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ABSTRACT. Calibrated radiocarbon (14C) determinations are commonly used in archaeology to assign calendar dates
to a site’s chronological phases identified based on additional evidence such as stratigraphy. In the absence of such
evidence, we can perform dense 14C sampling of the site to attempt to identify periods of heightened activity,
separated by periods of inactivity, which correspond to archaeological phases and gaps between them. We propose
a method to achieve this by hierarchical cluster analysis of the calibrated 14C dates, followed by testing of the
different clustering solutions for consistency based on silhouette coefficient and statistical significance using
randomization. Separate events identified in such a way can then be regarded as evidence for distinct phases of
activity and used to construct a site-specific sequence. This can be in turn used as a Bayesian prior to further
narrow down the distributions of the calibrated 14C dates. We assessed the validity of the method using simulated
data as well as real-life archaeological data from the Bronze Age settlement of Troy. A Python implementation of
the method is available online at https://github.com/demjanp/clustering_14C.
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INTRODUCTION

Calibrated radiocarbon (14C) determinations represent probability distributions of the calendar
year in which the sampled organism died. This date is principally associated with a specific
event, which can be inferred from additional evidence. In archaeology, such an event can
be, e.g. a burial, dated by the time of death of the interred, or the occurrence of fire—
intentional or accidental—dated by the time when seeds of cultural plants were carbonized. We
can usually assign these events to spatial contexts, such as settlement pits or layers, from
which we can infer their relative chronological relations, be it vertical or horizontal
stratigraphy. Based on these, we can construct a site-specific sequence, or phasing, which is
one of the desired results of an archaeological investigation of a settlement or burial site. In
reality, due to deposition and site formation processes (e.g. Schiffer 1996), the majority of
archaeological contexts are of secondary and even tertiary nature and do not always
provide reliable additional evidence for the chronological relations of their contents. In the
absence of such stratigraphic evidence, we cannot construct the temporal development/
phasing of the site based on 14C dates alone due to their probabilistic nature. Even if we do
recognize gaps in a series of calibrated 14C dates, we cannot readily interpret them as hiatuses
or transitional periods in occupation. They could be caused by a sparsity of sampling, or be an
effect of the calibration curve, as has been described by Rhode et al. (2014).

A good example can be a cultural layer containing evidence of human occupation in the form
of fragmented pottery and carbonized plant remains, with no archaeological features, such as
pits or house foundations, preserved. If we date the organic artifacts, and the resulting
calibrated 14C dates are wide apart from each other, we can interpret this as evidence for
occupation of the site in two or more phases. Often, however, the probability distributions
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of the dates from such a context overlap and it is difficult to estimate, much less to statistically
test, whether they represent events occurring continuously during a single period of occupation,
or rather in multiple phases separated by periods of decreased activity or abandonment. In
order to rigorously approach this problem, we need a method to calculate the closeness of
two dates, i.e. the probability that they actually represent the same event. We further need
to eliminate the possibility that the observed gaps between dates are a product of irregular
sampling or artifacts caused by the calibration process.

We will examine the thesis that by performing cluster analysis of a set of 14C dates, where their
measure of dissimilarity is derived from the probability that they represent the same event, we
can determine the optimal amount of separate events in time that would explain their
distribution at a specified level of significance. Separate events identified in such a way can
then be regarded as evidence for distinct phases of activity and used to construct a site-
specific sequence. This can be in turn used as a Bayesian prior to further narrow down the
distributions of the calibrated 14C dates.

A mathematical solution to clustering of uncalibrated 14C dates has been proposed by Wilson
and Ward (1981). Their purely mathematical approach cannot be, however, applied to calibrated
dates represented by non-normal probability distributions. Furthermore, their proposed method
does not test whether the observed clustering could be caused by irregularities in sampling or
fluctuations of the calibration curve. The non-normal distribution of calibrated 14C dates also
rules out any approach that would use a chi-squared or any other standard statistical test
which assumes normally distributed values.

Methods for testing the statistical significance of hierarchical clustering of values were
developed for use in the field of genetics (Liu et al. 2008; Huang et al. 2014; Kimes et al.
2017). Here, randomization is used to test whether a certain degree of clustering can be the
product of chance. This method was also impossible to apply on calibrated 14C dates, since
probability distributions based on simulated 14C ages where the calendar ages of the
samples are randomly drawn from a normal distribution do not produce a dissimilarity
matrix with normally distributed values, which is a requirement of this approach.

In the following text, we will present theoretical considerations regarding the definition of
archaeological events and their temporal clustering. We will further propose a clustering
method and a test of the statistical significance of the results. The validity of this approach
will be tested using simulated data as well as real-life archaeological data. Finally, we will
discuss possible limitations and applicability of the method in archaeological praxis. The
proposed method has also been implemented as a Python 3.6 script and is available under
the GNU General Public License (Demján 2020; Supplementary Material File 1).

MATERIALS AND METHODS

Theoretical Considerations

To meet the prerequisite of our thesis—perform a cluster analysis of 14C dates—we need to
calculate their dissimilarity matrix. As was already mentioned, the distance function of two
calibrated dates should be based on the probability that they represent the same event.

We propose a definition of an archaeological event for the purposes of scientific dating as a
period of human activity, during which dateable artifacts or ecofacts are deposited at such
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a frequency that it is impossible to recognize a time gap between them using any available
dating method. Therefore, the summed probability distribution of dates originating from
one event should be indistinguishable from a summed probability distribution of simulated
dates with the same resulting mean and standard deviation generated randomly using the
same dating uncertainty and calibration method. The reasoning behind this is that the
dated artifacts or ecofacts represent a random sample of those continuously generated over the
duration of the event. If the summed probability distribution of the observed dates significantly
differs from the randomly generated versions, we must assume that we are dealing with more
than one event. An underlying assumption for all considerations in this study is that the
examined samples are spatially homogenous, i.e. the events that produced them affected the
whole examined area. It is important to keep this in mind when interpreting the results.

Normality Test

As was established before, the non-normal nature of calibrated 14C dates requires us to use
randomization for statistical testing, which means comparing the observed dataset to a null
model in which the actual calendar dates of the samples are normally distributed around a
specific mean. To achieve this, the randomized summed probability distributions used for
statistical testing must be generated using the same number of simulated dates as the
observed dataset. The distribution of uncertainties of these dates must also be the same as
the observed. Finally, the summed distribution must have the same mean and standard
deviation as the observed summed distribution. This is to ensure that we take uncertainties
due to measurement and calibration into account. The generator algorithm first produces
an initial guess of randomized distributions by simulating 14C dates of samples with
calendar ages normally distributed with the mean and standard deviation of the observed
summed distribution, randomly choosing uncertainty values from the observed dataset.
This 14C set is then optimized using the basinhopping function from the scipy.optimize
package (Virtanen et al. 2020) to minimize the distance of the mean and standard deviation
of the sum of the randomized distributions from the observed values. For a Python
implementation of this algorithm, see function gen_random_dists (Demján 2020).

First, we need to test the null hypothesis (H0) that the observed dates represent a single event,
i.e. the optimal number of clusters explaining the evidence is one. We do this by generating a
sufficient amount of sets of randomized distributions as described above and calculate the
probability of achieving values as extreme as the observed ones for each calendar year. If
at least one of these probabilities is lower than the significance level α, then H0 has been
rejected (Demján 2020, functions get_randomized, calc_percentiles) and we can assume that
the dates form two or more clusters.

Clustering Method

The probability that two calibrated radiocarbon dates i and j, defined by mean radiocarbon
ages ti, tj and standard deviations σi, σj, represent the same event can be expressed as the ratio

Pij �
4
P

t2I fCalib t; ti; σi� �fCalib t; tj; σj

� �

P
t2I fCalib t; ti; σi� � �P

t2I fCalib t; tj; σj

� �� �
2 (1)

where I is the set of all calendar dates from the IntCal13 (Reimer et al. 2013) and fCalib is the
calibration function defined by Bronk Ramsey (2008). It has to be noted that this calculation
models the ideal case where the event’s duration is one calendar year, so the resulting
percentages will be very low for real-life data. This ideal model is used because we cannot
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assume a specific time interval of the event and need this value only to calculate the
chronological distance of two dates for the purposes of cluster analysis, without the need to
directly interpret it. The distance function can then be defined as:

Dij � 1 � Pij (2)

The next step towards cluster analysis is the calculation of a dissimilarity matrix of all
calibrated dates using the function Dij (2). For a Python implementation, see function
calc_distance_matrix in the clustering_14C program (Demján 2020).

Further, we calculate Principal Component Analysis (PCA) scores for each row of the dissimilarity
matrix and keep only components which explain 99% of the variance (Demján 2020, function
calc_distances_pca). This step is especially important for larger datasets to reduce the number
of dimensions (i.e. “de-noise” the data) and achieve a more stable clustering. Alternative
methods of choosing the number of components to keep were suggested by one of the
reviewers of this paper, one being to discard just the last component, which can be assumed to
be the one capturing noise, the other being Horn’s Parallel Analysis, which selects components
based on randomization testing (Horn 1965). We tested both approaches on simulated data
and while Horn’s method always rejected all but the first component, which led to a sub-
stantial reduction of fidelity, the selection of all but the last component produced comparable
results with the 99% variance method (see Supplementary Material File 2).

Hierarchical Cluster Analysis (HCA) is then performed on the PCA scores using Ward’s
method based on the Euclidean distance metric. Solutions are produced for numbers of
clusters ranging from two to number of dates minus two (Demján 2020, function
calc_clusters_hca).

Statistical Testing of Clustering Solutions

If the normality test rejects H0 for a one-cluster solution, we can proceed with testing the HCA
solutions with two and more clusters. For each solution, we calculate the mean Silhouette
Coefficient, which quantifies the consistency of clustering (Rousseeuw 1987). We then test
the H0, that such consistency can be achieved by clustering datasets generated randomly
under the previously described conditions (Demján 2020, function get_clusters_hca). Out of
the solutions for which H0 was rejected, the optimal is then the one with the highest mean
silhouette coefficient, i.e. the most consistent one (Demján 2020, function get_opt_clusters).

RESULTS

The viability of the clustering method proposed in this paper depends on its ability to detect
separate events in archaeological data. There are two possible strategies to test this ability. The
first is using simulated data where we know the exact amount of events to be detected if the
method is successful. The second is using actual archaeological data where a sufficient amount
of additional evidence allows us to assign them to specific events even without 14C dating.

Simulated Data

Using the clustering method on simulated data allows us to rigorously test its viability and also
estimate conditions under which it is applicable, given different levels of uncertainty due to the
shape of the calibration curve in different time periods. We simulated 14C dates of events
occurring in calendar dates from 6000 years BC to 1500 years AD, with dating
uncertainties randomly picked from an interval of 10–30 14C years. For each simulated
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observation, we generated versions with 10, 20, and 40 dates, divided between three events. The
simulated calendar ages of the events had a mean around a specific year in the 6000 BC to 1500
AD range and were separated by a certain time gap. For each simulated dataset, we calculated
the optimal number of clusters. The time gap was gradually increased until the calculated
number of clusters equalled the simulated number of three events. The detection of the
correct number of clusters for a specific mean calendar age of the events and time gap had
to be successful over 10 successively generated datasets to be considered stable. Figure 1
shows the minimum time gap in calendar years between archaeological events which
occurred around a certain calendar date to successfully detect them based on a specific
number of 14C determinations.

The results show that events separated by under 100 years can be detected in optimal parts of the
calibration curve and even in the less optimal parts, the necessary gap does not usually exceed 300
years. In general, it can be said that the expected resolution of clustering of calibrated 14C dates is
similar to the expected resolution of the dating itself, as reported by Svetlik et al. (2019).

Archaeological Data: Troy

To test the new method on real-life data, we selected the Bronze Age settlement of Troy
(Western Anatolia) as an ideal candidate. It is a well-known site with complex stratigraphy
(ca. 3000 BC–500 AD), that has been excavated over many years, with sufficient
publications (for summaries cf. Blegen 1963; Korfmann 2006; Pernicka et al. 2014) and a
robust set of published 14C dates (Korfmann and Krommer 1993; Krommer et al. 2003).
As the understanding of the stratigraphy and the various depositional processes at Troy has
moved on since the initial publication of the 14C data, the present paper targets only the 40
14C dated samples from the Middle and Late Bronze Age at Troy (roughly 2nd millennium
BC), whose stratigraphy and relative dating were more recently reassessed (Pavúk 2014;
Pavúk 2020). These include mainly charcoals but also seeds and human collagen from well-
stratified contexts, reflecting the range and frequency of the available samples. Most were
taken in the 1990s and early 2000s and the sampling strategy was not as systematic as one
would hope for today. The chronological development of this site in the second millennium
BC is, nevertheless, well documented and the depositional processes understood by now,

Figure 1 Minimum gap between simulated events necessary to correctly detect them using clustering of calibrated
14C dates. Expected resolution of dating according to Svetlik et al. (2019) shown for comparison.
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including any caesurae in occupation due to catastrophic events or rebuilding. We can thus
compare the chronological phasing derived from clustering calibrated 14C dates with the
already archaeologically established phasing for the site.

The H0 that the dates represent a normal distribution was rejected at the significance level
α=0.05 (Figure 2). The optimal clustering solution was subsequently found to be 4 clusters
with ca 100-year gaps between them (Figure 3; Supplementary Material Files 3–6).

The first thing we noticed was that while the clusters do not correlate with the individual
architectural phases identified so far, they almost perfectly match the overall periodization
established for Troy: cluster 1 is the Middle Bronze Age (MBA), cluster 2 is Late Bronze
(LB) 1, and clusters 3 and 4 correspond to LB 2A and LB 2B at Troy (Figure 4, for the

Figure 2 Summed probability distributions of calibrated 14C dates from Troy compared to an acceptance envelope
of summed probability distributions of randomized dates with a significance level α=0.05.

Figure 3 Mean silhouette coefficient (black line) of different clustering solutions of calibrated 14C dates from Troy
with corresponding p-values (grey line). Significance level α=0.05 is denoted by a dashed line.
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periodization, see Pavúk 2020, cf. also Pavúk and Horejs 2018). What was also distinctive were
the gaps between the clusters, to whose interpretation we shall turn now.

What comes into mind in the case of Troy are the major disruptions or reshapings of the citadel
and its vicinity. Here, we speak not about single-deposit formation processes, but large-scale
site-formation processes. The gaps between the clusters correspond exactly to these: Whereas

Figure 4 14C clusters matched against
periodization of the Middle (MB) and Late
Bronze Age (LB) Troy. The box plots
represent mean and maximum extent of
95.4% calibrated age ranges of each cluster.

Clustering of Calibrated 14C Dates 435

https://doi.org/10.1017/RDC.2020.129 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2020.129


Troy V and Earliest Troy VI (cluster 1 with a midpoint around 1830 BC) have similar formation
processes and gradual accumulation, it is in the latter part of Troy VI-Early and in VI-Middle
(cluster 2 with midpoint around 1630 BC) that we see the first attempts at the intentional
reshaping of the citadel, with the construction of new terraces and terrace walls, for instance.
This reshaping is developed more extensively during Troy VI-Late (cluster 3 with midpoint
around 1400 BC), which ends in a major earthquake. This is followed by an almost complete
rebuilding of the citadel and also adjacent areas during Troy VIIa, followed by similar activities
also in Troy VIIb1 (both cluster 4 with midpoint around 1190 BC). Thus, what we see are
disruptions in the otherwise gradual accumulation of deposits, which would rather support a
normative distribution of burning of habitational events (as likely happened in real life at Troy).

To test the robustness of the solution, we calculated optimal clustering for 10 randomly selected
subsets, half the size of the original dataset (20 dates). Out of these, 7 solutions had a number of
clusters less than half the number of samples (i.e. a cluster contained more than two samples on
average). Cluster boundaries in these solutions were at the same places as in the full set,
meaning that even clustering a randomly selected half-sized dataset correctly detected the
chronological phases in 7 out of 10 cases (Supplementary Material File 3).

DISCUSSION AND CONCLUSIONS

We have successfully demonstrated on simulated data that it is possible to determine the
number of events from which 14C dates originate by the proposed method of hierarchical
cluster analysis and randomization testing, given that they are separated by sufficiently long gaps
and the sampling is dense enough. This approach was further validated by correctly detecting
major phases in the development of the Bronze Age settlement of Troy, which are already
known based on previous archaeological and architectural research.

Possible issues preventing a successful application of the new method can arise due to sampling
density or limitations of 14C dating itself. If the number of samples is too low with respect to the
length of the examined time period, the optimal solution can result in too many clusters, each
consisting of one or two dates. In such a case, we would be probably detecting gaps in collected
evidence, rather than actual gaps in past activities that produced it (see clustering of subsets 2, 6
and 7 in Supplementary Material File 3). Another issue could arise if the gaps between events
are shorter than the temporal resolution of 14C dating, be it due to uncertainty of the
measurement, or a plateau in the calibration curve resulting in a wide spread of the
probability distributions of calendar ages (see Figure 1).

The method is especially suitable for cases in which there is little or no archaeological evidence
for a chronological development of a site, i.e. we are unable to derive chronology from
stratigraphic relations of archaeological features or typological evaluation of the artifacts
but still have sufficient evidence of human activity in form of 14C dateable macro-remains
(e.g. charred cereals, wood from fireplaces, etc.). An example of such a study with the
application of a preliminary version of the method presented here is a paper by Dreslerová
et al. (2020). Bayesian modelling can then be used to further infer on the duration of gaps
between the detected clusters, such as the Interval function in OxCal. Applying clustering
as a prior can also to a lesser degree affect the modelled span of a sequence of dates. For
an example, comparing OxCal models of the same set of 20 dates originating from two
simulated events 100 years apart with and without clustering, see Supplementary Material
Files 7–9.
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Another use could be with data from stratigraphically disconnected but still spatially close
areas of research (e.g. different excavation trenches at the same archaeological site), where
we could detect periods of activity (e.g. phases of occupation) based on 14C dates, even if
we are unable to chronologically link those areas based on other evidence.

Clustering could also to some extend provide a solution to temporal “binning” of 14C dates
from large datasets where it is either impossible or impractical to combine them based on
archaeological evidence. The requirement to ensure spatial homogeneity of the binned data
(i.e. that they can actually represent one phase of a site) of course still applies. Especially
for inference on spatio-temporal settlement density, an interpolation method incorporating
also the spatial dimension, such as Evidence Density Estimation (Demján and Dreslerová
2016; Demján 2019) might be more appropriate.

Even if a relative chronological sequence is already known, as is the case of the example from
Troy presented here, we can use the randomization and clustering approach to determine whether
the occupation of the site was continuous, or there are detectable gaps. In the examined case, a
possible interpretation of those gaps would be an overall change in site formation processes, be
it destruction or major rebuilding programs. For further stimulating thought concerning gaps
and Troy see Weninger and Easton (2014), who target the EBA sequence.

The possibility to infer chronological sequences based purely on 14C dates demonstrates that
under certain conditions, the mere fact that samples are of archaeological origin (i.e. they are a
product of human activities) and are spatially homogenous can be used as a Bayesian prior to
increase the precision of their absolute dating.
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