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On Lagrangian Catenoids

David E. Blair

Abstract. Recently I. Castro and F. Urbano introduced the Lagrangian catenoid. Topologically, it is R×

Sn−1 and its induced metric is conformally flat, but not cylindrical. Their result is that if a Lagrangian

minimal submanifold in C
n is foliated by round (n − 1)-spheres, it is congruent to a Lagrangian

catenoid. Here we study the question of conformally flat, minimal, Lagrangian submanifolds in C
n.

The general problem is formidable, but we first show that such a submanifold resembles a Lagrangian

catenoid in that its Schouten tensor has an eigenvalue of multiplicity one. Then, restricting to the

case of at most two eigenvalues, we show that the submanifold is either flat and totally geodesic or is

homothetic to (a piece of) the Lagrangian catenoid.

1 Introduction

In 1744 Euler showed that a catenoid is a minimal surface of revolution and in 1785

Meusnier proved the converse that the catenoid is the only surface of revolution that

is minimal [3, 11].

For hypersurfaces of dimension n ≥ 4 in Euclidean space, Cartan [2] showed that

a conformally flat hypersurface is quasi-umbilical, i.e., the Weingarten map has an

eigenvalue of multiplicity ≥ n − 1. Common examples, also due to Cartan, are the

canal hypersurfaces, i.e., envelopes of one-parameter families of hyperspheres. Thus

conformal flatness can be viewed as a natural generalization of a surface of revolution.

In [1] the author showed that a conformally flat minimal hypersurface Mn, n ≥
4 of Euclidean space R

n+1 is either totally geodesic or a hypersurface of revolution

Sn−1 × γ(s), where the profile curve γ is determined by its curvature as a function of

arc length by κ = (1 − n)/un and

s =

∫

un−1 du√
Cu2n−2 − 1

,

where C is a constant. For n = 3, replacing conformal flatness by quasi-umbilicity

gives the same result with the same proof. For n = 2, the profile curve is a catenary

and hence these hypersurfaces are called generalized catenoids. Jagy gave an indepen-

dent study of this question by assuming that the minimal hypersurface is foliated by

spheres from the outset [10].

Recently I. Castro and F. Urbano [4] (see also Castro [3]) introduced the La-

grangian catenoid. The manifold itself was introduced by Harvey and Lawson [9]

as an example of a minimal Lagrangian submanifold and is defined by

M0 = {(x, y) ∈ R
n×R

n ≡ C
n : |x|y = |y|x, ℑ(|x|+ i|y|)n

= 1, |y| < |x| tan(π/n)}.
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Topologically M0 is R × Sn−1. To describe it precisely, let Sn−1 be the unit sphere in

R
n and view a point p ∈ Sn−1 as an n-tuple in R

n giving its coordinates. Define a

map φ0 : R × Sn−1 → C
n ≡ R

n × R
n by

φ0(u, p) = cosh1/n(nu)eiβ(u) p,

where β(u) =
π
2n
− 2

n
arctan(tanh nu

2
) ∈ (0, π

n
) and the multiplication eiβ p multiplies

each coordinate of p by eiβ and lists the real and imaginary parts as a 2n-tuple in

C
n ≡ R

n × R
n. Let g0 be the standard metric of constant curvature 1 on Sn−1;

then the metric induced on R × Sn−1 by φ0 is ds2
= cosh2/n(nu)(du2 + g0), which

is clearly conformally flat. This Lagrangian submanifold defined by the mapping

φ0 : R × Sn−1 → C
n, together with its induced metric, is known as the Lagrangian

catenoid. The second fundamental form is given in terms of the Weingarten maps

as follows. Let {e1, . . . , en} be a local orthonormal basis with e1 in the u-direction

and let Ai denote the Weingarten map corresponding to the normal Jei . Then the

matrices of the Weingarten maps with respect to this basis are the following:

A1 =











−(n − 1)a ©
a

. . .

© a,











Ai =

























0 · · · 0 a 0 · · · 0
...

0

a ©
0
...

0

























,

where a = cosh−(1+ 1

n
)(nu).

The main result of Castro and Urbano [4] is the following.

Theorem 1 Let φ : Mn → C
n be a minimal (non-flat) Lagrangian immersion. Then

Mn is foliated by pieces of round (n − 1)-spheres in C
n if and only if φ is congruent (up

to dilations) to an open subset of the Lagrangian catenoid.

In view of the conformal flatness of the Lagrangian catenoid and the author’s re-

sult on conformally flat minimal hypersurfaces in R
n+1, it is natural to ask if, aside

from the flat totally geodesic case, the Lagrangian catenoids are the only conformally

flat minimal Lagrangian submanifolds in C
n. We first show in Proposition 4 that the

Schouten tensor of such a submanifold has an eigenvalue of multiplicity 1. Then,

noting that the Schouten tensor of the Lagrangian catenoid has only two eigenvalues,

we restrict ourselves to the case that Schouten tensor, equivalently the Ricci tensor,

has at most two eigenvalues. In particular we prove the following theorem.

Theorem 2 Let Mn, n ≥ 4, be a conformally flat, minimal, Lagrangian submanifold

of C
n. If the Schouten tensor has at most two eigenvalues, then either Mn is flat and

totally geodesic or is homothetic to (a piece of) the Lagrangian catenoid.
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We comment that our proof is not a reduction to the result of Castro and Ur-

bano. Even when one is at the stage of having essentially a warped product of a

1-dimensional manifold and a space of constant curvature, it does not follow im-

mediately that the spaces of constant curvature which now have codimension n + 1

are round spheres in C
n. Instead we establish both the first and second fundamental

forms of Mn.

We close the paper with a remark showing that the Lagrangian catenoid is not a

quasi-umbilical submanifold.

2 Preliminaries

Let (x1 + i y1, . . . , xn + i yn) be the coordinates on C
n and J the almost complex struc-

ture. An n-dimensional submanifold Mn of C
n is said to be Lagrangian if the restric-

tion of the canonical symplectic form Ω =
∑n

i=1 dxi ∧ dyi to Mn vanishes. Note also

that if a vector X is tangent to Mn, JX is normal.

For an isometrically immersed submanifold (M, g) of (C
n, 〈 , 〉) the Levi–Civita

connection ∇ of g and the second fundamental form σ are related to the ambient

Levi–Civita connection ∇ by ∇XY = ∇XY + σ(X,Y ). For a normal vector field ζ ,

let Aζ denote the corresponding Weingarten map and let D denote the connection in

the normal bundle; in particular Aζ and D are defined by ∇Xζ = −AζX + DXζ . The

Gauss equation is

R(X,Y, Z,W ) = 〈σ(Y, Z), σ(X,W )〉 − 〈σ(X, Z), σ(Y,W )〉.

Defining the covariant derivative of σ by (∇ ′σ)(X,Y, Z) = DXσ(Y, Z)−σ(∇XY, Z)−
σ(Y,∇XZ), the Codazzi equation is

(RX Y Z)⊥ = (∇ ′σ)(X,Y, Z) − (∇ ′σ)(Y, X, Z).

Now for a Lagrangian submanifold, the almost complex structure J of the Kähler

manifold C
n is an isometry between the tangent bundle and the normal bundle, and

hence the equation of Ricci–Kühne, R⊥(X,Y, ξ, ζ) = g([Aξ , Aζ]X,Y ), gives no new

information; in particular we can find the commutators of the Weingarten maps di-

rectly.

Also for a Lagrangian submanifold of a Kähler manifold with local orthonormal

basis {e1, . . . , en}, let Ai denote the Weingarten map corresponding to the normal

Jei . Then we have from

−Aie j + De j
Jei = ∇̄e j

Jei = J∇̄e j
ei = J∇e j

ei + Jσ(ei, e j)

and the symmetry of the second fundamental form that

Aie j = − Jσ(ei, e j) = A jei,

an important relation that we will use frequently.

In the course of our work we will use several properties of Codazzi tensors as

developed by Derdziński [7]. A symmetric tensor field L of type (1, 1) is a Codazzi

tensor if it satisfies (∇XL)Y − (∇Y L)X = 0. Derdziński proves the following Lemma.
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Lemma 3 If a Codazzi tensor has more than one eigenvalue, then the eigenspaces for

each eigenvalue form an integrable subbundle on open sets of constant multiplicity. If an

eigenvalue has multiplicity greater than 1, then the eigenvalue is constant on its integral

submanifolds. Moreover the integral submanifolds are umbilical submanifolds, and if

the eigenvalue is constant on the manifold then the integral submanifolds are totally

geodesic.

As a matter of notation, for a Riemannian metric g, let Q denote its Ricci operator

and τ its scalar curvature.

Recall that if the Weyl conformal curvature tensor of a Riemannian manifold Mn

vanishes, the curvature tensor is given in terms of the Schouten tensor

L = − Q

n − 2
+

τ

2(n − 1)(n − 2)
I

by

g(RXY Z,V ) = −g(LX,V )g(Y, Z) + g(LX, Z)g(Y,V )

− g(LY, Z)g(X,V ) + g(LY,V )g(X, Z).

It is well known that for n ≥ 4, Mn is conformally flat if and only if the Weyl confor-

mal curvature tensor vanishes, and that this implies that L is a Codazzi tensor. For

n = 3, the Weyl conformal curvature tensor vanishes identically, and the manifold is

conformally flat if and only if the Schouten tensor is a Codazzi tensor.

3 Conformally Flat, Minimal, Lagrangian Submanifolds

In this section we develop to some extent the theory of conformally flat, minimal,

Lagrangian submanifolds in general and specifically prove our theorem on the case

of the Schouten tensor having two eigenvalues.

Let {e1, . . . , en} be a local orthonormal eigenvector basis of L and let Ai denote the

Weingarten map corresponding to the normal Jei . Contracting the Gauss equation

and using the minimality, we see that the Ricci operator and the scalar curvature are

given by

(3.1) Q = −
∑

i

A2
i , τ = −|σ|2,

and hence the Schouten tensor becomes

(3.2) L =
1

n − 2

∑

i

A2
i −

|σ|2
2(n − 1)(n − 2)

I.

We also note that

tr L =
−τ

2(n − 1)
=

|σ|2
2(n − 1)

.
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We will approach our work by studying the eigenvalues of L. We will assume that

not all the eigenvalues are equal on any neighborhood, for if they were, the subman-

ifold would be of constant curvature. Ejiri proved that a minimal Lagrangian sub-

manifold of constant curvature in a complex space form must be totally geodesic or

flat [8]. Thus with the ambient space being C
n we have both these properties, giving

the trivial case of the theorem.

Let ν j denote the j-th eigenvalue of L and recall that for a Lagrangian submanifold

Aie j = A jei . Then computing g(Le j , em), we see that

ν jδ jm =
1

n − 2
tr A jAm − |σ|2

2(n − 1)(n − 2)
δ jm.

Consequently we have that tr A jAm = 0 for j 6= m and that the eigenvalues of L are

given by

ν j =
1

n − 2
tr A2

j −
|σ|2

2(n − 1)(n − 2)
.

Denote by Vν j
the eigenspace of ν j . If X,V ∈ Vν j

and Y, Z ∈ Vνk
, direct compu-

tation of the curvature gives g(RXY Z,V ) = −(ν j + νk)g(X,V )g(Y, Z). On the other

hand, by the Gauss equation,

g(Re j ek
el, em) =

∑

i

g(Akel, ei)g(A j em, ei) −
∑

i

g(A jel, ei)g(Akem, ei)

= g(Akel, A jem) − g(A jel, Akem)

= g([A j , Ak]el, em).

From the form of the curvature tensor of a conformally flat space, this is zero for

j, k, l, m distinct. Similarly, for j, k, m distinct and k = l,

g([A j , Ak]ek, em) = − 1

n − 2
tr A jAm = 0,

g([A j , Ak]ek, e j) = g(Re j ek
ek, e j) = −(ν j + νk).

Note that g([A j , Ak]ek, e j) is the ( j, k)-component of the matrix of [A j , Ak]. Thus,

the only non-zero components of [A j , Ak] are the ( j, k) and (k, j) components, and

if {ω1, . . . , ωn} is the dual basis of {e1, . . . , en},

(3.3) [A j , Ak] = (ν j + νk)(ω j ⊗ ek − ωk ⊗ e j).

We next make the simple observation that from the minimality g(
∑

k Akek, el) =
∑

k g(ek, Akel) =
∑

k g(ek, Alek) = trAl = 0, and hence

(3.4)
∑

k

Akek = 0.
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We now compute the commutator of L and A j . From equation (3.2) we have

LA j − A jL =
1

n − 2

∑

i

(A2
i A j − A jA

2
i ) =

1

n − 2

∑

i

(

Ai[Ai , A j] + [Ai , A j]Ai

)

.

Using (3.3), this gives

(LA j − A jL)ek =
−1

n − 2

∑

i

(

Ai(νi + ν j)(ω j ⊗ ei − ωi ⊗ e j)ek

+ (νi + ν j)(ω j ⊗ ei − ωi ⊗ e j)Aiek

)

.

Noting that
∑

i g(Aiek, e j)ei =
∑

i g(Akei, e j)ei =
∑

i g(Ake j , ei)ei = Ake j and using

(3.4),

(LA j − A jL)ek =
−1

n − 2

(

δ jk

∑

i

νiAiei − νkAke j

+
∑

i

νig(Aiek, e j)ei −
∑

i

νig(Aiek, ei)e j

)

.

Taking the inner product of both sides with em and evaluating, we have

g((LA j − A jL)ek, em) = (νm − νk)g(A j ek, em)

=
−1

n − 2

(

δ jk

∑

i

νig(Aiei, em)

− νkg(Ake j , em) + νmg(Amek, e j) − δ jm

∑

i

νig(Aiek, ei)
)

= −νm − νk

n − 2
g(Ake j , em)

− 1

n − 2

(

δ jk

∑

i

νig(Aiei, em) − δ jm

∑

i

νig(Aiei , ek)
)

.

In particular,

(n − 1)(νm − νk)g(A jek, em) = δ jm

∑

i

νig(Aiei, ek) − δ jk

∑

i

νig(Aiei, em).

Thus for j, k, m distinct,

(3.5) (νm − νk)g(A j ek, em) = 0,

and for j = k 6= m,

(3.6) (n−1)(νm−ν j)g(A j e j , em) = −
∑

i

νig(Aiei , em) = (n−1)(νm−νl)g(Alel, em)
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for l 6= m.

We now prove the following proposition, which does not use the hypothesis on

the number of eigenvalues of the Schouten tensor.

Proposition 4 Let Mn be a conformally flat, minimal, Lagrangian submanifold of C
n.

Then L has an eigenvalue of multiplicity 1.

Proof From equation (3.6) if νm = ν j , then g
(
∑

i νiAiei, em

)

= 0, and hence
∑

i νiAiei is orthogonal to each eigenspace corresponding to an eigenvalue of multi-

plicity > 1. Therefore either
∑

i νiAiei = 0 or there exists an eigenvalue of multiplic-

ity 1.

Suppose now that L has no eigenvalue of multiplicity 1. Order the e1, . . . , en cor-

responding to the multiplicity of eigenvalues of L, i.e., e1, . . . , ep correspond to ν1

having multiplicity p, etc., and consider the corresponding block decomposition of

a Weingarten map. Using
∑

i νiAiei = 0 and (3.6) with νm and ν j corresponding to

different eigenspaces, we see that g(A je j , em) = 0. This together with equation (3.5)

shows that the off-diagonal blocks of the block decomposition are zero. Also from

g(A je j , em) = 0 we have g(Ame j , e j) = 0 and hence in the matrix of any Am, the diag-

onal blocks not corresponding to νm have zeros along their diagonals. Now from the

property (3.3) of [A j , Ak], we see that the sum of any two distinct eigenvalues is zero

and hence there exist at most two distinct eigenvalues, one being the negative of the

other, say ν and −ν. From Lemma 3, we see that ν is constant on M and hence the

leaves of both foliations are totally geodesic submanifolds with curvatures of opposite

sign. Now from
∑

i νiAiei = 0, we see that
∑p

i=1 Aiei =
∑n

i=p+1 Aiei , but the sum

on the left is tangent to one foliation and the sum on the right is tangent to the other,

and hence both sides vanish. Therefore the leaves of positive curvature are minimal

submanifolds in C
n, a contradiction.

For the theorem, since we now know that L has an eigenvalue of multiplicity 1, say

ν1, the other eigenvalue, ν2, has multiplicity n − 1. We show next that relative to the

basis {ei}, the Weingarten map A1 is given by a diagonal matrix.

Lemma 5 The matrix of A1 is diagonal. Moreover, setting Φ =
−1

n−1
g
(
∑

i νiAiei , e1

)

,

the j-th diagonal entry for j > 1 is Φ

ν1−ν2

and the first entry is − (n−1)Φ

ν1−ν2

.

Proof We first show that the lower right-hand (n − 1) × (n − 1) block of A1 is

diagonal. From equation (3.5) and the general property Aie j = A jei , we have

(ν1 − νk)g(A1e j , ek) = 0

for j 6= k and j, k 6= 1, giving the diagonal form of the lower right-hand block. From

equation (3.6)

(n − 1)(ν1 − ν j)g(A1e j , e j) = −g(
∑

i

νiAiei, e1),
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giving the diagonal entry. In the proof of Proposition 4 we saw that
∑

i νiAiei is

orthogonal to each eigenspace corresponding to an eigenvalue of multiplicity > 1.

Therefore from equation (3.6) we see that (νm − ν1)g(A1e1, em) = 0. Therefore the

matrix of A1 is diagonal. Finally by the minimality,

g(A1e1, e1) = − (n − 1)Φ

ν1 − ν2

.

Proof of Theorem 2 With A1 diagonal and A1e2 = A2e1 we can easily compute the

(1, 2) component of [A1, A2]; comparing with (3.3) we have two cases.

ν1 + ν2 =
nΦ

2

(ν1 − ν2)2
> 0,Case I

Φ = 0(ν1 + ν2 = 0).Case II

If for a conformally flat manifold, the Schouten tensor has an eigenvalue ν1 of

multiplicity 1 and a second eigenvalue ν2 of multiplicity n− 1, then by Lemma 3, the

eigenspaces of ν2 form an integrable subbundle and ν2 is constant along the integral

submanifolds. Moreover the integral submanifolds are umbilical in Mn. This and the

fact that n − 1 ≥ 3 imply that the integral submanifolds are of constant curvature,

and hence we can write the metric in the form

(3.7) ds2
= e2 f (u1)

(

du2
1 +

du2
2 + · · · + du2

n
(

1 + ε
4

∑n
i=2 u2

i

) 2

)

,

where ε = 1,−1, 0 according as the submanifolds u1 = const have positive, negative

or zero constant curvature. With respect to the orthonormal basis

e1 = e− f ∂

∂u1

and e j = e− f
(

1 +
ε

4

n
∑

i=2

u2
i

) ∂

∂u j

, j > 1,

the Levi–Civita connection is given as follows, where i, j > 1, i 6= j:

∇e1
e1 = 0, ∇e1

e j = 0, ∇ei
e1 = (e1 f )ei ,

∇ei
ei = −(e1 f )e1 + e− f ε

2

∑

l 6=1,i

ulel, ∇ei
e j = −e− f ε

2
u jei .

The computation of the curvature is now straightforward, and {e1, . . . , en} is an

eigenvector basis of L.

Now using the fact that L is a Codazzi tensor, we have (∇e1
L)ei − (∇ei

L)e1 = 0;

expanding and taking inner products with e1, ei , i 6= 1, we have

(ν2 − ν1)g(∇e1
ei, e1) − eiν1 = 0, e1ν2 + (ν2 − ν1)g(∇ei

e1, ei) = 0.

Continuing by direct use of the Levi–Civita connection of the metric (3.7), we see

first that since the integral curves of e1 are geodesics, eiν1 = 0, and hence that ν1
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is a function of u1 alone. Secondly, since ∇ei
e1 = (e1 f )ei , i > 1, we have e1ν2 =

(e1 f )(ν1 − ν2), or

(3.8) ν ′
2 = (ν1 − ν2) f ′,

where the prime denotes differentiation with respect to u1. Computing the curvature,

we see that ν1 + ν2 = −g(Re1e2
e2, e1) = e1e1 f + (e1 f )2, giving

(3.9) ν1 + ν2 = e−2 f f ′ ′.

We now use the Codazzi equation

(3.10) g((∇e j
Ai)ek, em) − g(Akem,∇e j

ei) = g((∇ek
Ai)e j , em) − g(A jem,∇ek

ei).

Taking i = j = 1, k = m = 2 and expanding, we have

g
(

∇e1

Φ

ν1 − ν2

e2, e2

)

= −(n − 1)
Φ

ν1 − ν2

g((e1 f )e2, e2) − 2g(A1(e1 f )e2, e2),

and simplifying,

(3.11) e1

Φ

ν1 − ν2

= −(n + 1)
Φ

ν1 − ν2

e1 f .

From the statement of Case I,

Φ

ν1 − ν2

=

√

ν1 + ν2

n
,

from which follows

e1

Φ

ν1 − ν2

=
1

2n

(

Φ

ν1 − ν2

)−1

(e1ν1 + (ν1 − ν2)e1 f ).

Comparing with (3.11), we have −(n + 1)(ν1 + ν2)e1 f =
1
2
(e1ν1 + (ν1 − ν2)e1 f ), and

simplifying,

(3.12) ν ′
1 = −((2n + 3)ν1 + (2n + 1)ν2) f ′.

Our task will be to solve equations (3.8), (3.9), and (3.12). Differentiating (3.9)

and comparing with the sum of (3.8) and (3.12), we obtain f ′ ′ ′
= −2n f ′ ′ f ′. Let

v = f ′ and w = v ′. Then w dw
dv

= −2nvw, from which follows either

Case Ia w = −nv2 + C1,

where C1 is the constant of integration, or

Case Ib w = 0.
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Integrating the first case:

(3.13) u1 =

∫

dv

C1 − nv2
.

A second constant of integration is unnecessary as it represents a change of position

of the origin in the u1 variable.

We remark at this stage that if C1 = n, then v = tanh(nu1) and therefore

f =
1

n
ln cosh(nu1)

giving the Lagrangian catenoid; note again that another constant of integration is

unnecessary as it would give a homothetic change of metric and the problem is ho-

mothetic invariant.

Of course we must deal with a general C1 which we now do in cases by sign:

C1 > 0, C1 < 0, C1 = 0.

If C1 > 0,

u1 =
1

C1

∫

dv

1 − n
C1

v2
=











1√
C1n

tanh−1
√

n
C1

v, |v| <
√

n
C1

,

1√
C1n

coth−1
√

n
C1

v, |v| >
√

n
C1

,

where again we may take the constant of integration equal to zero. From these we see

that

f = ln cosh
1

n
(
√

C1n u1

)

or f = ln sinh
1

n
(
√

C1n u1

)

.

For the first of these we have from −2ν2 = g(Rei e j
e j , ei) = e−2 f − (e1 f )2, i, j > 1,

that

ν2 = −C1

2n
cosh−2− 2

n
(
√

C1n u1

)

+
C1 − n

2n
cosh

−2

n
(
√

C1n u1

)

,

and from (3.8),

ν1 = ν2 +
ν2

f ′ =
(2n + 1)C1

2n
cosh−2− 2

n
(
√

C1n u1

)

− C1 − n

2n
cosh

−2

n
(
√

C1n u1

)

.

We noted the Ricci operator (3.1) at the outset and therefore

g(Qe2, e2) = −g
(

n
∑

i=1

A2
i e2, e2

)

= −
n

∑

i=1

g(A2
2ei, ei) = − tr A2

2 = −2
Φ

2

(ν1 − ν2)2

= −2
ν1 + ν2

n
= −2C1

n
cosh−2− 2

n
(
√

C1n u1

)

.

On the other hand, we can compute g(Qe2, e2) intrinsically:

g(Qe2, e2) = (n − 2)ee f − e1e1 f − (n − 1)(e1 f )2

= −2C1

n
cosh−2− 2

n
(
√

C1n u1

)

+
(n − 2)(n −C1)

n
cosh− 2

n
(
√

C1n u1

)

.
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Comparing, we have that C1 = n, the case of the Lagrangian catenoid.

To complete the analysis of the case C1 > 0, we treat f = ln sinh
1

n
(√

C1n u1

)

.

Here we have from equation (3.9),

ν1 + ν2 = e−2 f f ′ ′
= −C1 sinh−2− 2

n (
√

C1n u1) < 0,

contradicting the fact that in Case I ν1 + ν2 > 0.

We now turn to the case C1 < 0; let C = −C1. Equation (3.13) now takes the

form

u1 = −
∫

dv

C + nv2
= − 1√

Cn
tan−1

√

n

c
v.

From this we obtain f = ln cos1/n
(√

Cn u1

)

, and ν1 + ν2 becomes

ν1 + ν2 = e−2 f f ′ ′
= −C cos−2− 2

n

(
√

Cn u1

)

< 0.

Again this contradicts ν1 + ν2 > 0.

Finally for C1 = 0, v ′
= −nv2 from which f (u1) =

1
n

ln(nu1). From this

ν1 + ν2 = −1

n
(u1)−2− 2

n < 0,

a contradiction.

Thus we have shown that in Case Ia, Mn is (to within homothety) locally isometric

to the Lagrangian catenoid. To show that the second fundamental form agrees with

that of the Lagrangian catenoid, it remains to show that for the Weingarten maps,

Ak, k ≥ 2, the lower right-hand (n−1)×(n−1) blocks vanish. This now is immediate

from τ = −|σ|2, equation (3.1). The left side can be computed intrinsically from the

curvature of (3.7) with the now known function f . The terms in the right-hand side

coming from A1 and the first columns and rows of the other Ak contribute the same

as τ on the left. Thus the lower right-hand (n − 1) × (n − 1) blocks vanish.

Turning to Case Ib and Case II, Case Ib leads immediately to f ′ ′
= 0, and there-

fore by equation (3.9) to ν1 + ν2 = 0, and hence these two cases are the same. Thus

we have Φ = 0, and hence A1 = 0. Since f ′ ′
= 0, f is linear, say f = au1, a sec-

ond constant of integration being unnecessary as before. An intrinsic computation

yields ν2 =
a2+1

2
e−2au1 . Using the Codazzi equation (3.10) with index k = 1, we

get −ag(Aie j , em) =
∂

∂u1

g(Aie j , em), and therefore each g(Aie j , em) is e−au1 times a

function of u2, . . . , un.

Now since A1 = 0, the first row and column of A2 vanish and hence L and A2

commute. We may therefore choose e2, . . . , en such that A2 is diagonal, say e−au1

times a diagonal matrix with entries bkk, b11 being zero. The matrix of any other Ak is

e−au1 times a matrix whose first row and column vanish and whose second row and

column have bkk as the only possible non-zero entry. Now compute the (2, k) entry of

[A2, Ak] and use (3.3) to obtain b22bkk−b2
kk = a2 +1. This is a quadratic in bkk and we

obtain bkk = (b22 ± D)/2, where D =
√

b2
22 − 4(a2 + 1). However the submanifold

is minimal and hence the trace of A2 vanishes. Therefore

b22 +
(n − 2)

2
b22 +

1

2
(a sum, difference of (n − 2) copies of D) = 0.
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Rearranging we have

nb22 = a sum, difference of (n − 2) copies of D,

which, since D < |b22|, is impossible.

4 The Lagrangian Catenoid Is Not Quasi-Umbilical

We close with a remark showing that the Lagrangian catenoid is not a quasi-umbilical

submanifold. It is known [6] that a quasi-umbilical submanifold of dimension ≥ 4

of a conformally flat space is conformally flat, but in general not conversely. Gener-

alizing the result of Cartan mentioned in the introduction, Moore and Morvan [12]

showed that a conformally flat submanifold Mn of Euclidean space En+p is quasi-

umbilical if p ≤ min{4, n − 3}. Chen and Verstraelen [5] showed that an n-dimen-

sional submanifold of a conformally flat space of dimension (n + p) with flat normal

connection is quasi-umbilical for p ≤ n− 3. However here in the case of Lagrangian

submanifolds, the codimension is n. We begin by recalling the definition of quasi-

umbilicity.

Consider an n-dimensional submanifold of an (n + p)-dimensional Riemannian

manifold. A (local) normal vector field is a quasi-umbilical section of the normal

bundle if the corresponding Weingarten map has at least n − 1 eigenvalues equal.

The submanifold is said to be quasi-umbilical if there exist p mutually orthogonal

quasi-umbilical normal sections.

We have already noted the Weingarten maps of the Lagrangian catenoid with re-

spect to the normal fields Jei , namely

A1 =











−(n − 1)a ©
a

. . .

© a











, Ai =

























0 · · · 0 a 0 · · · 0
...

0

a ©
0
...

0

























,

where a = cosh−(1+ 1

n
)(nu).

Suppose now that ζi =
∑

j αi j Je j is an orthonormal basis of normal vectors with

respect to which the Weingarten maps Bi have n − 1 eigenvalues equal. Then from

the Weingarten equation ∇Xζi = −BiX + DXζi we have

−BiX + DXζi =

∑

j

(Xαi j ) Je j +
∑

j

αi j(−A jX + DX Je j).

Thus the matrix of Bi is










−(n − 1)aαi1 aαi2 · · · aαin

aαi2 aαi1 ©
...

. . .

aαin © aαi1











.
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We now compute the characteristic polynomial P(λ) of this matrix. Since (αi j) is an

orthognal matrix, (aαi1)2 + · · · + (aαin)2
= a2, and we find that

P(λ) = (aαi1 − λ)n−2
[

λ2 + (n − 2)aαi1λ − (n − 2)a2α2
i1 − a2

]

.

The zeros of the quadratic factor are

−(n − 2)aαi1 ±
√

(n2 − 4)a2α2
i1 + 4a2

2
.

If now the eigenvalue aαi1 has multiplicity n − 1, we have

naαi1 = ±
√

(n2 − 4)a2α2
i1 + 4a2.

Squaring gives 4a2α2
i1 = 4a2 or α2

i1 = 1, thus each entry in the first column of (αi j)

is ±1, contradicting its orthogonality.
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[7] A. Derdziński, Some remarks on the local structure of Codazzi tensors. In: Global differential
geometry and global analysis, Lecture Notes in Mathematics 838, Springer-Verlag, Berlin, 1981,
pp. 251-255.

[8] N. Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional
complex space forms. Proc. Amer. Math. Soc. 84(1982), 243–246.

[9] R. Harvey and H. B. Lawson, Calibrated geometries. Acta Math. 148(1982), 47–157.
[10] W. C. Jagy, Minimal hypersurfaces foliated by spheres. Michigan Math. J. 38(1991), no. 2, 255–270.
[11] J. B. Meusnier, Mémoire sur la courbure des surfaces. Mémoires Math. Phys. 10(1785), 477–510.
[12] J. D. Moore and J. M. Morvan, Sous-variétés conformément plates de codimension quatre. C. R.

Acad. Sci. Paris Sér. A-B 287(1978), no. 8, A655–A657.

Department of Mathematics

Michigan State University

East Lansing, MI 48824

U. S. A.

e-mail: blair@math.msu.edu

https://doi.org/10.4153/CMB-2007-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-031-4

