[X] preserves integrality. However,

{R + rR[X))/rR[X} S R/(R D rR[X]) = R/rR

and

R[X)/TR[X] = (R/rR)\X}.

Hence, i i = R/rR is such that the polynomial ring R\X] is integral over R. We have
that R is the zero ring, whence rR = R, and 1 € rR. Therefore (iv) follows. D
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It follows from the proof of Theorem 2.13(b) that a ring extension R C T is integral
if and only if T[{Jfa}j is nearly integral over iZ[{Xa}] for each (or some) nonempty
subset {Xa} of algebraically independent indeterminates. Similarly, condition (i) in
Theorem 2.13(c) has an equivalent variant in which X is replaced by {Xa}.

Recall from [5] that (R,T) is called a lying-over pair (or LO-pair) in case R C T is
a ring extension such that A C B satisfies LO for each tower R C A C B C T of rings.
Lying-over pairs with first coordinate a field have been studied extensively [5, Section
4]. We next show that if R is not a field, the concepts of "lying-over pair" and "nearly
integral" jointly characterise the archetypical example of each, namely "integrality".

THEOREM 2.14. Let R C T be a ring extension such that R is not a Reid. Then

the following conditions are equivalent'

(1) T is nearly integral over R and (R,T) is an LO-pair;

(2) T is integral over R.

PROOF: (2) =>• (1): apply Proposition 2.5(a) and [5, Corollary 3.3].

(1) => (2): Deny this. Then, by [5, Proposition 4.5], there exist a maximal ideal

M of R, a nonmaximal prime ideal N of T such that N C\ R — M, and an element

X e T/N such that X is transcendental over the field F = R/M (and T/N is integral

over F[-3T]). A s M / 0 (since R is hot a field) and T is nearly integral over R, it

follows that T is integral over R + MT. Thus

A = (R + MT)/MT -» T/MT -* T/N

is a composite of integral maps, hence integral. As MTC\R = M, we have A = R/M =
F, and so T/N is integral (algebraic) over F. In particular, X is algebraic over F,

the desired contradiction. U

Remark 2.15. (a) Let R be a von Neumann regular (absolutely flat) ring which is
neither a field nor 0. (For instance, R = F x F where F is a field.) Put T - R[X].

By Theorem 2.13(c), T is not nearly integral over R. However T is "locally nearly
integral" over R, in the sense that TR\M is nearly integral over RM for each prime
(maximal) ideal M of R. (This follows via Proposition 2.5(b) since each RM is a field.)
This example shows that the hypothesis UR is an integral domain" cannot be deleted
from Proposition 2.6(b).

(b) The hypothesis "R is not a field" cannot be deleted from Theorem 2.14. To
see this, let R be a field JP and set T - F[X]. Then T is nearly integral over R by
Proposition 2.5(b), and (R, T) is an LO-pair by [5, Proposition 2.9], but T is certainly
not integral over R. A similar comment applies to Proposition 2.16 below.

(c) Theorem 2.13(a) can be used to prove the following companion to Proposition
2.9. Let JR be an integral domain and let P be a nonzero prime ideal of R. Then R is
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quasilocal with maximal ideal P if (and only if) P is divided in R (in the sense that
PRp = P) and Rp is nearly integral over R. We next indicate a proof of this result.
By hypothesis, P C (R : Rp), and so Theorem 2.13(a) implies that Rp is integral over
JR. Then, as in the proof of Proposition 2.9, an appeal to [11, Proposition 2] completes
the proof.

(d) Theorem 2.13(b) can be used to show that "nearly integral" is not a universal
property. For instance, let / : R —> T be a nonintegral nearly integral inclusion map,
and consider 5 = R[X]. Then /(s) : 5 —> S <g> RT = T[X] is not nearly integral since
/ is not integral.

In this regard, one has however the following easy positive result. If R —* T is
nearly integral and / is an ideal of R, then the induced map R/I —> T/IT is also
nearly integral.

It should be stressed that "nearly integral" often exhibits behaviour like that of
"integral". Another case in point is the following result, which is an easy consequence of
facts in [9]. The direct limit of any directed family of nearly integral homomorphisms is
iteself nearly integral. Of course, mention of direct limits suggests finite-type subalge-
bras and possible uses of Zariski's Main Theorem (ZMT). We shall close with one such
result, which may be viewed as a companion to Theorem 2.14. It will be convenient to
say that (R,T) is a nearly integral-pair in the case where R C T is a ring extension
such that B is nearly integral over A for each tower RcAcBdToi rings. We
refer the reader to [5, p.456] for the definition of "survival-pair".

PROPOSITION 2.16. Let R be an integral domain which is not a field and let T

be an overring of R. Tiien the following conditions are equivalent

(1) (R, T) is a nearly integral-pair and a survivai-pair;'

(2) T is integral over R.

PROOF: (2) => (1): apply Proposition 2.5(a) and [5, Theorem 2.1].

(1) => (2): in view of Proposition 2.10(b), this follows by applying [5, Remark 2.5].
We shall provide a self-contained proof here. By Proposition 2.7(c) and [2, Lemma
2, p.326], we may suppose R is integrally closed in T , and seek to show R = T.

Without loss of generality, T = R[u) for some element u. By "survival", MT £ T

for each maximal ideal M of R, and so some maximal ideal N of T lies over M.

By Proposition 2.10(b), N is isolated in the fibre over M. Hence, by ZMT, we have
Rr = Tr for some r e R\M. Varying M , we find finitely many n such that HRri = R

and Rrt = TTi for each i. Since J] # n i s ^-faithfully flat [2, Proposition 3, p.109], it
follows that R = T (see [2, Proposition 1, p.27]). D
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