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Cubic Polynomials with Periodic Cycles of
a Specified Multiplier

Patrick Ingram

Abstract. We consider cubic polynomials f (z) = z3 + az + b defined over C(λ), with a marked point

of period N and multiplier λ. In the case N = 1, there are infinitely many such objects, and in the

case N ≥ 3, only finitely many (subject to a mild assumption). The case N = 2 has a particularly rich

structure, and we are able to describe all such cubic polynomials defined over the field
⋃

n≥1 C(λ1/n).

1 Introduction

Let Ĉ denote the Riemann sphere, and let f : Ĉ → Ĉ be a holomorphic function.

If one is interested in studying the dynamics of f , one natural starting point is to

describe the periodic points under f . The point α ∈ Ĉ is said to be a point of period

dividing N for f if

f N (α) = f ◦ f ◦ · · · ◦ f (α) = α,

and a point of (exact) period N if N is the least positive integer for which the above

relation holds. If we expand f N (z) − α as a power series near z = α,

f N (z) − α = λ(z − α) + c2(z − α)2 + · · · ,

then the coefficient λ, called the multiplier of the periodic point α, determines much

of the dynamics near the cycle. We say that the cycle is repelling if |λ| > 1, attracting if

|λ| < 1, and indifferent if |λ| = 1. This distinction turns out to be fairly important in

the classification of the dynamics of holomorphic functions; for example, a classical

result in holomorphic dynamics (see [6, Theorem 14.1]) states that the Julia set of a

function is exactly the closure of its set of repelling periodic points.

The aim of this paper is to make a few observations about periodic points of cubic

polynomials. Cubic polynomials with marked points of period N are parametrized

by a 2-dimensional moduli space P3(N) (defined more precisely below). The map

λ : P3(N) → Ĉ taking a cycle of a polynomial to its multiplier offers a natural fi-

bration of these spaces. The fibres of the multiplier map turn out to be of intrinsic

interest, arising in the classification of the hyperbolic components of the connected-

ness locus of the moduli space of cubic maps (see, for example, [5]).

More specifically, we are interested in describing sections, and certain multi-sec-

tions, of these fibrations. By a multiplier section of period N we mean a triple of

holomorphic functions a, b, z1 : Ĉ → Ĉ in the variable λ, such that z1 is a point of
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period N for the map f (z) = z3 + az + b, with multiplier λ. For example, the cubic

map

f (z) = z3 + λz

has a fixed point z1 = 0, with multiplier λ. More generally, for a morphism

λ : X → Ĉ of compact Riemann surfaces, one might ask about meromorphic triples

a, b, z1 : X → Ĉ of the same sort, again with multiplier λ. One particularly natural

case of this is triples a, b, z1 : Ĉ → Ĉ in the variable w, defining an N-cycle of mul-

tiplier λ = wm, since the distinction between attracting, repelling, and indifferent

cycles is defined identically in terms of |w| as in terms of |λ|. Triples of this form will

be called m-th root multiplier sections of period N, and these will be called primitive

unless they factor non-trivially through an intermediate map λ = ud. An example of

a square-root multiplier section of period 2 is the given by the cubic polynomial

f (z) = z3 +
1

6
(w2 − 9)z +

√
−2

54
(w2 − 9)w,

which has a point of period 2 at

z1 =
−
√
−2

6
(w + 3i)

with multiplier λ = w2.

Our first theorem is fairly elementary, but is presented for contrast with Theo-

rems 1.2 and 1.3.

Theorem 1.1 There exist infinitely many multiplier sections of period one.

We can, in fact, simply write down an explicit parametrization of all such sections.

The case N = 2 turns out to be much more interesting. Not only are there no mul-

tiplier sections in this case, but the full set of m-th root multiplier sections can be

described fairly explicitly.

Theorem 1.2 If (a, b, z1) is a primitive mth root section of period 2, then m divides 12.

Furthermore, the set of triples of this form is infinite, but has the structure of a finitely

generated abelian group of rank 3. Finally, there are no multiplier sections (that is, m-th

root sections with m = 1) of period 2.

While there are infinitely many 12-th root multiplier sections of period 2, it turns

out that another sort of finiteness holds (beyond the finite generation of the group

of sections): given any finite set of points S ⊆ Ĉ, only finitely many of these sections

have no poles outside of S.

In the case where N ≥ 3, it turns out that there are only finitely many multiplier

sections in total (for each N), assuming the above-mentioned fibration is not isotriv-

ial. Recall that a fibred suface is isotrivial if all smooth fibres are isomorphic. The

fibration in question is non-isotrivial in the cases N = 1, 2, and 3, and we suspect

this to be true for all N.
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Theorem 1.3 Let N ≥ 3 and suppose that the fibration of P3(N) by λ is not isotrivial.

Then there exist only finitely many multiplier sections of period N. More generally, given

any compact Riemann surface X and holomorphic map λ : X → Ĉ, there exist only

finitely many triples a, b, z1 : X → Ĉ as above with period N such that the resulting

cycle has multiplier λ.

Both of these results lead us to ask the following question:

Question 1.4 Do any multiplier sections of period N ≥ 3 exist? What about m-th

root multisections where m is arbitrary?

As we are interested in sections of the fibred surfaces λ : P3(N) → Ĉ, it is rea-

sonable to consider the generic fibres on which these sections correspond to points.

Specifically, the function field of P3(N) has transcendance rank 1 over the field C(λ),

and hence is the function field of some smooth, projective, algebraic curve X1(N)

over this field. Sections of the fibration correspond to C(λ)-rational points on X1(N),

and so tools from arithmetic geometry may be brought to bear; it is this connection

that we use to prove the theorems above. It is worth noting that our results also show,

for example, that if N ≥ 3, and K is a number field, then for all but finitely many

λ ∈ K (that is, all but those below “bad fibres” of the moduli space), there exist at

most finitely many cubic polynomials z3 + az + b with a, b ∈ K and a marked K-

rational point of period N. Since points on X1(N) correspond to cubic polynomials

with a marked point of period N, there is a natural action of Z/NZ on this curve

that sends ( f , P) to ( f , f (P)). The quotient by this group of automorphisms will

be denoted by X0(N), a notation intended to be evocative of the analogous moduli

problem in the study of elliptic curves.

Note that, while the fibrations above admit few sections, the underlying surfaces

in some cases are fairly simple. For example, in the case N = 2, the multiplier

fibration is elliptic (that is, the generic fibre X1(2) is an elliptic curve over C(λ)),

but the underlying space is rational. This means, for example, that if K is a number

field, then cubic polynomials z3 + az + b with K-rational coefficients and a K-rational

point of period 2, are relatively common, while such pairs with a specified multiplier

are relatively sparse. It turns out that the moduli spaces of polynomials with marked

points of relatively small period are always rational.

Theorem 1.5 Fix and integer d ≥ 2, and natural numbers N1, . . . ,Ns with

N1 + N2 + · · · + Ns ≤ d + 1.

Then the fibre product of the spaces Pd(N1), . . . ,Pd(Ns) over the moduli space of poly-

nomials of degree d, that is, the moduli space parametrizing polynomials of degree d with

marked points of period N1, . . . ,Ns, is rational.

This prompts some obvious questions:

Question 1.6 Is it true that Pd(N) is rational only if N ≤ d + 1? Is it true that there

is some M = M(d) such that N ≥ M(d) implies that Pd(N) is a variety of general

type, and if so, what is the least such M for each d?
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The paper is organized as follows. In Section 1, we define the moduli spaces un-

der discussion formally and establish some of their basic properties. Although the

language of the introduction is largely that of complex manifolds, we shift notation

here into the language of algebraic/arithmetic geometry. In Section 2, we write down

an explicit model of the generic fibre in the N = 1 case. In Section 2 we treat the

N = 2 case. Here, the generic fibre of our moduli space is a curve of genus 1. In

particular, describing the sections amounts to describing points on an elliptic curve

over C(λ). Proving Theorem 1.2, however, requires us to describe the group of points

on this curve over the infinite procyclic extension
⋃∞

n=1 C(λ1/n). A priori, the group

of points on an elliptic curve over a field like this might not be finitely generated. As

it transpires though, the elliptic curve in question satisfies the conditions of a result

of Fastenberg [3], and so we are able to completely describe the points on the curve

over this field. The finiteness claim following Theorem 1.2 then follows from Siegel’s

Theorem in function fields (which is made explicit in [4]). In Section 3 we show that

the generic fibre of the moduli space is a curve of genus at least 2, for N ≥ 3. This

proves Theorem 1.3, given that Mordell’s Conjecture holds in function fields (see, for

example, [11]). In Section 4 we look into moduli spaces of polynomials of higher

degree, proving Theorem 1.5.

Although we have chosen to remain relatively specific in this paper and focus on

cubic polynomials, much of what we have done could be done for any two-parameter

family of polynomials. For example, the author worked out many analogous results

for the family of biquadratic maps f (z) = (z2 + a)2 + b. Similarly, it is possible to

discuss the fibered surface of quadratic rational maps with a marked point of period

N (see [1] where it is shown that the multiplier fibration of the moduli space of

quadratic rational maps with a marked point of period 3 is elliptic).

2 Moduli Spaces

Our theorems are proved by constructing various curves over K = C(λ) and examin-

ing the points on these varieties rational either over K, or some extension of K. These

curves are the generic fibres of various fibred surfaces, but we leave the study of the

underlying surfaces, for the most part, to future work. First, we will discuss moduli

spaces in general.

The standard moduli space of polynomials of degree d is constructed as follows.

First, with each a = (ad, . . . , a0) ∈ Ad+1, we associate the polynomial

fa(z) =
∑

0≤i≤d

aiz
i .

To make things invariant of the choice of coordinates, we will take the quotient of

this by the group of affine transformations φ(z) = αz + β. This group acts on the

polynomials above by conjugation, f φ = φ ◦ f ◦ φ−1, and the quotient variety will

be called Pd. The question of how to compactify this space is interesting, but beyond

to scope of this paper. Note that one might, equivalently (and probably more natu-

rally), define Pd to be the quotient of the space of all rational functions on P1 with

a totally ramified fixed point, modulo the action of conjugation by the full group of

automorphisms of P1.
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The moduli space Pd(N) of polynomials with a marked point of period N is de-

fined similarly. We let φ(x) = αx + β act on (ad, . . . , a0, z) ∈ Ad+2 by the action

described above for the first d + 1 coordinates and by zφ = φ(z). Now we may define

polynomials Φd(ad, . . . , a0, z) by

f N
a (z) − z =

∏
k|N

Φk(ad, . . . , a0, z),

the solutions of which correspond to polynomials with a marked point of formal

period N (see, e.g., [10, p. 149]). The quotient of the variety {ΦN = 0} by the action

of the affine transformations is Pd(N).

Unfortunately, these moduli spaces do not interact particularly well with obvious

normal forms for polynomials. It is not uncommon to normalize polynomials so that

they are monic, and the average of their roots (the barycenter) vanishes:

f (z) = zd + ad−2zd−2 + · · · a1z + a0.

Every polynomial of this form has degree d, and every polynomial of degree d is

affine-conjugate to one of this form. Unfortunately, the affine transformation z 7→ ζz

for ζ a primitive (d − 1)-th root of unity acts non-trivially on polynomials of this

form, and so the conjugacy class of the polynomial being defined over a given field is

not the same as the coefficients being defined over that field (in other words, the field

of moduli is often a proper subfield of the field generated by the coefficients in this

particular normal form). One might opt to use the normal form

f (z) = adzd + ad−2zd−2 + · · · + a1z + 1,

where the field of moduli truly is the field generated by the coefficients, but this is

also unsatisfactory. This normal form offers only a birational correspondance be-

tween the space of coefficients and the space of polynomials. The tuples of coef-

ficients (0, ad−2, . . . , a1, a0) do not correspond to polynomials (of degree d), while

polynomials that fix their own barycenter are not represented in this form.

To resolve this conflict, we define somewhat less high-brow moduli spaces for cu-

bic polynomials, simply insisting on the normal form fa,b = z3 + az + b. We will

define a variety Y1(N) as follows. Let Z ⊆ AN+2
C be the variety defined by

(2.1) fa,b(z1) − z2 = 0, fa,b(z2) − z3 = 0, · · · fa,b(zN ) − z1 = 0,

which is clearly birational to the subvariety of A3 defined by f N
a,b(z) − z = 0. If

ΦN (a, b, z) is defined by

f N
a,b(z) − z =

∏
d|N

Φd(a, b, z),

as above, then we will let Y1(N) ⊆ Z be the variety corresponding, under this bira-

tional map, to the component ΦN (a, b, z) = 0. Now we will let Y1(N), the generic

fibre, be the C[λ]-scheme obtained by mapping C[λ] into C[Y1(N)] by

λ 7→ f ′
a,b(z1) f ′

a,b(z2) · · · f ′
a,b(zn).
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(where the differentiation is with respect to z). In other words, Y1(N) corresponds

to the appropriate component of the subvariety of AN+2
C[λ] defined by (2.1), along with

the additional equation f ′
a,b(z1) · · · f ′

a,b(zN ) − λ = 0.

Remark 2.1 Note that polynomials above all have coefficients in Z, and so we could

have defined Y1(N) as a Z[λ] scheme. While these objects are certainly worth study-

ing, we focus our initial investigations to geometric properties, and so work over C

for simplicity.

Now let f̂ be the automorphism of Y1(N) defined by

(a, b, z1, . . . , zN ) 7−→ (a, b, z2, . . . , zN , z1).

We will let Y0(N) denote the quotient of Y1(N) by this automorphism, and we will

let X1(N) and X0(N), respectively, be smooth projective curves birational to Y1(N)

and Y0(N).

The curve Y0(N) parametrizes cubic polynomials f (z) = z3 + az + b with marked

cycles (rather than points) of period N. In particular, recalling that K = C(λ), K-

rational points on Y0(N) correspond to cubic polynomials in K[z] with marked cy-

cles of period N, fixed setwise (but not necessarily pointwise) by the absolute Galois

group Gal(K/K).

We will also define two curves P1(N) and P0(N), which will be the quotient of

X1(N) and X0(N) by the automorphism induced by

(a, b, z1, . . . , zN ) 7−→ (a,−b,−z1, . . . ,−zN ).

Thus, P1(N) is precisely the generic fibre of the surface P3(N) (the non-naı̈ve moduli

space), under the multiplier fibration. Finally, we will make reference to the curves

X ′
1(N), X ′

0(N), P ′
1(N), and P ′

0(N), which are the corresponding curves for

f−3u2,2v3 (z) = z3 − 3u2z + 2v3.

The following lemma tells us that the variety Y1(N) is always smooth. More gen-

erally, it says that the variety parametrizing fixed points of any generic polynomial,

with transcendental multiplier, is smooth. A similar argument shows that the variety

defined by Φ3(a, b, z) = 0 and ( f N
a,b) ′(z) − λ = 0 is also non-singular, and so the

birational map of affine varieties mentioned above is actually an isomorphism. The

actual statement of the lemma is slightly more general, since we will need this form

later.

Lemma 2.2 Let R be a Dedekind domain, let P ∈ R[a1, . . . , as, z] be a polynomial,

let µ, ν ∈ R be non-zero, let t be transcendental over R[a1, . . . , as, z], and let V ⊆ As+n
R[t]
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be the variety defined by the equations

P(a1, . . . , as, z1) − z2 = 0,

P(a1, . . . , as, z2) − z3 = 0,

...

P(a1, . . . , as, zn) − µz1 = 0,

n∏
i=1

∂P

∂z
(a1, . . . , as, zi) − νt = 0.

Then V is non-singular.

Proof To simplify notation, let Gi denote the polynomial P(a1, . . . , as, zi) − zi+1 for

i ≤ n − 1 and let Gn denote P(a1, . . . , as, zn) − µz1. We will also let Λ stand for the

product
∏n

i=1 ∂P/∂z(a1, . . . , as, zi) (as a function on As+n). We will refer to z1, . . . , zn

as as+1, . . . , as+n wherever it simplifies indexing.

Suppose that V is singular and let Q ∈ V (C(t)) be a singular point. By definition,

we have Gi(Q) = 0 for all i and Λ(Q) = νt . On the other hand, since Q is a singular

point, the Jacobian matrix of V must have rank less than n + 1 at Q. Therefore, we

must have some β1, . . . , βn+1 ∈ C(t), not all 0, such that

n∑

i=1

βi
∂Gi

∂a j

(Q) + βn+1
∂Λ

∂a j

(Q) = 0

for each j. Note that the fact that we may consider ∂Λ/∂a j , in the above, follows

from the observation that ∂(νt)/∂a j = 0 for all j.

First, we will show that βn+1 = 0. To see this, consider the equality

(2.2)

n∑

i=1

βiGi(Q) + βn+1Λ(Q) = βn+1νt.

This is an equality of functions in t , and so we may differentiate with respect to t .

Differentiating the right-hand-side of (2.2) in terms of t , one obtains

βn+1ν + νt
dβn+1

dt
.

On the left-hand side of (2.2), one obtains

n∑

i=1

Gi(Q)
dβi

dt
+ Λ(Q)

dβn+1

dt
+

n∑

i=1

βi
dGi(Q)

dt
+ βn+1

dΛ(Q)

dt

= νt
dβn+1

dt
+

( n∑

i=0

βi

s+n∑

j=1

∂Gi

∂a j

(Q)
da j(Q)

dt

)
+

s+n∑

j=1

∂Λ

∂a j

(Q)
da j(Q)

dt

= νt +

s+n∑

j=1

da j(Q)

dt

( n∑

i=1

βi
∂Gi

∂a j

(Q) + βn+1
∂Λ

∂a j

)
= νt

dβn+1

dt
,
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by the definition of the βi . In other words,

νt
dβn+1

dt
= βn+1ν + νt

dβn+1

dt
,

as functions of t , implying βn+1 = 0, given that ν 6= 0.

Thus, we have shown that βn+1 = 0, and so Q is in fact a singular point of the

variety defined by just the first n equations. If the Jacobian matrix of this variety has

rank less than n at Q, then it certainly implies that the matrix




∂P
∂z1

(Q) −1 0 · · · 0

0 ∂P
∂z2

(Q) −1 · · · 0
...

...
...

...

−µ 0 0 · · · ∂P
∂zn

(Q)




is singular (since this n × n matrix is a sub-matrix of the Jacobian). But this matrix

has determinant
n∏

i=1

∂P

∂zi

(Q) − (−1)nµ = Λ(Q) − (−1)nµ.

Since Q satisfies Λ(Q) = νt 6= (−1)nµ, we have that Q is a non-singular point

of Y .

Remark 2.3 Note that the proof above shows that the affine variety parametrizing

all fixed points of P(a1, . . . , as, z) is singular only on the fibre Λ = 1. Unfortunately,

the projective closure of this variety has many mysterious singularities at infinity.

Our next task is to show that the curves X1(N) and X0(N) are geometrically irre-

ducible, that is, irreducible over the algebraic closure of C(λ).

Proposition 2.4 The curves X1(N) and X0(N) are geometrically irreducible.

Proof Let S be any smooth, projective, irreducible surface over an algebraically

closed field and let π : S → C be a fibration of S. The generic fibre of the fibration is

reducible if and only if the fibration factors as

S
π ′

−→ C ′
φ

−→ C,

for some morphism of curves φ : C ′ → C of degree greater than one (see, for exam-

ple, [8, p. 139]). In particular, if the surface admits a section σ : C → S, then the

generic fibre must be irreducible, since the identity map π ◦ σ : C → C cannot factor

non-trivially. Note that S admits a section if and only if the generic fibre has a point

rational over C(C).

It follows from Morton [7] that Y1(N) is irreducible. To show that X1(N) is irre-

ducible, then it suffices to show that X1(N)(K) is non-empty.
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The projective variety defined over C(λ) by

z3
1 − 3u2z1 + 2v3 − z2s2

= 0,(2.3)

z3
2 − 3u2z2 + 2v3 − z3s2

= 0,

...

z3
N − 3u2zN + 2v3 − z1s2

= 0,

3N (z2
1 − u2)(z2

2 − u2) · · · (z2
N − u2) − λs2N

= 0

contains a component birational to X ′
1(N), and this component has a C(λ)-rational

point at

P = [u, v, s, z1, . . . , zN ] = [1, 1, 0, 1,−2, . . . ,−2].

Furthermore, one checks rather easily that the Jacobian matrix of the variety at this

point is 


0 0 0 · · · −6

0 9 0 · · · 12

0 0 9 · · · 12
...

...
...

...

6 · 9N−1 0 0 · · · −6 · 9N−1



,

which is non-singular. Consequently, P corresponds to a C(λ)-rational point on the

normalization X ′
1(N). The map induced by a = −3u2, b = 2v3 sends this to a

C(λ)-rational point on the curve X1(N).

The irreducibility of X0(N) simply follows from it being a quotient of X1(N).

3 The Case N = 1

The space of cubic polynomials with a marked fixed point turns out, unsurprisingly,

to be fairly easy to describe.

Proposition 3.1 The curve X1(1) = X0(1) is birational, over C(λ), to P1. The ratio-

nal parametrization is given by

a = −27s2 + λ, b = −54s3 − 3s + 3λs, z = −3s,

for s ∈ P1.

Proof The curve is described by the equations

Φ1(z, a, b) = f (z) − z = z3 + (a − 1)z + b = 0

and

f ′(z) − λ = 3z2 + a − λ = 0.
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Eliminating the variable z (via resultants) we obtain the relation

27b2 + (a − t)(2a − 3 + λ)2
= 0,

a nodal cubic curve over C(λ). Setting u = 2a − 3 + λ, and blowing up at (b, u) =

(0, 0) by setting b = sw, u = w, we obtain two components: w = 0 (with multiplicity

2; this is the exceptional curve), and

27s2 − 1

2
(3λ− 3 − w) = 0.

This yields

a = −27s2 + λ, b = −54s3 − 3s + 3λs.

We may now solve f (z) − z = 0 for the fixed point:

f (z) − z = (z + 3s)(z2 − 3zs − 18s2 − 1 + λ).

Note that the map above gives an isomorphism of the surface Y1(N), defined by

z3 + az + b − z = 0,

with the affine plane A2, where the multiplier is sent to one of the two coordinates.

Thus, the smooth projective model of this surface, which is minimal relative to the

multiplier fibration, is isomorphic to P1 × P1 with projection onto the second co-

ordinate. Note that this also gives us an explicit description of P3(1). The action of

PSL2 on Y1(1) is exactly the map (s, t) 7→ (−s, t) on P1 × P1 as above. In particular,

the map (s, t) 7→ (s2, t) gives a map to P3(1) ∼= P1 × P1.

4 The Case N = 2

The case N = 2 is somewhat richer and more interesting than the case N = 1. Here,

the parametrizing curves X1(2) and X0(2) have genus one; they are, in fact, non-

isotrivial elliptic curves over C(λ). In general, this means that for any compact Rie-

mann surface X → Ĉ, the set of points on X0(2) or X1(2) over C(X) has the structure

of a finitely generated abelian group, although the structure of this group depends a

great deal on the particular covering X → Ĉ. It turns out, quite surprisingly, that we

can describe this group explicitly for X = Ĉ → Ĉ by λ = wm, for any m.

Proposition 4.1 The curves X0(2) and X1(2), respectively, are isomorphic over C(λ)

to the curves

E0 : v2
= u(u2 + 2u + 1 − λ) and E1 : e2

= d(d2 − 4d + 4λ),

and the natural map X1(2) → X0(2) induces the isogeny E1 → E0 with kernel generated

by (0, 0).
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The birational maps to the affine models Y1(2) and Y0(2) are given by

a =
4u2 − 4u + 1 − λ

6u

b =

√
−2(8u2 + 16u + λ− 1)v

54u2
,

and

z =

√
−2(d2 − 6d + 8λ)

6e
.

Note that z is defined only on E1 for obvious reasons, while the maps a, b : E1 →
Y1(2) are defined by composition with the isogeny. Note, as well, that the functions

a, b ∈ K(E0) have poles precisely at the “obvious” points on E0, that is, the point at

infinity and the point (0, 0). In particular, these points do not lead to cubic poly-

nomials, which would contradict our claim that there are no multiplier sections of

period 2. It is also worth noting, with a view to analogous problems over function

fields, that the above birational maps are defined over Q(λ,
√
−2).

The remainder of this section will be devoted to uncovering the arithmetic of these

curves over the field K∞ =
⋃

n≥1 C(λ1/n), which we do largely through the applica-

tion of a theorem of Fastenberg [3], with some minor improvements. (This appears

to be the first time that Fastenberg’s result has been used in a “natural setting”.) In

general, it is not at all clear that the group of K∞-rational points on a given ellip-

tic curve E/C(λ) should be finitely generated. To provide an interesting contrast,

let F/C(λ) be the field of Laurent series in λ, F = C((λ)). Then an application of

Tate’s non-archimedean uniformization of elliptic curves shows that E0(F) is a group

containing a cyclic subgroup of order m, for each m. That is, the group of germs of

multiplier sections at λ = 0 is far from finitely generated.

Proof of Proposition 4.1 One way to construct an explicit affine curve birational to

X0(N) is to consider the projection of the curve Y1(N) onto the (a, b)-plane. This is

given by the resultant of

Φ2 =
f ( f (z)) − z

f (z) − z
and

∂ f 2

∂z
− λ,

as polynomials in z. This resultant is the square (since this projection is a double-

cover) of the polynomial

R = 729 + 972a − 432a3 − 108a4 + 48a5 + 16a6 + 1458b2 + 1215b2a

+ 324b2a2 + 216b2a3 + 729b4 − 243λ− 216λa + 48λa3 + 12λa4

− 162λb2 + 81aλb2 + 27λ2 + 12aλ2 − λ3.

Let C = E0 \{O, (0, 0)}, where O is the point at infinity, and let C ′ ⊆ A2 be the locus

of vanishing of R.
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One can check, with a computer algebra package such as Maple, that the functions

a and b defined above actually provide a morphism from C to C ′ (that is, that the

function R(a, b) vanishes identically on C). Now note that there is precisely one

point at infinity on the closure of C ′ in P2, and it is a nodal singularity. The map

C → C ′ extends to a morphism sending O and (0, 0) to this nodal singularity. Thus,

the singular point on the projective closure of C ′ corresponds to two points on the

normalization of C ′, each of which has precisely one preimage under the morphism

induced by this rational map. That is to say, the morphism C → C ′ induces an

isomorphism between E0 and the normalization of the projective completion of C ′.

We now know that X0(2) is isomorphic to the elliptic curve E0, and we turn our

attention to X1(2). Note that

Φ2(a, b, z) = a2z2 + 2z4a + az2 + 2azb + a + z6 + z4 + 2z3b + z2 + bz + b2 + 1

and

∂ f 2

∂z
− λ = 9z8 + 21z6a + 15z4a2 + 18z5b + 24z3ba

+ 3a3z2 + 6a2zb + 9b2z2 + 3b2a + 3az2 + a2 − λ.

Composing the maps a, b ∈ C(E0) defined above with the isogeny E1 → E0, defined

by

u =
e2

4d2
and v =

e(d2 − 4λ)

8d2
,

we see that we have a simulateneous solution to the equations above with

z =

√
−2(d2 − 6d + 8λ)

6e
.

In other words, we have constructed a map E1 → X1(2) that makes the diagram

E1 −−−−→ E0y
y

X1(2) −−−−→ X0(2)

commute. Since the rightmost map is an isomorphism, and the two horizontal maps

have the same degree, the leftmost map also has degree 1 and is therefore an isomor-

phism.

Remark 4.2 The map X1(N) → X0(N) sending a point of period N to the cycle it

generates is an obvious map from the point of view of moduli spaces. The fact that,

in the case N = 2, these curves are both elliptic, however, means that there is a dual

map X0(N) → X1(N), also unramified and of degree 2. It would be interesting to

understand the interpretation, if any, of this map in terms of the underlying dynam-

ics. That is, given two cubic polynomials with marked 2-cycles, how does the cubic

polynomial with a marked point of period 2 arise?
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The Mordell–Weil theorem tells us that the rational points on E0 or E1 over any

finite extension of C(λ) have the structure of a finitely generated group. We wish to

compute this structure over extensions of the form Kn = C(λ1/n), and indeed over

K∞ =
⋃

n≥1 Kn. We will focus on the arithmetic of E0(K∞), given the obvious map

of moduli spaces X1(N) → X0(N).

Proposition 4.3 We have E0(K∞) = E0(K12). Moreover, if t12
= λ and ζ4−ζ2 +1 =

0 (i.e., ζ is a primitive 12-th root of unity), then E0(K12) is (abstractly) isomorphic to

Z3 ⊕ (Z/2Z)2, generated by the following points:

P =
(
− 1 + (i − 1)t3 + it6, (1 − i)(t3 + i)(t3 + 1)t3

)

R1 =
(

t4 − 1, ζ9t4(t4 − 1)
)

R2 =
(
ζ4t4 − 1, ζt4(ζ4t4 − 1)

)

T1 = (0, 0)

T2 = (−1 + t6, 0).

One can easily check that the last two points each have order 2, and it will be

shown below that the first three are independent points of infinite order. The first

step in proving that these points in fact generate E0(K∞) is to prove that E0(K∞) has

the claimed torsion subgroup.

Lemma 4.4 Let E0/C(λ) be the elliptic curve described above. Then

E0(K∞)Tors = E0[2] ⊆ E0(K2).

Proof Let XEll
1 (N) denote the usual modular curve parametrizing elliptic curves with

a point of order N. If E0(K∞) contains a point of order p, where p is an odd prime,

then so does E0(Kn), for some n. If we denote our chosen n-th root of λ by α, the

elliptic curve E0/Kn has j-invariant

jE0
=

64(3αn − 4)3

αn(αn − 1)2
.

Since E0(C(α)) contains a point of order N, this j-map must factor as jE0
= j p ◦ φ,

where φ : P1 → XEll
1 (p), and j p : XEll

1 (p) → P1 is the j-map associated with XEll
1 (p).

By well-known facts about modular curves, j p has exactly p−1
2

simple poles, and p−1
2

poles of order p. In particular, since jE0
has only one pole of order greater than 2, the

factorization above is possible only when p−1
2

= 1, i.e., when p = 3. Suppose p = 3.

In this case, j p has one simple pole and one pole of order 3. The degree of jE0
, which

is 3n, must be divisible by the degree of j p, which is 4, so 4 | n. Also, the n distinct

poles of jE0
of order 2 come from n points, each of which maps to the cusp of XEll

1 (p)

at which j p has a simple pole, with multiplicity 2. This means that the degree of φ
is 2n. On the other hand, the one pole of jE0

of order n maps to the other cusp of

XEll
1 (p) with multiplicity n/3. This means the degree of φ is 1/3. Impossible.
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It remains to show that E0(K∞)Tors contains no point of order 4. In this case jE0

factors through the map j4 : XEll
1 (4) → P1, which has a pole of order 4 and a simple

pole. Again, the pole of order n of jE0
comes from a totally ramified point, with

ramification index n/4, above one of the cusps of XEll
1 (4). The n poles of order 2 each

correspond to a point over the other cusp at which φ has ramification index 2. So φ
must have degree n/4, on the one hand, and 2n, on the other.

So we have shown that E0(K∞) ⊆ E0[2]. The other inclusion is obvious from

E0[2] ⊆ E0(K2).

Next, we show that the rank of E0 over the fields Kn is no greater than expected.

Lemma 4.5 For any n,

rank
(

E/C(λ1/n)
)
≤





0 if gcd(n, 6) = 1,

1 if gcd(n, 6) = 2,

2 if gcd(n, 6) = 3,

3 if gcd(n, 6) = 6.

Proof We employ a result of Fastenberg [3], with some slight improvements. Let

π : E → P1 be a non-isotrivial elliptic surface. Furthermore, let Et be the fibre of E

above t ∈ P1, let ft be the local conductor, so that

ft =





0 if E has good reduction at t,

1 if E has multiplicative reduction at t,

2 if E has additive reduction at t ,

and let et be the Euler characteristic of Et . For t = 0 or ∞ let

nt =

{
n if Et has type In or I∗n ,

0 otherwise,

and set

γ =

∑

t 6=0,∞

( ft − et/6) − n0 + n∞

6
.

Finally, let κ(n) be the largest prime-power divisor of n. Then Fastenberg’s Theorem

states that if γ < 1, we have

(4.1) rank(E/C(t1/n)) ≤
∑

d|n
κ(d)< 2

1−γ

φ(d),

where φ is the Euler totient function.

Note that, in the case of the elliptic curve E0/C(λ), there are precisely three singu-

lar fibres, above t = 0, 1,∞, and their reduction types are:

t type ft et

0 I1 1 1

1 I2 1 2

∞ III∗ 2 9.
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In particular, n0 + n∞ = 1, and so we have γ =
1
2
< 1. The sum in (4.1) is over

divisors d | n with κ(d) < 4, and the only integers with κ(d) < 4 are d = 1, 2, 3, and

6. The bound given by Fastenberg’s theorem is then

rank
(

E/C(λ1/n)
)
≤





φ(1) = 1 if gcd(n, 6) = 1,

φ(1) + φ(2) = 2 if gcd(n, 6) = 2,

φ(1) + φ(3) = 3 if gcd(n, 6) = 3,

φ(1) + φ(2) + φ(3) + φ(6) = 6 if gcd(n, 6) = 6.

To improve these bounds, we need to look more closely at the proof of the the-

orem. Let π : E → P1 be the Néron model of E0 and let πr : Er → P1 be the base

extension by the map z 7→ zr. The map on the base gives rise to an automorphism

σr : Er → Er. The group of sections E(P1) on E is isomorphic to the group E0(C(λ)),

while Er(P1) ∼= E0(C(λ1/r)). Now, as is well known (see [3] for notation), there is an

isomorphism of linear spaces

E(P
1) ⊗ Q ∼= H1(P

1,R1π∗Q) ∩ H1,1(E,C),

and similarly for Er. Fastenberg establishes the bound above by studying the action

of σr on H1(P1,R1πr∗C). Specifically, it is shown that

H1(P
1,R1πr∗C) =

⊕
d|r

W k
d ,

where k is the number of singular fibres on E0 above P1 \ {0,∞} (in our case, k = 1)

and Wd is the subspace generated by eigenvectors of σr with eigenvalue a primitive

d-th root of unity. The bound on the rank comes from restricting which of these

eigenspaces may lie in H1(P1,R1πr∗Q) ∩ H1,1(Er,C).

For example, the φ(1) term in the bounds above comes from the eigenspace with

eigenvalue 1. If, however, this turns out to be a subspace of

H1(P
1,R1πr∗Q) ∩ H1,1(Er,C) ∼= Er(P

1) ⊗ Q,

then it is one fixed by σr, and so it corresponds to a one-dimensional subspace of

E(P1) ⊗ Q . In particular, then, we have rank(E(P1)) ≥ 1. It turns out, however, that

this is impossible. The surface E is rational, and so its Néron–Severi group has rank

10. If mt is number of components of the fibre Et , it follows from Shioda’s formula

[9, Corollary 5.3] that

rank(E(P
1)) = rank(NS(E)) − 2 −

∑

t∈P1

(mt − 1) = 0

(recalling from above that E has three bad fibres, of type I1, I2, and III∗, respectively).

In particular, the fixed space of σr in H1(P1,R1πr∗C) does not lie in H1(P1,R1πr∗Q)∩
H1,1(Er,C), and so there is no contribution to the rank of Er(P1) from this space; all

of the rank bounds above may be reduced by 1.
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This gives the bounds claimed above, except in the case where 6 | n, but this case

follows by a similar argument. It suffices to show that rank(E6(P1)) ≤ 3, since any

eigenspaces contributing to the rank of E6n(P1) already contributes to the rank of

E6(P1). But E6 is an elliptic K3 surface (over a field of characteristic 0), and so its

Néron–Severi group has rank at most 20. This surface has fibres of type I2 above all

t ∈ P1 with t6
= 1, a fibre of type I6 above t = 0, and a fibre of type I∗0 above t = ∞.

Thus,

rank(E6(P
1)) ≤ 20 − 2 − 6 · (2 − 1) − (6 − 1) − (5 − 1) = 3,

proving the lemma.

Our next lemma describes the group of C(λ1/4)-rational points on E0, which we

by now know to have rank at most 1.

Lemma 4.6 Let t4
= λ. Then, over C(t), the Mordell-Weil group of E0 is exactly the

group generated by the four points of order 2, along with

P =
(
− 1 + (i − 1)t + it2, (1 − i)(t + i)(t + 1)t

)

(note that i = ζ9).

Proof First, we compute the pairing 〈P, P〉 according to the method developed in

[9]. If E is the Néron model of E0 over K4, we have

〈P, P〉 = 2χ(E) + 2(PO) −
∑

contrv(P),

where χ(E) = −(O)2 is the arithmetic genus of E, (PO) is the intersection pairing of

the sections defined by P and the identity O, and contrv(P) is the contribution from

the fibre above v. The surfaceE is rational, soχ(E) = 1. Also, since the coordinates of

P are polynomials in t of degree at most 2 and 3, respectively, P misses the O-section

everywhere, and we have (PO) = 0. It suffices to compute the contributions at the

places of bad reduction. The Néron model E has type I4 reduction at t = 0, and P

has order 4 in the component group, since the component group has order 4, and

2P = (−1, t2)

reduces to the singular point modulo the place defined by t = 0. Thus, contr(t)(P) =

1(4 − 1)/4. At the places defined by t = −1 and t = −i, the point P reduces to the

singular point. At these places the component group has order 2, and so P must be

on the only non-trivial component, hence contrv(P) =
1
2

at these places. The only

other fibres of bad reduction are at t = 1, i (E has good reduction at t−1
= 0), and P

is on the non-singular component at these places. We have

〈P, P〉 = 2χ(E) + 2(PO) −
∑

contrv(P) = 2 − 3

4
− 1

2
− 1

2
=

1

4
.

Now suppose that P = mQ + T for Q ∈ E(K4) and T ∈ E[2]. Then we have

〈Q,Q〉 ≥ 1

4
,
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since the denominators arising in the local contributions all divide 4. On the other

hand, the bilinearity of the pairing gives us

1

4
= 〈P, P〉 = 〈mQ + T,mQ + T〉 = m2〈Q,Q〉 ≥ m2

4
.

In particular, m = ±1, and it follows that P generates E(K4), modulo torsion.

Lemma 4.7 Let t3
= λ. The Mordell–Weil group of E0 over C(t) is generated by

R1 =
(

9t − 3, 27ζ9t(t − 1)
)

R2 =
(

9ζ4t − 3, 27ζt(ζ4t − 1)
)

T = (6, 0).

Proof Lemma 4.5 tells us that the rank at most 2 and the height pairing matrix

(which may be computed as in the previous lemma or using MAGMA) is

(
1/3 −1/6

−1/6 1/3

)
.

The determinant of this is 1
12

. On the other hand, it is clear from the possible

contributions from bad places that we must have 6〈Q1,Q2〉 ∈ Z for any points

Qi ∈ E0(C(t)), and so any lattice L ⊆ E0(C(t)) must satisfy det(L) ≥ 1
36

. If the lattice

generated by R1 and R2 has index m in some larger lattice, we must have 1
12

≥ m2

36
,

and so m2 ≤ 3. This gives m = 1, confirming that R1 and R2 span E0(C(t)), modulo

torsion.

At this point, we have an explicit description of E0(C(λ1/4)) and E0(C(λ1/3)), along

with rank bounds for E0(C(λ1/n)), which we know must be sharp. After some small

computation, we will be in a position to prove Proposition 4.3.

Lemma 4.8 Let P, R1, and R2 be as above, and let H1 be the subgroup of E(K12)

generated by P and E[2], let H2 be the subgroup generated by R1, R2, and E[2], and let

H3 be the subgroup generated by all of these points. Then

(i) the group E(K12)/H1 contains no non-trivial elements of order 3;

(ii) the group E(K12)/H2 contains no non-trivial elements of order 2 or 4;

(iii) the group E(K24)/H3 contains no non-trivial elements of order 2.

Proof This is a fairly straightforward claim to verify computationally. We will begin

with the last claim. Let t24
= λ, so that the last claim is that E0(C(t)) contains no

points of order 2 over H3. In other words, we wish to show that if

Q ∈ E(C(t)) and 2Q = mP + n1R1 + n2R2 + T,

for m, ni some integers, and T ∈ E[2], then Q is already expressible in this form.

Note that we are free to translate Q by elements of H3 (since this does not change the

image in the quotient group), so we may freely assume that 0 ≤ m, ni ≤ 1.

Now it is a well-known fact that the map [2] : E → E induces a map φ : P1 → P1

by x ◦ [2] = φ ◦ x. Writing φ = F(z, t)/G(z, t), for polynomials F,G ∈ Z[z, t], any

solution

2Q = mP + n1R1 + n2R2 + T
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as above yields a solution to

F(z, t) − x(mP + n1R1 + n2R2 + T)G(z, t)

with z ∈ C(t). In other words, the polynomial above (in variables z and t) has

a linear factor over C. It is a simple matter to write a MAGMA script (this script

can be found in an appendix) that computes x(mP + m1R1 + m2R2 + T), for each

of the 32 possible choices and checks to see if the resulting bivariate polynomial is

reducible. In fact, we see that the resulting polynomial is geometrically irreducible

unless m = n1 = n2 = 0 and T = O (this is not a counterexample to our claim,

since the solutions in this case are solutions to 2Q = O, which are already contained

in H3).

Note that this computation also treats (ii). Claim (i) is treated by a similar com-

putation for which MAGMA code appears at the end of this paper.

We are now in a position to prove the proposition describing the arithmetic of

E0 over K∞. The height pairing shows that R1 and R2 are independent, while P is

independent from these points, since its field of definition intersects that of R1 and

R2 only on C(λ), and here the rank of E is 0. Thus we have shown that the curve

has the expected rank over each field C(λ1/n) (since 2P ∈ E0(C(λ1/2)) is a point of

infinite order).

First we will show that the points in question generate the Mordell–Weil group of

E0 over K12. First, note that we have a complete description of E0(K4) and E0(K3) by

the lemmas above.

Suppose that Q ∈ E0(K12) is not in the subgroup H generated by these points.

Since the rank of E0(K12) is the same as that of H, it must be that Q is torsion over H.

Let M ≥ 1 be the least positive integer such that MQ ∈ H, say

MQ = nP + m1R1 + m2R2 + T.

Without loss of generality, we will suppose that 0 ≤ n,m1,m2 < M, since Q trans-

lated by an element of H will still have order M over H. Then, if σ generates the

Galois group of K12/K4,

M TrK12/K4
(Q) = Q + Qσ + Qσ2

= 3nP + T ′,

for some T ′ ∈ E0[2]. Since E0(K4) is generated by P, modulo torsion, it follows that

M | 3n, and so (since 0 ≤ n < M), we have

n ∈
{

0,
M

3
,

2M

3

}
.

Similarly, by computing the trace of MQ to K3, we have

m1,m2 ∈
{

0,
M

4
,

M

2
,

3M

4

}
.
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Our equation then becomes

MQ =
Mδ

3
+

Mǫ1

4
R1 +

Mǫ2

4
R2 + T,

with δ = 0, 1, or 2, and ǫi = 0,1, 2, or 3. In other words,

12Q = 4δP + 3ǫ1R1 + 3ǫ2R2 + T ′,

for some T ′ ∈ E0[2]. Now

δP + T ′
= 3(4Q − δP − ǫ1R1 − ǫ2R2) = 3Q ′

for some Q ′ ∈ E0(K12). By Lemma 4.8, this is possible only if δ = 0 (given that

0 ≤ δ < 3). Now the equation becomes 4Q = ǫ1R1 + ǫ2R2 + T ′.
Now, to show that E0(K12) is, in fact, all of E0(K∞), suppose that

Q ∈ E0(K∞) \ E0(K12).

Then Q ∈ E0(K12m) for some m, and we will let m be the least such m. Let σ be the

generator of the Galois group of K12m/K12. Then, since E0(K12m) ⊇ E(K12), and both

groups have the same rank, we have MQ ∈ E0(K12) for some M ≥ 2. It follows that

Q − Qσ ∈ E0[M] ∩ E(K∞). Since we know that this group is exactly E0[2], it must

be the case that Qσ
= Q + T for some T ∈ E0[2]. However, since E0[2] ⊆ E(K12), we

have

Qσ2

= (Q + T)σ = Qσ + T = Q.

In particular, Q is quadratic over K12. But we have shown that there is no point

Q ∈ E0(K24) with 2Q ∈ H = E0(K12). It follows that E0(K∞) = E0(K12), as claimed.

Remark 4.9 We have focussed on the spaces X1(N) and X0(N), but again the mod-

uli space P3(2) is fairly easy to describe from this. The curve X1(2) is an elliptic curve,

and the action of PSL2 corresponds to the automorphism [−1] : X1(2) → X1(2), as

can be seen form the explicit formulas for a, b, and z above. In particular, the quo-

tient P1(2) is isomorphic to P1 (by the morphism x : X1(2) → P1(2), in the usual

Weierstrass coordinates), and similarly for P0(2). Thus, the moduli space P3(2) is a

ruled surface over P1, and hence is birational to P1 × P1.

5 The Case N ≥ 3

The purpose of this section is to prove that X1(N) has genus at least 2 when N ≥ 3,

from which Theorem 1.3 will follow. The following proposition establishes this for

N ≥ 5 and N = 3. Proposition 5.2 derives an even stronger bound in the case where

N is even, treating in particular the case N = 4. This proposition also gives lower

bounds on the genera of X0(N) and P1(N) (in the case where N is even). All of these

results are obtained using the Riemann–Hurwitz formula and studying the quotients

of these curves by various automorphisms. Without an understanding of the points

“at infinity” on X1(N), it seems impossible to do better than this.
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Proposition 5.1 The genus of X1(N) is at least N
2
− 1, while the genus of X1(3) is at

least 5.

Proof Although computing the genus of X1(3) directly already poses a significant

computational challenge, we may simplify this by specializing λ. In particular, the

curve obtained by specializing X0(3) at λ = 1 is reducible (for obvious reasons), with

a component of genus 5. It follows that the genus of X0(3), and hence of X1(3), is at

least 5.

Now consider again the variety X ′
1(N) and in particular the (singular) projective

model given by (2.3). There are (at least) two automorphisms acting on X ′
1(N),

namely those induced by the action on the singular model by

σ : [u, v, s, z1, . . . , zN ] 7→ [ζ3u, ζ2v, s, z1, . . . , zN ] = [ζu, v, ζ−2s, ζ−2z1, . . . , ζ
−2zN ]

for ζ some fixed primitive sixth root of unity, and

τ : [u, v, s, z1, . . . , zN ] 7→ [u,−v, s,−z1, . . . ,−zN ] = [−u, v,−s, z1, . . . , zN ].

The group 〈σ, τ〉 ⊆ Aut(X ′
1(N)) acts freely in general, and the other varieties are

quotients of X ′
1(N) by these various groups:

X ′
1(N)

/〈σ〉
−−−−→ X1(N)

/〈τ〉

y
y /〈τ〉

P ′
1(N) −−−−→

/〈σ〉
P1(N)

(we abuse notation, and let σ and τ also denote the automorphisms induced on

P ′
1(N) and X1(N) by the corresponding maps on X1(N)). The points on the singular

model of X ′
1(N) with s = 0, however, are fixed by σ3τ . It follows that non-singular

points among these correspond to places on X ′
1(N) where the map

X ′
1(N) → P1(N) = X ′

1(N)/〈σ, τ〉

ramifies with index e = 2 (a priori, the singular points at which σ3τ acts trivially

might blow up into pairs of points on the normalization that are swapped by σ3τ ).

Note that the points

[u, v, s, z1, . . . , zN ] = [ξ, 1, 0, ξ4,−2ξ4, . . . ,−2ξ4],

for ξ6
= 1, and their images under iteration by f̂ are non-singular, which follows

from examining the Jacobian matrix, exactly as in the proof of Proposition 2.4. Both

σ and τ act freely on these points, and they are mapped to N (resp. 3N) non-singular

points on X1(N) (resp. P ′
1(N)). Here, however, σ3τ acts trivially on them, and so we

have N points at which the map X1(N) → P1(N) ramifies (with e = 2) and 3N points

at which P ′
1(N) → P1(N) ramifies. This gives the estimates (by Riemann–Hurwitz)

2g(X1(N)) − 2 ≥ −4 + N and 2g(P ′
1(N)) − 2 ≥ −12 + 3N.
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The previous proposition tells us that the genera of the curves X1(N) grow at least

linearly in N. This is enough for the proof of Theorem 1.3, but it seems likely that

the genera grow much more rapidly. If N is even, we can improve significantly on

Proposition 5.1 as well as give lower bounds on the genera of X0(N) and P1(N).

Proposition 5.2 Let N = 2n, let θ be the completely multiplicative function defined

by θ(2) = 0 and θ(p) = −p for any odd prime p, and let

ω(n) =
∑

d|n

θ
(n

d

)
2d3d.

Then the genera of X1(N), X0(N), and P1(N) satisfy

g(X1(N)) ≥ ω(n)

2
+ 1 − 2n g(X0(N)) ≥ ω(n)

4n
− 1 g(P1(N)) ≥ ω(n)

4
+ 1 − 2n.

Before proceeding with the proof, it should be pointed out that the lower bound

can be simplified, although also weakened, by the estimate ω(n) ≥ n3n, which holds

for all n ≥ 1. As a consequence, the genera in all three families grow at least expo-

nentially in N for N even.

Proof of Proposition 5.2 Here we study the ramification of certain maps above b =

0. There are two automorphisms acting on the usual affine part of X1(N), namely

τ : (a, b, z1, . . . , zN ) 7→ (a,−b,−z1, . . . ,−zN )

and

f̂ : (a, b, z1, . . . , zN ) 7→ (a, b, z2, . . . , z1, zN ),

giving the diagram

X1(N)
/ f̂

−−−−→ X0(N)

/τ

y
y /τ

P1(N) −−−−→
/ f̂

P0(N)

(here we abuse notation somewhat again, and let τ stand for both the map on X1(N),

and the induced map on X0(N), and similarly for f̂ ). The top map is unramified

on the affine part (at least), while the left map is unramified except when N = 1 at

(a, b, z) = (λ, 0, 0), which we may ignore, since we are taking N even. The right-

hand map, however, is ramified exactly where (on the affine part) the polynomial fa,b

with cycle z1, . . . , zN , coincides with the polynomial fa,−b, with cycle −z1, . . . ,−zN .

In other words, where b = 0, and −z1 is in the orbit of z1. Note that if b = 0, then

fa,0(−z) = − fa,0(z) for all z, and so −z is in the forward orbit of the N-period point

z if and only if N = 2n is even, and f n
a,0(z) = −z. So let ω(n) be the number of points

(a, 0, z1, . . . , zN ) ∈ X1(2n)
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such that zn = −z1 (we will prove shortly that ω(n) is the function defined in the

statement of the proposition). Then X0(N) contains ω(n)/N images of these points,

and at each the right-hand map in the diagram ramifies with index e = 2. This gives

a bound of

2g
(

X0(N)
)
− 2 ≥ −4 + ω(n)/N.

This immediately gives the bound

2g
(

X1(N)
)
− 2 ≥ N(2g(X0(N)) − 2) ≥ ω(n) − 4N.

Similarly, P1(N) has ω(n)/2 points at which the map P1(N) → P0(N) ramifies with

index e = 2, giving the bound

2g
(

P1(N)
)
− 2 ≥ −2N + ω(n)/2.

All that remains is to determine ω(n), that is, to show that it is the function defined

in the theorem.

Let V ⊆ Pn+1
C[λ] be the 0-dimensional variety defined by the system of equations

z3
1 − w2z1 − s2z2 = 0

z3
2 − w2z2 − s2z3 = 0

...

z2
n − w2zn + s2z1 = 0

(3z2
1 − w2)2 · · · (3z2

n − w2)2 − s4nλ = 0.

This variety parametrizes 2n-cycles for the function f (z) = z3 − w2z with multi-

plier λ and satisfying f n(z1) = −z1. By Bézout’s Theorem, the number of points on

V , counted with multiplicity, is precisely the product of the degrees of the defining

equations, or in this case 4n3n. Now, if [w, s, z1, . . . , zn] ∈ Pn+1 were a solution to

the above system with s = 0, we would have zi ∈ {0,±w} for all i, by the first n

equations, and zi = ±3−1/2w for some i, by the last equation. These conditions are

incompatible, and so all of the points on V lie within the affine open, call it U ⊆ V ,

defined by s 6= 0. We dehomogenize with s = 1 and choose an α ∈ C(λ) with

α2
= λ. Then U is made up of two components, defined by the first n equations

above, along with either of

(3z2
1 − w2) · · · (3z2

n − w2) ± α = 0.

These components are clearly disjoint, and by Lemma 2.2 (applied with µ = −1, and

ν = ±1), each is nonsingular. Thus, the original variety V is non-singular, and so

contains precisely 4n3n distinct points.
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Now let Vn(λ) be the affine variety defined by

z3
1 + az1 − z2 = 0

z3
2 + az2 − z3 = 0

...

z2
n + azn + z1 = 0

(3z2
1 + a)2 · · · (3z2

n + a)2 − λ = 0.

The map V 7→ Vn(λ) can ramify at a point only if w = 0 there. If w = 0, then

f (z) = z3 and so periodic points for f are roots of unity. But then we have

(3z2
1 − w2)2 · · · (3z2

n − w2)2 6= λ,

since the left-hand side is constant (with respect to λ). It follows that that Vn(λ) has

2n3n points defined over C(λ). However, some of these points satisfy f m(z1) = z1

for m < 2n. If this is the case, then we must have f d(z1) = −z1 for some d | n, and

n/d must be odd. On the other hand, for each d | n with n/d odd, and each d-th

root γ of λ, there is an embedding of Vd(γ) into Vn(λ) simply by (z1, . . . , zd,w) 7→
(z1, . . . , zd, z1, . . . , zd, . . . ,w). In other words, if ω(n) is the number of points in

Vn(λ) that correspond to actual n-cycles, we have

∑

d|n

β
( n

d

)
ω(d) = 2n3n, where β(m) =

{
0 2 | m,

m otherwise.

The function θ defined in the statement of the proposition is the Dirichlet inverse of

β, and so we have

ω(n) =
∑

d|n

θ
( n

d

)
2d3d,

as claimed.

Note that this approach might be used to show that the surface P3(N) is of general

type, for N even and large enough, but it will not do the same for Pd(N) with d ≥ 4.

The reason for this is that PSL2 acts non-freely on the N-periodic point z for f (z) =

zd + ad−2zd−2 + · · ·+ a1z + a0 only if, for ζ a (d − 1)-th root of unity, f is fixed under

conjugation by z 7→ ζz, and f N/(d−1)(z) = ζz. For d 6= 1, though, the subvariety on

which this happens has codimension at least 2.

To summarize, we have the following lower bounds on the genera of various

curves, where the first two columns are known:

N 1 2 3 4 5 6 7 8

X1(N) 0 1 5 11 2 61 3 309

X0(N) 0 1 4 11 40

P1(N) 0 0 6 31 155

.
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It seems unlikely that the genera of X1(N), for odd N, actually grow more slowly than

for N even, and we suspect that the actual genera should be of order N3N .

Remark 5.3 Recent work of Bonifant, Kiwi, and Milnor [2] has examined the curve

parametrizing cubic polynomials with a marked critical point of specified period.

This curve is birational to the fibre above λ = 0, on the appropriate curve X0(N). It

should be noted that, while the authors show that the Euler characteristic of this curve

increases exponentially, this does not imply that the genus of X0(N) does. Specifically,

it is not known if these curves are irreducible, and even for fibrations of generic genus

one may have (reducible) fibres of arbitrarily large Euler characteristic.

6 Periodic Points for Polynomials of Higher Degree

We now turn our attention to the proof that the moduli space Pd(N) of polynomials

of degree d, with a marked point of period N, is rational when N ≤ d + 1. Slightly

more generally, if N1, . . . ,Ns ≥ 1 are integers with N1 + · · · + Ns ≤ d + 1, then the

fibre product

Pd(N1, . . . ,Ns) = Pd(N1) ×Pd
Pd(N2) ×Pd

· · · ×Pd
Pd(Ns)

is birational to Pd−1.

Proposition 6.1 Let d ≥ 2 and let N1, . . . ,Ns be non-negative integers with

N1 + · · · + Ns ≤ d + 1.

Then Pd(N1, . . . ,Ns) is rational.

Proof For any a = (a0, a1, . . . , ad) ∈ Ad+1, let fa(z) =
∑d

i=0 aiz
i . The affine trans-

formation φ(z) = αz + β, α 6= 0, acts of a by sending it to aφ, where

faφ = φ ◦ fa ◦ φ−1.

The moduli space Pd(N) (up to birational equivalence) is simply the space of

(a, z1, . . . , zN ) satisfying

fa(z1) − z2 = 0 fa(z2) − z3 = 0 · · · fa(zN ) − z1 = 0,

minus the hyperplanes zi = z j for i 6= j, modulo the action of the affine transforma-

tions

(a, z1, . . . , zN ) 7−→
(

aφ, φ(z1), . . . , φ(zN )
)
,

which one may verify preserves the equations above.

Let σ be the permutation of {1, 2, 3, . . . ,N1 + N2 + · · · + Ns} which induces a

cycle on {1, 2, 3, . . . ,N1}, another on {N1 + 1,N1 + 2, . . . ,N2}, et cetera, so that σ
permutes the numbers 1, 2, . . . ,N1 + N2 + · · · + Ns as s disjoint cycles, of period N1,
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N2, etc., respectively. If M = N1 +N2 +· · ·Ns, then the space Pd(N1, . . . ,Ns) is simply

the quotient of the variety

V ⊆ Spec
(

Z[z1, . . . , zM , a0, . . . , ad]
)

defined by the equations

a0 + a1z1 + a2z2
1 + · · · + adzd

1 = σ(z1)

a0 + a1z2 + a2z2
2 + · · · + adzd

2 = σ(z2)

...

a0 + a1zM + a2z2
M + · · · + adzd

M = σ(zM)

by action defined above. Permuting the equations, we may describe V as the locus of

the system defined by




1 zσ−1(1) z2
σ−1(1) · · · · · · zd

σ−1(1)

1 zσ−1(2) z2
σ−1(2) · · · · · · zd

σ−1(2)
...

...
...

...

1 zσ−1(M) z2
σ−1(M) · · · · · · zd

σ−1(M)
...

...
...

...

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







a0

a1

...

aM−1

aM

...

ad




=




z1

z2

...

zM

aM

...

ad




.

The matrix on the left is a variant of the Vandermonde matrix, and one may

check that it is invertible if and only if zi 6= z j for all i 6= j. Let V ′ be

the open subset of Spec(Z[z1, . . . , zM , a0, . . . , ad]) defined by deleting the hyper-

planes zi − z j for i 6= j, along with ad = 0, and let U be its projection onto

Spec(Z[z1, z2, . . . , zM , aM , . . . , ad]). Then the above matrix, which is invertible on

U , gives an isomorphism between U and V ′.

For now, suppose that M ≥ 2. Then we claim that every point in U is PSL2-equi-

valent to a unique point with z1 = 0 and z2 = 1, where the PSL2 action is that

inherited from V . To see that this is true, note that the full action of PSL2 on V is

given by the affine transformations z 7→ αz + β. For any point (z1, z2, . . . ) ∈ U we

may conjugate by the map

z 7→ 1

(z1 − z2)
z − z1

(z1 − z2)

(which is defined since z1 6= z2) in order to translate the point to one of the form

(0, 1, . . . ). If, on the other hand, two points of the form (0, 1, . . . ) are conjugate by

the map z 7→ αz + β, then α · 0 + β = 0, whence β = 0, and α · 1 + β = 1,

implying α = 1. We now know that each orbit in U under the action of the affine

https://doi.org/10.4153/CJM-2011-093-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-093-8


Multipliers of Cycles of Cubic Polynomials 343

transformations contains precisely one point of the form (0, 1, . . . ), and that any

point (0, 1, . . . ) ∈ Ad+1 appears. In particular, this quotient of U is isomorphic to

Ad−1. Since the moduli space Pd(N1, . . . ,Ns) is birational to the quotient of V by

the affine transformations, which in turn is birational to the quotient of U by these

transformations, which in turn is birational to Ad−1, we see that Pd(N1, . . . ,Ns) is a

rational variety.

If M = 1, then the variety isPd(1), the moduli space of polynomials with a marked

fixed point, the quotient of Ad+2
= Spec(Z[ad, . . . , a0, z]) modulo the action of PSL2.

Note, as above, that every PSL2-equivalence class contains a point with z = 0, which

necessarily implies a0 = 0. Furthermore, if conjugation by φ(x) = αx + β moves

(0, ad, . . . , a1, 0) to (0, ãd, . . . , ã1, 0), then β = 0, and ãi = αi−1ai . Restricting to the

affine open defined by a2 6= 0, then, every PSL2-equivalence class contains a unique

point with z = 0, a2 = 1. On the other hand, any choice of ad, ad−1, . . . , a3, a1,

with a2 = 1, a0 = z = 0, defines a polynomial of this form. This gives an explicit

birational map between Pd(1) and Ad−1.

Finally, if M = 0, the variety in question is simply Pd, the moduli space of polyno-

mials of degree d. This is clearly seen to be rational. Let U be the affine open subset

of the moduli space consisting of PGL2-equivalence classes of polynomials whose

barycenter, that is the average of roots with multiplicity, is not a fixed point. Moving

the barycenter to 0 and the value of 0 to 1 gives a polynomial of the form

adzd + ad−2zd−2 + · · · + a1z + 1.

It is easy to check that two polynomials of this form are PSL2-conjugate if and only if

they are actually equal, again giving a birational equivalence between this variety and

Ad−1.

The final case, the moduli space of polynomials of degree d, provides an interest-

ing normal form for polynomials. Unless the barycenter of a polynomial is a fixed

point, the polynomial is PSL2-conjugate to a unique polynomial of the form

adzd + ad−2zd−2 + · · · + a1z + 1,

providing an obvious isomorphism between this affine open and Ad−1 \ {ad = 0}.

It also follows at once that, if the ground field is F, then the field of definition of the

polynomial above is exactly F(ad, . . . , a1). This is in contrast to the normal form for

cubic polynomials used above, f (z) = z3 + az + b, where the field of definition is

F(a, b2). Note that conjugation by the Möbius transformation ψ(z) = bz translates

f to the polynomial b2z + az + 1. More generally, the field of definition/moduli of the

usual normal form

zd + ad−2zd−2 + · · · + a1z + a0

is precisely F(a1, a0a2, a
2
0a3, . . . , a

d−3
0 ad−2, a

d−1
0 ). The disadvantage of this normal

form, of course, is that it misses polynomials with a fixed barycenter, as well as pro-

viding an isomorphism with an open subset of Ad−1 that is not isomorphic to affine

space in a natural way.
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