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Biorthogonal Systems in Weakly Lindelöf
Spaces

M. Fabian, V. Montesinos, and V. Zizler

Abstract. We study countable splitting of Markushevich bases in weakly Lindelöf Banach spaces in

connection with the geometry of these spaces.

1 Introduction

A Markushevich basis (in short, an M-basis) of a Banach space X is a biorthogonal
system {γ, γ∗}γ∈Γ in X × X∗ such that span Γ = X and {γ∗}γ∈Γ separates points of
X.

We say, typically, that an M-basis {γ, γ∗}γ∈Γ is weakly compact, resp., weakly Lin-

delöf, if Γ∪{0} is a compact set, resp., Lindelöf space, in its relativized weak topology
from X.

A Banach space X is weakly compactly generated (in short, WCG) if there is a weakly
compact set K ⊂ X such that X = span K.

A Banach space X is a Vašák space (or weakly countably determined space) if there is
a sequence {Bn} of weak∗ compact sets in X∗∗ such that given x ∈ X and u ∈ X∗∗\X,

there is n0 such that x ∈ Bn0
and u 6∈ Bn0

.

A compact space K is an Eberlein compact if K is homeomorphic to a weakly com-
pact set (endowed with its weak topology) in a Banach space.

A compact space K is a Gul’ko compact if C(K) is a Vašák space.

A compact space K is a Corson compact if, for some Γ, K is homeomorphic to a set
S ⊂ [−1, 1]Γ in the pointwise topology and such that {γ ; x(γ) 6= 0} is countable
for all x ∈ S.

If a Banach space X admits a Markushevich basis, then X is weakly Lindelöf (i.e., X

in its weak topology is a Lindelöf space) if and only if BX∗ in its weak star topology is
a Corson compact [F2, Theorem 12.48].

Let X be a Banach space and let µ be the first ordinal of cardinality dens(X), the
density of X, the smallest cardinality of a dense subset of X. A projectional resolution

of the identity (in short, a PRI) on X is a long sequence of norm one projections
(Pα)ω0≤α≤µ in X such that Pω0

= 0, Pµ = IdentityX , PαPβ = Pmin(α,β), dens(PαX) ≤
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#α, for all α and the map α 7→ Pαx is continuous from the order topology on ordinals
into the norm topology of X, for every x ∈ X.

2 The Results

The purpose of this paper is to study countable coverings of Markushevich bases in
several subclasses of weakly Lindelöf Banach spaces. We will show that such covering

enjoying some extra property actually characterizes these subclasses and that every

Markushevich basis in a particular subclass shares this property. We will give proofs
to these results that use Lindenstrauss’ technique of projectional resolutions. Some
results in this paper can alternatively be shown by using the results of Farmaki [Fa].

For more information in this area we refer to [DGZ, F, F2, Z].

Definition 1

(a) An M-basis {γ, γ∗}γ∈Γ of a Banach space X is σ-shrinking if Γ =
⋃∞

n=1 Γn so that

for every neighborhood U of the origin in X∗∗[‖ · ‖] and for every γ ∈ Γ there
is n ∈ N such that γ ∈ Γn and Γ

′
n ⊂ U , where Γ

′
n is the set of all accumulation

points of the set Γn in X∗∗[ω∗].
(b) An M-basis {γ, γ∗}γ∈Γ of a Banach space X is weakly σ-shrinking if Γ =

⋃∞
n=1 Γn

so that for every neighborhood U of the origin in X∗∗[ω∗] and for every γ ∈ Γ,
there is n ∈ IN such that γ ∈ Γn and Γ

′
n ⊂ U .

The main results in this paper are the following three theorems.

Theorem 2 Let X be a Banach space. Then, the following are equivalent.

(i) X is a subspace of a WCG Banach space.

(ii) X admits a σ-shrinking M-basis.

(iii) BX∗[w∗] is an Eberlein compact.

Moreover, if this is the case, then every M-basis of X is σ-shrinking.

Theorem 3 Let X be a Banach space. Then the following are equivalent.

(i) X is a Vašák space.

(ii) X admits a weakly σ-shrinking M-basis.

(iii) BX∗[w∗] is a Gul’ko compact.

Moreover, if this is the case, then every M-basis in X is weakly σ-shrinking.

Theorem 4 Let K be a compact space. Then the following (i) and (ii) are equivalent.

(i) K is a Corson compact.

(ii) C(K) admits a pointwise Lindelöf M-basis.

If K is a Corson compact, then every M-basis {γ, γ∗} of C(K) such that { fα} ⊂
span‖·‖ K is pointwise Lindelöf.
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Remarks An equivalent definition of a σ-shrinking M-basis {γ, γ∗}γ∈Γ is the fol-
lowing: for every ǫ > 0, Γ =

⋃∞
n=1 Γ

ǫ
n so that

(Γǫ
n) ′ ⊂ ǫBX∗∗ for each n ∈ N.

Examples of Banach spaces that are Vašák spaces but not subspaces of WCG spaces

and examples of non-Vašák spaces whose dual balls are Corson compacts are dis-
cussed, e.g., in [F].

Note that a Banach space X is an Asplund WCG space if and only if X admits a
shrinking M-basis {γ, γ∗}γ∈Γ, i.e., an M-basis {γ, γ∗}γ∈Γ such that span‖·‖{γ∗ ;
γ ∈ Γ} = X∗ ([F, Theorem 8.3.3]).

Note that, if Γ ⊂ X is bounded, an M-basis {γ, γ∗}γ∈Γ in a Banach space X is

weakly compact if and only if X∗
= span τ{γ∗ ; γ ∈ Γ}, where τ is the topology

of the uniform convergence on the set Γ. Indeed, if the M-basis is weakly compact,
we can use the Mackey-Arens Theorem to show the statement. On the other hand, if
the condition holds and (γn)∞n=1 is a sequence of distinct points in Γ, given f ∈ X∗

and ǫ > 0 find g ∈ span{γ∗ ; γ ∈ Γ} such that sup |〈Γ, f − g〉| < ǫ. Now, there
exists n0 ∈ N such that, for every n ≥ n0, 〈γn, g〉 = 0, owing to the orthogonality

of the system, so lim supn→∞ |〈γn, f 〉| ≤ ǫ and this implies that γn
ω
−→ 0. Thus the

M-basis is weakly compact by Eberlein’s theorem. Note that an M-basis {γ, γ∗}γ∈Γ

is σ-weakly compact ( i.e., Γ ∪ {0} is a weakly σ-compact set in X) if and only if for

every γ ∈ Γ there exists δγ > 0 such that {δγγ}γ∈Γ ∪{0} is weakly compact. This then
means that X is WCG and every WCG space admits a weakly compact M-basis (see
e.g., [F2, Theorem 11.12]).

It is not true that every M-basis in a WCG Banach space is necessarily σ-weakly
compact. Indeed, assuming the Continuum Hypothesis, let X be a WCG space of

density character ℵ1 and Y be a non-WCG subspace of X ([R]). Then let {γ, γ∗}γ∈Γ1

be an M-basis of Y extended to an M-basis {γ, γ∗}γ∈Γ of X ([JZ, Proposition 4]).
By extending an M-basis {γ, γ∗}γ∈Γ1

to {γ, γ∗}γ∈Γ we mean that new elements γ
are added, γ∗ are extended to X for γ ∈ Γ1, and new elements γ∗ are added. If

{γ, γ∗}γ∈Γ were σ-weakly compact so it would be {γ, γ∗}γ∈Γ1
, which is a contradic-

tion as Y is not WCG.

This fact is in contrast with the result of Johnson (see [R] or [D]) who showed
that if X is a WCG Banach space and {γ, γ∗}γ∈Γ is an unconditional basis of X, then

{γ, γ∗}γ∈Γ is necessarily σ-weakly compact.

By the Hahn-Banach Theorem, an M-basis {γ, γ∗}γ∈Γ is σ-shrinking if and only
if for every ǫ > 0, Γ =

⋃∞
n=1 Γ

ǫ
n so that #{γ ∈ Γ

ǫ
n ; |〈γ, x∗〉| ≥ ǫ} < ℵ0, for all

x∗ ∈ BX∗ .

An M-basis {γ, γ∗}γ∈Γ is weakly σ-shrinking if and only if Γ =
⋃

n∈N
Γn so that

for each ε > 0, for each γ0 ∈ Γ and for each x∗ ∈ BX∗ there is n ∈ N so that

γ0 ∈ Γn and {γ ∈ Γn ; |〈γ, x∗〉| ≥ ε} is finite. Note that if {γ, γ∗}γ∈Γ is a weakly
σ-shrinking M-basis of X, then {γ ∈ Γ ; 〈γ, x∗〉 6= 0} is countable for all x∗ ∈ X∗.
Indeed, observe that if x∗ ∈ X∗ and ε > 0 are given, from the preceding remark
we get that Γ is covered by such Γn that {γ ∈ Γn ; |〈γ, x∗〉| ≥ ε} is finite. Thus
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{γ ∈ Γ ; |〈γ, x∗〉| ≥ ε} is countable. It follows then from Theorem 3 that BX∗ in its
weak∗ topology is a Corson compact if X is a Vašák space.

If BX∗ in its weak∗ topology is a Corson compact, then X admits an M-basis and
every M-basis in X is weakly Lindelöf. On the other hand, if X admits a weakly
Lindelöf M-basis, then BX∗ endowed with the weak∗ topology is a Corson compact
[O, VWZ], see e.g., [F2, Chapter 12].

Recall that an M-basis {γ, γ∗}γ∈Γ is norming if there exists λ > 0 such that for
every x ∈ SX ,

sup〈x, span{γ∗ ; γ ∈ Γ} ∩ BX∗〉 ≥ λ.

A norming M-basis {γ, γ∗}γ∈Γ of a Banach space X is σ-shrinking if and only if

given ǫ > 0, Γ =
⋃

n∈N
Γ

ǫ
n so that for each n ∈ N, (Γǫ

n) ′ ⊂ X + ǫBX∗∗ . In order to
prove one implication, let {γ, γ∗}γ∈Γ be a norming M-basis (for some λ > 0) and
Γ0 ⊂ Γ a set such that Γ

′
0 ⊂ X + ǫBX∗∗ . We shall prove that Γ

′
0 ⊂ ǫ(1 + 1/λ)BX∗ .

This can be shown as follows:

Let x∗∗ ∈ Γ
′
0. Then x∗∗ = x + u∗∗, where x ∈ X and u∗∗ ∈ ǫBX∗∗ . Choose

x∗ ∈ span{γ∗ ; γ ∈ Γ} ∩ BX∗ . Then

0 = 〈x∗∗, x∗〉 = 〈x, x∗〉 + 〈u∗∗, x∗〉,

so |〈x, x∗〉| < ǫ. As the basis is norming, we get ‖x‖ < ǫ/λ, so ‖x∗∗‖ < ǫ(1 + 1/λ).
The reverse implication is obvious.

This can be compared with [FMZ2], where a similar covering was required for BX

in order to characterize that X is a subspace of a WCG Banach space.

3 Proofs

We will now prove the results in this paper.

Definition 5 Given an M-basis {γ, γ∗}γ∈Γ of a Banach space X and a PRI
(Pα)ω0≤α≤µ on X, we say that they are subordinated (to each other) whenever Pα(γ) =

γ or 0 for every ω0 ≤ α ≤ µ and γ ∈ Γ.

The following result, a consequence of [JZ, Lemma 6], will be used frequently.

Lemma 6 Let Z be a WCG Banach space generated by a weakly compact absolutely

convex set K and X be a subspace of Z. Then any M-basis {γ, γ∗}γ∈Γ1
of X can be

extended to an M-basis {γ, γ∗}γ∈Γ of Z and a PRI (Pα)ω0≤α≤µ can be constructed on

Z such that it is subordinated to {γ, γ∗}γ∈Γ and Pα(K) ⊂ K for all ω0 ≤ α ≤ µ and

all γ ∈ Γ. In particular, PαX ⊂ X for all ω0 ≤ α ≤ µ.

Remark Part of the preceding statement (the construction of a subordinated PRI)
can be proved in a more general context using the concept of a projectional generator
(see, e.g., [F, Definition 6.1.6]). A Banach space Z is called weakly Lindelöf determined

if BZ∗[ω∗] is Corson. As it is well known, Z has, in this case, an M-basis, and every
M-basis {γ, γ∗}γ∈Γ of Z satisfies that

Φ(z∗) := {γ ∈ Γ : 〈γ, z∗〉 6= 0}
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is countable for every z∗ ∈ Z∗ (see, e.g., [F2, Proposition 12.51]). It is obvious that
the couple (Z∗, Φ) is a projectional generator, so Z has a PRI (Pα)ω0≤α≤µ (see, e.g.,

[F, Proposition 6.1.7]). This fact depends on the construction of two long sequences
(Aα)ω0≤α≤µ and (Bα)ω0≤α≤µ of subsets Aα ⊂ Z, Bα ⊂ Z∗ where Φ(Bα) ⊂ Aα for
all α. Then Pα(Z) = Aα and P−1

α (0) = (Bα)⊥ for all α (see, [F, Proposition 6.1.4]
and the proof of [F, Proposition 6.1.7]). Assume γ 6∈ Pα(Z) for some γ ∈ Γ and

ω0 ≤ α ≤ µ. Then γ 6∈ Φ(Bα), so 〈γ, z∗〉 = 0 for all z∗ ∈ Bα. We have then
γ ∈ (Bα)⊥ = P−1

α (0). It follows that, for any γ ∈ Γ and ω0 ≤ α ≤ µ, Pα(γ) = γ or
0, and so (Pα)ω0≤α≤µ is subordinated to {γ, γ∗}γ∈Γ.

Definition 7 We will say that a PRI (Pα)ω0≤α≤µ on a Banach space X is σ-shrinking

if there is a countable collection {Bn}
∞
n=1 of subsets of BX such that for every x0 ∈ BX

and for every ǫ > 0, there is n0 ∈ N such that x0 ∈ Bn0
and

lim sup
α↑β

sup |〈Bn0
, (P∗

α − P∗
β) f 〉| ≤ ǫ, for all f ∈ BX∗

and all limit ordinals β ∈ (ω0, µ].

Proposition 8 Let X be a Banach space with an M-basis {γ, γ∗}γ∈Γ and a subordi-

nated PRI (Pα)ω0≤α≤µ. Then {γ, γ∗}γ∈Γ is σ-shrinking if and only if (Pα)ω0≤α≤µ is

σ-shrinking.

Proof Assume first that {γ, γ∗}γ∈Γ is σ-shrinking. We may and do assume that
Γ ⊂ BX . Let (Γn)∞n=1 be the covering of Γ given by the definition of σ-shrinking.
Given ε > 0 let n ∈ N be such that Γ

′
n ⊂ εBX∗∗ . Suppose that, for some limit ordinal

ω0 < β ≤ µ and some x∗ ∈ BX∗ ,

lim sup
α↑β

sup |〈Γn, (P∗
β − P∗

α)(x∗)〉| > ε.

Then we can find an increasing net (αi)i∈I in [ω0, β) such that αi → β and elements

γi ∈ Γn such that

|〈γi, (P∗
β − P∗

αi
)x∗〉| = |〈(Pβ − Pαi

)γi , x∗〉| > ε, for all i ∈ I.

If Pβγi = 0 then Pαγi = 0 for all α ≤ β, so Pβγi = γi and Pαi
γi = 0 for all

i ∈ I. It follows that |〈γi , x∗〉| > ε for all i ∈ I. Let γ∗∗ be an accumulation point of
{γi : i ∈ I}. Then |〈γ∗∗, x∗〉| ≥ ε, a contradiction. It follows that

lim sup
α↑β

sup |〈Γn, (P∗
β − P∗

α)(x∗)〉| ≤ ε for all x∗ ∈ BX∗ .

Now, a simple argument involving sets of the form

[a1Γ1 + a2Γ2 + · · · + amΓm + εBX] ∩ BX,
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where
∑m

j=1 |a j | ≤ K, ε > 0, m ∈ N, K > 0, proves that (Pα)ω0≤α≤µ is σ-shrinking.

Assume now that (Pα)ω0≤α≤µ is a σ-shrinking long sequence of projections on X

which satisfy all properties of a PRI but not necessarily the requirement that µ be
the first ordinal of cardinality dens X (let us call it for now a PRI ′ on X), and let

{γ, γ∗}γ∈Γ be a subordinated M-basis. We shall prove that it is σ-shrinking. This
will be done by transfinite induction on the density of X. If X is separable, then every
M-basis on X is countable and the result is obvious. Assume that the result has been
proved for every Banach space of density less than ℵ, a certain uncountable cardinal,

having a σ-shrinking PRI ′. Let X be a Banach space of density ℵ with a σ-shrinking
PRI ′ and let {γ, γ∗}γ∈Γ be a subordinated M-basis on X. We may and do assume
that Γ ⊂ BX .

Given γ ∈ Γ, let b(γ) be the first ordinal in (ω0, µ] such that Pb(γ)(γ) = γ. Then
b(γ) has a predecessor a(γ); it follows that, for all γ ∈ Γ, γ ∈ [Pa(γ)+1 − Pa(γ)](X).
Define a well-order in each of the sets {γ ∈ Γ ; a(γ) = α}, α ∈ [ω0, µ]. This induces

a lexicographic well-order ≺ in Γ and the mapping a : Γ → [ω0, µ] is obviously
increasing. Given ǫ > 0 we can write BX =

⋃

n∈N
Bǫ

n and

lim sup
α↑β

sup |〈Bǫ
n, (P∗

β − P∗
α)x∗〉| ≤ ǫ,

for all limit ordinals β ∈ (ω0, µ] and x∗ ∈ BX∗ .

Define Γ
ǫ
n := Γ ∩ Bǫ

n, n ∈ N. It follows that Γ =
⋃

n∈N
Γ

ǫ
n. Let x∗∗ ∈ (Γǫ

n) ′.

Let W be the family of neighborhoods of x∗∗ in X∗∗[ω∗] partially ordered by inclu-
sion. Given W ∈ W let g(W ) be the first element (in the order ≺) in Γ

ǫ
n ∩ W . The

net {g(W ) ; W ∈ W} is w∗-convergent to x∗∗ and the mapping g : W → Γ
ǫ
n is

increasing. It follows that the mapping a ◦ g : W → [ω0, µ] is also increasing. Let

β := limW∈W[a ◦ g(W ) + 1]. If β is not a limit ordinal, then consider the Banach
space Pβ(X) (whose density is less than ℵ), the long sequence (Pα)ω0≤α≤β of projec-
tions on it (a σ-shrinking PRI ′ on Pβ(X) for the sets Bε

n ∩ Pβ(X)) and carry on the
construction in this setting to get, by the induction hypothesis, ‖x∗∗‖ ≤ ǫ. If β is a

limit ordinal, given x∗ ∈ BX∗ we get

〈g(W ), x∗〉 = 〈(Pβ − Pa◦g(W ))g(W ), x∗〉 = 〈g(W ), (P∗
β − P∗

a◦g(W ))x∗〉,

and

〈g(W ), x∗〉 → 〈x∗∗, x∗〉.

As g(W ) ∈ Bǫ
n, we get |〈x∗∗, x∗〉| ≤ ǫ for all x∗ ∈ BX∗ , so ‖x∗∗‖ ≤ ǫ.

We will use the following statement.

Lemma 9 Let X be a Banach space, W be an absolutely convex and weakly compact

subset of X and (Pα)ω0≤α≤µ be a PRI on X such that Pα(W ) ⊂ W, for all α. Then,

given x∗ ∈ X∗ and a limit ordinal β ∈ (ω0, µ], P∗
αx∗ → P∗

βx∗ uniformly on W when

α↑β.
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Proof Obviously, P∗
αx∗

ω∗

−→ P∗
βx∗ when α↑β, so

P∗
βx∗ ∈

⋃

α<β

P∗
αX∗

ω∗

=

⋃

α<β

P∗
αX∗

µ(X∗,X)

,

where µ(X∗, X) denotes the Mackey topology on X∗, i.e., the topology of the uniform

convergence on the family of absolutely convex and weakly compact subsets of X (see,
e.g., [F2, Theorem 4.33]).

Given ǫ > 0, find y∗ ∈ X∗ and α0 < β such that sup |〈W, P∗
βx∗ − P∗

α0
y∗〉| < ǫ.

Let α0 ≤ α < β. Then sup |〈Pα(W ), P∗
βx∗ − P∗

α0
y∗〉| < ǫ, as Pα(W ) ⊂ W . This

implies sup |〈W, P∗
αx∗ − P∗

α0
y∗〉| < ǫ. Then

sup |〈W, P∗
βx∗ − P∗

αx∗〉| ≤ sup |〈W, P∗
βx∗ − P∗

α0
y∗〉| + sup |〈W, P∗

αx∗ − P∗
α0

y∗〉|

< 2ǫ.

Lemma 10 Let X be a WCG Banach space. Let W ⊂ X be an absolutely convex and

weakly compact set spanning X (i.e., span(W ) = X). Let (Pα)ω0≤α≤µ be a PRI on X

such that Pα(W ) ⊂ W, for all α. Then (Pα)ω0≤α≤µ is σ-shrinking. If X is a subspace

of a WCG Banach space, then X has a σ-shrinking PRI.

Remark By the well-known theorem of Amir and Lindenstrauss (see [AL] or, e.g.,

[F2, Theorem 11.6]) a WCG Banach space X generated by W as above has a PRI

(Pα)ω0≤α≤µ such that Pα(W ) ⊂ W, for all α.

Proof of Lemma 10 Given ǫ > 0, let Bǫ
n := (nW + ǫBX) ∩ BX , n ∈ N. Given x ∈ BX

we can find y ∈ span(W ) such that ‖x − y‖ < ǫ. Now, y ∈ nW for some n ∈ N, so

x ∈ Bǫ
n. By Lemma 9 we get

sup |〈nW, P∗
βx∗ − P∗

αx∗〉| → 0, when α↑β, for all ω0 < β ≤ µ.

Then there exists α0 < β such that

sup |〈nW, P∗
βx∗ − P∗

αx∗〉| < ǫ, for all α such that α0 ≤ α < β,

so
sup |〈Bǫ

n, P∗
βx∗ − P∗

αx∗〉| < 2ǫ, for all α such that α0 ≤ α < β,

and this proves the first part.
In order to prove the second part, observe first that if a Banach space X of density

ℵ is a subspace of a WCG Banach space, then it is also a subspace of a WCG Banach

space Z of density ℵ (indeed, let D be a dense subset of X such that #D = ℵ and let
K be a weakly compact set generating Z. Given x ∈ D, find a countable set Nx ⊂ K

such that x ∈ spanNx. Let W :=
⋃

x∈D Nx, a weakly relatively compact subset of Z.
Then Z1 := span(W ) is a WCG Banach space of density ℵ and containing X; it is

enough to take now Z1 as Z). Let µ be the first ordinal of cardinality ℵ. By Lemma
6 we can find a PRI (Pα)ω0≤α≤µ on Z such that Pα(K) ⊂ K and Pα(X) ⊂ X for all
α, so σ-shrinking by the first part of the proof. It follows that (Pα |X)ω0≤α≤µ is a
σ-shrinking PRI on X.
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Corollary 11 Let X be a WCG Banach space. Then every M-basis on X is σ-shrinking.

Proof It is enough to put together Lemma 6 (or just the remark following its proof),
Proposition 8 and Lemma 10.

We will now give an elementary proof to the following lemma. An alternative
proof to it can be obtained by using the results in [Fa].

Lemma 12 Assume that X admits a σ-shrinking M-basis. Then BX∗ in its weak∗

topology is an Eberlein compact.

Proof Let {γ, γ∗}γ∈Γ be a σ-shrinking M-basis of X. We will construct a homeo-
morphism of BX∗ in its weak∗ topology onto a subset of c0(∆) in its weak topology

for some ∆.

Given n ∈ N, let {Γ
1/m
n }∞n=1 be the sets that cover Γ for U = (1/m)BX∗∗ (see

Definition 1). For i ∈ N, let the real valued function τi be defined on the reals by
τi(t) = t + (1/i) for t ≤ −(1/i), τi(t) = 0, for t ∈ [−(1/i), (1/i)] and τi(t) =

t − (1/i) if t ≥ (1/i).

The set ∆ will be an infinite matrix whose first row is a display of Γ
1
1, followed by

a disjoint display of Γ
1
2, then Γ

1
3, etc. The second row is the display of Γ

1/2

1 followed

by a disjoint display of Γ
1/2

2 , etc.

If f ∈ BX∗ and γ ∈ ∆ is in the ith row, in the display Γ
1/i
k , we put Φ f (γ) =

2−(i+k)τi( f (γ)). Then it is easy to see that Φ maps BX∗ into c0 (∆). Indeed, owing to
the “weights” 2−i , it suffices to note that on each row, the values are in c0. This holds

owing to the properties of Γ
1/m
n and owing to the weights 2−k. The map Φ is weak∗ to

pointwise continuous and thus weak∗ to weak continuous. The one-to-one property

follows from the observation that if t1 and t2 are two different real numbers then for
sufficiently large i, τi(t1) 6= τi(t2). Hence BX∗ in its weak∗ topology is homeomorphic
to a weakly compact set in c0(∆).

Proof of Theorem 2 (i) ⇒ (ii) Let X be a subspace of the WCG Banach space Z.
Then X admits a M-basis (see e.g., [JZ1]). Take any M-basis in X. This basis can be
extended to an M-basis of Z (see Lemma 6). By Lemma 9, this extended M-basis is
σ-shrinking, so the original M-basis on X is σ-shrinking, too.

(ii)⇒(iii) Assuming (ii), we apply Lemma 12 to see that BX∗ in its weak∗ topology
is homeomorphic to a weakly compact set in c0 (∆) considered in its weak topology

for some ∆. This proves (iii).

The implication (iii)⇒(i) is well known (see e.g., [F2, Theorem 12.12]).

Proof of Theorem 3 First note that (i) and (iii) are equivalent [F, Theorem 7.2.5].
(i)⇒(ii). We will use the approach of Sokolov [S]. A Vašák space X admits a separable

PRI (Pα)ω0≤α≤µ, i.e., a long sequence of continuous projections not necessarily of
norm one such that µ is the first ordinal with cardinality dens X, Pω0

= 0, Pµ is the
identity operator, PαPβ = Pmin{α,β} for all ω0 ≤ α, β ≤ µ, (Pα+1 −Pα)X is separable
for all ω0 ≤ α < µ and x ∈ span{(Pα+1 − Pα)(x) ; ω0 ≤ α < µ} for all x ∈ X.
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Then X has an M-basis {γ, γ∗}γ∈Γ subordinated to (Pα)ω0≤α≤µ (see the proof of
[F, Proposition 6.2.4]). We may and do assume Γ ⊂ BX . Let {γα

n }n∈N = {γ ∈ Γ ;

(Pα+1 − Pα)γ = γ}, ω0 ≤ α < µ.

Let Bm ⊂ BX∗∗ , m ∈ N, be the weak∗ closed sets witnessing that X is Vašák,
i.e., for every x ∈ BX there is N ⊂ N so that x ∈

⋂

m∈N Bm ⊂ X; we may and do
assume that for every m, n ∈ N there exists k ∈ N such that Bm ∩ Bn = Bk. Then put

Γ =
⋃∞

m,n=1 Γm,n, where

Γm,n =
{

γα
n ; ω0 ≤ α < µ

}

∩ Bm, m, n ∈ N.

Now, fix any x∗ ∈ X∗, γ0 ∈ Γ, and ǫ > 0.

Let N := {m1, m2, . . .} ⊂ N such that

γ0 ∈

∞
⋂

k=1

Bmk
⊂ X.

We claim that #{γ ∈ Γm,n : 〈γ, x∗〉 > ε} < ℵ0 for some m ∈ N. Assume not. Let

α1 be the first ordinal α ∈ [ω0, µ) such that γ = γα
n ∈ Bm1

and 〈γ, x∗〉 > ε. Let
α2 > α1 be the first ordinal α ∈ [ω0, µ) \ {α1} such that γ = γα

n ∈ Bm1
∩ Bm2

and
〈γ, x∗〉 > ε. Continue in this way. We get a sequence α1 < α2 < · · · converging
to some α ≤ µ; then (γαk

n )k∈N weak-clusters to some point x ∈
⋂∞

k=1 Bmk
⊂ X. It

follows that (Qβγαk

n )k∈N weak-clusters to Qβx for every ω0 ≤ β < µ, so Qβx = 0 for
every ω0 ≤ β < µ. Then x = 0, a contradiction with 〈x, x∗〉 ≥ ε, and this proves the
claim.

(ii)⇒(i). Assume that X contains a weakly σ-shrinking M-basis {γ, γ∗}γ∈Γ, and
Γ =

⋃∞
n=1 Γn from the definition. For i ∈ N, let τi(t) be a function on the real line

such that τi = 0 on [− 1
i
, + 1

i
] and τi(t) = t − 1

i
on [ 1

i
,∞) and τi(t) = t + 1

i
on

(−∞, −1
i

]. Let ∆ be the infinite matrix whose first row consists of countably many
disjoint copies of Γ1, call them Γ

1
1, Γ2

1, etc.; the second row consists of countably many
disjoint copies of Γ2, call them Γ

1
2, Γ2

2, etc. Define the map ϕ from BX∗ into ℓ∞(∆) by

ϕ(x∗)(γi
n) = τi

(

〈γi
n, x∗〉

)

where γi
n is an element of Γ

1
n. Then it can be checked that

ϕ is one-to-one continuous map from the weak∗ topology of BX∗ into the pointwise
topology of ℓ∞(∆). Then X is a Vašák space by [F, Theorem 7.2.5 (vi)].

(iii)⇒(i) is well known (see, e.g., [F, Theorem 7.1.9]).

Before proving Theorem 4, we state and prove the following simple fact.

Lemma 13 Let K be a compact space and {γ, γ∗}γ∈Γ be an M-basis of C(K). Then

the following are equivalent.

(i) {γ, γ∗}γ∈Γ is pointwise Lindelöf.

(ii) {γ ∈ Γ ; γ(k) 6= 0} is countable for all k ∈ K.

In this case, K is a Corson compact.
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Proof (i)⇒(ii) Assume that Γ ∪ {0} is pointwise Lindelöf. Let k ∈ K and p ∈ N.
Let U be the open cover of Γ ∪ {0} formed by U = { f ∈ C(K) ; | f (k)| < 1

p
} and

by the sets Uγ = { f ∈ C(K); 〈 f , γ∗〉 > 1
2
}, γ ∈ Γ. Let V be a countable subcover

of U. As 0 6∈ Uγ for all γ, the subcover V has to be formed by U and by some Uγi
,

i = 1, 2, . . . as γ 6∈ Uγ ′ for γ 6= γ ′, all but countably many γ’s are in U , i.e., for all

but countably many γ ′s, |γ(k)| < 1
p

. This holds for all p. Hence γ(k) = 0 for all but

countably many γ ′s.

In particular, this shows that K is a Corson compact.

(ii)⇒(i) Let U be an open cover of Γ ∪ {0} in the pointwise topology. Then there

is U ∈ U such that 0 ∈ U . Assume that (ii) is satisfied. Then γ ∈ U for all but
countably many γ. Thus {γ, γ∗}γ∈Γ is pointwise Lindelöf.

Proof of Theorem 4 (i)⇒(ii) If K is Corson, then C(K) is Lindelöf in the point-
wise topology (Corson, see e.g., [F2]). Moreover, there is an M-basis {γ, γ∗}γ∈Γ so

that {γ∗ ; γ ∈ Γ} ⊂ span‖·‖ K (see e.g., [DGZ, Theorem VI.7.6] and [F, Propo-
sition 6.2.4]). We shall prove that such an M-basis is pointwise Lindelöf. We may
and do assume that Γ ⊂ BC(K). Γ ∪ {0} is obviously closed in the topology of the

pointwise convergence on the set {γ∗ ; γ ∈ Γ}, so it is also closed in the topology of
the pointwise convergence on span‖·‖(K). Observe now that every pointwise limit in
C(K) of a net of elements in Γ ∪ {0} is also in BC(K). It follows easily that Γ ∪ {0} is
also pointwise closed, hence it is pointwise Lindelöf.

(ii)⇒(i) If {γ, γ∗}γ∈Γ is pointwise Lindelöf, then by Lemma 13, K is a Corson
compact.

As an application of the methods studied in this paper we present a new proof of
the following well known result [BRW] (see also [Gu, MR, NT]). For a different new
proof of this result see [FMZ2].

Theorem 14 Let K be an Eberlein compact. Let ϕ be a continuous map of K onto

ϕ(K). Then ϕ(K) is an Eberlein compact.

Proof The space C(ϕ(K)) is a subspace of the WCG space C(K). Let {γ, γ∗}γ∈Γ

be an M-basis of C(ϕ(K)) with ‖γ‖ ≤ 1 for all γ. By Theorem 2, {γ, γ∗}γ∈Γ is
σ-shrinking and thus by Lemma 12, BC(ϕ(K))∗ is an Eberlein compact. Hence such is

its closed subset ϕ(K).
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[O] J. Orihuela, On weakly Lindelöf Banach spaces. Progress in Functional Analysis, ( K.D.

Bierstedt, J. Bonet, J. Horvath and M. Maestre, eds.), Elsevier, Amsterdam, 1992.
[R] H.P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces.

Compositio Math. 28(1974), 83–111.
[S] G. A.Sokolov, On some class of compact spaces lying in Σ-products, Comment. Math. Univ.

Carolin. 25(1984), 219–231.
[V] M. Valdivia, Simultaneous resolutions of the identity operator in normed spaces. Collect. Math.

42(1991), 265–284.
[VWZ] J. Vanderwerff, J. H. M. Whitfield and V. Zizler, Markuševič bases and Corson compacta in
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