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Abstract

In this paper we prove a conditional limit theorem for a critical Galton–Watson branching
process {Zn; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where
L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972)
we use a functional normalization, which gives an exponential limit. We also give an
alternative proof of Sze’s (1976) result on the asymptotic behavior of the nonextinction
probability.
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1. Introduction, statement of results, and discussion

Let Z = {Zn; n ≥ 0} be a critical Galton–Watson process initiated by a single particle.
The main purpose of this note is to study processes with an offspring generating function f (s)
satisfying the condition

f (s) = s + (1 − s)L((1 − s)−1) for some slowly varying L(x). (1)

Note that L(x) → 0 as x → ∞ by the assumed criticality of our process.
Evidently, EZ1+δ

n = ∞ for every δ > 0, provided that (1) holds. For critical branching
processes with this property there are only a few papers. Zubkov [11] proved limit theorems for
the distance to the common nearest ancestor under some additional restrictions on the function
L(x). In [10] the asymptotic behavior of the nonextinction probability Qn := P(Zn > 0) was
studied. Bondarenko and Topchii [1] obtained lower and upper bounds for the expectation of
the maximum Mn := maxk≤n Zk under the condition that EZ1 logβ(1 + Z1) < ∞ for some
β > 0.

We begin with the following general result for critical Galton–Watson processes, which was
proven by Slack [8], [9].

Theorem 1. (Slack [8], [9].) For a critical Galton–Watson process the following four asser-
tions are equivalent.

(a) The sequence of distributions Fn(x) := P(QnZn < x | Zn > 0) converges weakly to
some nondegenerate limit.

(b) We have f (s) = s + (1 − s)1+αL((1 − s)−1) for some α ∈ (0, 1].
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754 S. V. NAGAEV AND V. WACHTEL

(c) There exists a slowly varying function L∗(x) such that Qn = n−1/αL∗(n) for some
α ∈ (0, 1].

(d) The Laplace transform of the limit of the sequence Fn is λ �→ 1 − λ(1 + λα)−1/α for
some α ∈ (0, 1].

Therefore, the sequence Fn(x) cannot have a nondegenerate limit if (1) holds. In other
words, the normalization with the nonextinction probability does not work in the present case,
and we need to find an alternative way to normalize the branching process Zn.

For a general offspring generating function f (s), we set

H(x) := x(f (1 − x−1)− 1 + x−1), x ≥ 1, (2)

and

V (y) :=
∫ 1−1/y

0

ds

f (s)− s
=

∫ y

1

dx

xH(x)
, y ≥ 1. (3)

Note that H(x) ≡ L(x) if (1) holds.
The following conditional limit theorem is our main result.

Theorem 2. Assume that f (s) satisfies (1). Then, for all x > 0,

lim
n→∞ P(H(Q−1

n )V (Zn) < x | Zn > 0) = 1 − e−x. (4)

Nonextinction probabilities are in a sense natural norming constants for critical branching
processes, since

E{QnZn | Zn > 0} ≡ 1

always. But under condition (1) the expectation overnormalizes Zn.

Corollary 1. Under the assumptions of Theorem 2,

lim
n→∞ P(QnZn < x | Zn > 0) = 1

for every x > 0.

It is well known that for supercritical Galton–Watson processes the normalization with the
expectation leads to a nondegenerate limit if and only if EZ1 logZ1 < ∞. Furthermore,
if EZ1 logZ1 = ∞ then we can find a sequence cn > 0 such that cnZn converges almost
surely. Consequently, in this irregular case, a linear normalization is possible. In contrast to the
supercritical case, it follows, from (4), that there is no linear normalization forZn satisfying (1).

Darling [3] was the first to use the functional normalization for proving limit theorems. In
[3] the limit behavior of a sum of independent and identically distributed random variables with
slowly varying right tails was studied. For branching processes, this type of normalization is
usually used if the expectation of the number of offspring is infinite. The first contribution to this
area was also made by Darling [4]. He has shown that under some additional assumptions on
f (s) there exists γ ∈ (0, 1) such that the sequence P(γ n log(1+Zn) < x) converges to a proper
distribution function �(x). Hudson and Seneta [5] gave sufficient conditions for the weak
convergence of γ nL(Zn) for some slowly varying function L(x) and some γ ∈ (0, 1). Schuh
and Barbour [6] proved that for every Galton–Watson process with infinite mean there exists
a norming function U(x) such that e−nU(Zn) converges almost surely to some nondegenerate
random variable.
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The functional normalization V (x) in Theorem 2 is individual; for processes with different
offspring generating functions we have different normalizations. In order to compare the
limiting behavior of Zn for different functions L(x) in (1), we must reduce individual normal-
izations to a common one. Below we give some examples of the reduction to the logarithmic
normalizing function. In each example we have a limit theorem of the following form. There
exist a centering sequence An and a norming sequence Bn such that

lim
n→∞ P

(
logZn − An

Bn
< x

∣∣∣∣ Zn > 0

)
= F(x), (5)

where F(x) is a distribution function.

Example 1. Assume that

L(x) = β−1(log1−β x) exp{− logβ x}(1 + o(1)) as x → ∞, (6)

where β ∈ (0, 1). Then, recalling that H(x) ≡ L(x) under (1) and using the definition of
V (x), (3), we have

V (y) =
∫ y

1

dx

xL(x)
= exp{logβ y}(1 + o(1)) as y → ∞. (7)

Because of continuity of the limiting distribution in (4), we may replace H and V by their
asymptotic equivalents given in (6) and (7), respectively. Thus,

lim
n→∞ P(β−1(log1−β Q−1

n ) exp{logβ Zn − logβ Q−1
n } < x | Zn > 0) = 1 − e−x

under (6). Substituting x = β−1ey and taking the logarithm, we obtain

lim
n→∞ P(logβ Zn − logβ Q−1

n + (1 − β) log logQ−1
n < y | Zn > 0) = 1 − exp

(
−ey

β

)
.

Therefore,

lim
n→∞ P(logZn < (bn + y)1/β | Zn > 0) = 1 − exp

(
−ey

β

)
, (8)

where
bn := logβ Q−1

n − (1 − β) log logQ−1
n . (9)

Noting that

(bn + y)1/β = b
1/β
n + y

β
b

1/β−1
n (1 + o(1)) as n → ∞,

and taking into account the continuity of the right-hand side of (8), we conclude that

lim
n→∞ P

(
logZn − b

1/β
n

b
1/β−1
n

<
y

β

∣∣∣∣ Zn > 0

)
= 1 − exp

(
−ey

β

)
. (10)

The next equalities follow from the definition of bn, (9),

b
1/β
n = logQ−1

n − (β−1 − 1)(log1−β Q−1
n ) log logQ−1

n + o(log1−β Q−1
n ),

b
1/β−1
n = log1−β Q−1

n (1 + o(1)) as n → ∞.
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Substituting these expressions for b1/β
n and b1/β−1

n into (10) and dropping the o(1) term under
the P-symbol, we observe that (5) holds with F(x) := 1 − exp(−eβx/β),

An := logQ−1
n − (β−1 − 1)(log1−β Q−1

n ) log logQ−1
n , and Bn := log1−β Q−1

n .

Using these formulas, we obtain, from (5), the relation

lim
n→∞ P

(∣∣∣∣ logZn

logQ−1
n

− 1

∣∣∣∣ > ε

∣∣∣∣ Zn > 0

)
= 0 (11)

for every ε > 0.

In the next two examples the process logZn converges without centering, i.e.An ≡ 0 in (5).

Example 2. If L(x) ∼ log−β x as x → ∞ for some β > 0 then

V (y) = (β + 1)−1 logβ+1 x(1 + o(1)).

As we have already mentioned, we may insert the asymptotic equivalents of H and V into (4).
Thus, we have

lim
n→∞ P

(
logβ+1 Zn

(β + 1) logβ Q−1
n

< x

∣∣∣∣ Zn > 0

)
= 1 − e−x,

which is equivalent to

lim
n→∞ P(logZn < x logβ/(β+1) Q−1

n | Zn > 0) = 1 − exp

(
− xβ+1

β + 1

)
.

Roughly speaking, here logZn grows as logβ/(β+1) Q−1
n . This is slower than for the process

from the previous example; see (11).

Example 3. Let log(1) x := log x and, for all k ≥ 1, define recursively log(k+1) x :=
log(log(k) x). Suppose that L(x) ∼ (log(k) x)

−1 for some k ≥ 2. For this choice of L(x),

V (y) =
∫ log y

0

dx

L(ex)
= (log y) log(k) y(1 + o(1)) as y → ∞.

Hence, by Theorem 2,

lim
n→∞ P(logZn log(k) Zn < x log(k) Q

−1
n | Zn > 0) = 1 − e−x. (12)

Taking the logarithm, we obtain

lim
n→∞ P(log(2) Zn + log(k+1) Zn < log(k+1) Q

−1
n + log x | Zn > 0) = 1 − e−x.

Since P(Zn > N | Zn > 0) → 1 for every fixed N , and log(k+1) Q
−1
n → ∞ as n → ∞, we

infer that, for every ε > 0,

lim
n→∞ P

(∣∣∣∣ log(2) Zn

log(k+1) Q
−1
n

− 1

∣∣∣∣ > ε

∣∣∣∣ Zn > 0

)
= 0.
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Therefore, for every k ≥ 2,

lim
n→∞ P

(∣∣∣∣ log(k) Zn

log(2k−1) Q
−1
n

− 1

∣∣∣∣ > ε

∣∣∣∣ Zn > 0

)
= 0.

This allows us to replace log(k) Zn in (12) by log(2k−1) Q
−1
n . As a result, we obtain

lim
n→∞ P

(
logZn < x

log(k) Q
−1
n

log(2k−1) Q
−1
n

∣∣∣∣ Zn > 0

)
= 1 − e−x.

This example shows that the process logZn can grow with an arbitrarily small speed.

Next we turn again to the situation that was described in Theorem 1. Assume that

f (s) = s + (1 − s)1+αL((1 − s)−1),

where α ∈ (0, 1] and L(x) is a slowly varying function. Then, by definitions (2) and (3),

H(x) = x−αL(x) (13)

and

V (y) =
∫ y

1

dx

x1−αL(x)
= yα

αL(y)
(1 + o(1)) as y → ∞. (14)

Since V (y) increases, we have

P(QnZn < x | Zn > 0) = P(V (Zn) < V (xQ−1
n ) | Zn > 0).

Normalizing the random variable V (Zn) with H(Q−1
n ) and taking into account (13) and (14),

we arrive at the identity

P(QnZn < x | Zn > 0) = P(H(Q−1
n )V (Zn) < α−1xα + εn(x) | Zn > 0),

where εn(x) → 0 as n → ∞. Combining this equality with Theorem 1, we conclude that the
sequence of distributions

P(H(Q−1
n )V (Zn) < x | Zn > 0)

converges weakly to some nondegenerate limit. Thus, we can combine Theorems 1 and 2 to
obtain the following result. If

f (s) = s + (1 − s)1+αL((1 − s)−1)

for some 0 ≤ α ≤ 1 and some slowly varying L(x) then

lim
n→∞ P(H(Q−1

n )V (Zn) < x | Zn > 0) = F (α)(x),

where F (α)(x) is a distribution function.
The rest of this paper is organized as follows. Section 2 is devoted to the proof of Theorem 2.

Section 3 contains an alternative proof of Sze’s result on the asymptotic behavior of the
nonextinction probability and some remarks related to this.
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2. Proof of the main result

In this section we prove Theorem 2 and Corollary 1.

2.1. Auxiliary results

An essential step in our method is to connect the weak convergence of the functional
normalized sequence V (Zn) with the convergence of Laplace transforms of Zn.

Lemma 1. Let V (x) be a continuous, increasing, slowly varying function. We denote the
inverse function of V (x) by G(x). If there exist a continuous function ϕ(x) and a sequence
an > 0 such that, for all x > 0,

lim
n→∞ E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
= ϕ(x), (15)

then, for all x > 0,
lim
n→∞ P(a−1

n V (Zn) < x | Zn > 0) = ϕ(x). (16)

Proof. We can easily verify that, for allx, ε > 0 and an arbitrary sequence {an}, the following
estimates hold:

E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
≤ P(Zn < G(an(x + ε)) | Zn > 0)

+ exp

(
−G(an(x + ε))

G(anx)

)
,

E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
≥ P(Zn < G(an(x − ε)) | Zn > 0)

× exp

(
−G(an(x − ε))

G(anx)

)
.

Since V (y) is increasing and slowly varying, then by Theorem 1.11 of [7] we have

lim
x→∞

G(x)

G(cx)
= 0

for every constant c > 1. Thus, for any given ε > 0 and all x > 0,

lim sup
n→∞

P(Zn < G(an(x − ε)) | Zn > 0) ≤ lim sup
n→∞

E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
,

lim inf
n→∞ E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
≤ lim inf

n→∞ P(Zn < G(an(x + ε)) | Zn > 0),

or, equivalently,

lim sup
n→∞

P(a−1
n V (Zn) < x − ε | Zn > 0) ≤ lim sup

n→∞
E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
, (17)

lim inf
n→∞ E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
≤ lim inf

n→∞ P(a−1
n V (Zn) < x + ε | Zn > 0). (18)

If (15) holds, then (17) and (18) imply that

lim sup
n→∞

P(a−1
n V (Zn) < x | Zn > 0) ≤ ϕ(x + ε)
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and
lim inf
n→∞ P(a−1

n V (Zn) < x | Zn > 0) ≥ ϕ(x − ε).

Letting ε → 0 and taking into account the continuity of ϕ(x), we obtain (16).

Remark 1. The above proof of Lemma 1 is in the spirit of the proof of Lemma 1 of [5], but
essentially simpler.

Lemma 2. Let the sequence {yk; k ≥ 0} be recursively defined by

yk+1 := yk − ykl(yk), y0 ∈ (0, 1], (19)

where l(y) is an increasing function on (0, 1], 0 < l(y) < 1 for all y, and limy↓0 l(y) = 0.
Then

lim
k→∞

yk+1

yk
= 1. (20)

Proof. Since yn decreases, the limit y∗ := limn→∞ yn exists, and y∗ is the root of the
equation y = (1 − l(y))y. But, under the condition that l(y) < 1 the latter equation has the
unique solution y = 0. Thus, y∗ = 0, i.e. the sequence yn converges to 0. Therefore,

yn+1

yn
= 1 − l(yn) → 1 as n → ∞. (21)

This completes the proof.

Lemma 3. Let the function l(y) be slowly varying as y ↓ 0 and satisfy the conditions of
Lemma 2. Then there exists the sequence αk ↓ 0 such that, for every n > 0 and j ≥ 1,

j <

∫ yn

yn+j

dy

yl(y)
< j +

n+j−1∑
n

αk.

Proof. Obviously,
yk − yk+1

ykl(yk)
≡ 1. (22)

Since yl(y) increases, it follows that

1 = yk − yk+1

ykl(yk)
<

∫ yk

yk+1

dy

yl(y)
(23)

and ∫ yk

yk+1

dy

yl(y)
<

yk − yk+1

yk+1l(yk+1)
. (24)

Furthermore, in view of (22), it follows that

yk − yk+1

yk+1l(yk+1)
= ykl(yk)

yk+1l(yk+1)
. (25)

Now applying (21), we obtain

ykl(yk)

yk+1l(yk+1)
= l(yk)

l(yk+1)
(1 − l(yk))

−1. (26)
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Since l(y) is slowly varying, it follows, from (20), that

lim
k→∞

l(yk+1)

l(yk)
= 1.

Returning to (25) and taking into account (23), (24), and (26), we conclude that, for some
sequence αk → 0,

j <

∫ yn

yn+j

dy

yl(y)
<

n+j−1∑
k=n

yk − yk+1

yk+1l(yk+1)
< j +

n+j−1∑
k=n

αk.

This completes the proof.

Corollary 2. If (n+ j) → ∞ then

j−1
∫ yn

yn+j

dy

yl(y)
→ 1. (27)

Set

W(x) :=
∫ 1

x

dy

yl(y)
, 0 < x < 1, (28)

where l(y) is as defined in Lemma 2.

Lemma 4. Let l(y) and {yk} be as defined in Lemma 3, the sequence bn be decreasing and
satisfying the condition

W(bn) = anx(1 + o(1)) as n → ∞, (29)

where x ∈ (0,∞), an := 1/l(yn), and kn := min{k : yk < bn}. Then

lim
n→∞

yn+kn
yn

= e−x.

Proof. First of all, we note that bn converges to 0 as n → ∞. Indeed, since yn converges to
0 and limy→0 l(y) = 0, the sequence an tends to ∞. According to condition (29), bn → 0 as
n → ∞. Hence, kn tends to ∞.

On the one hand, using Corollary 2 with n = 0 and j = kn, we have

W(ykn) ∼ kn as n → ∞. (30)

Using the definition of kn and the monotonicity of bn gives

W(ykn−1) < W(bn) ≤ W(ykn).

On the other hand, setting j = 1 in (27), we obtain

W(ykn)−W(ykn−1) =
∫ ykn−1

ykn

dy

yl(y)
= 1 + o(1) as n → ∞.

Hence,
W(ykn) ∼ W(bn) as n → ∞. (31)
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Finally, combining (30), (31), and (29), we have

kn ∼ W(ykn) ∼ W(bn) ∼ anx as n → ∞. (32)

Since l(y) increases ∫ yn

yn+kn

dy

yl(y)
>

1

l(yn)
log

yn

yn+kn
.

Conversely, by Lemma 3,
∫ yn

yn+kn

dy

yl(y)
∼ kn as n → ∞. (33)

As a result, we have
1

l(yn)
log

yn

yn+kn
< kn(1 + o(1)).

Taking into account (32) and recalling that an = 1/l(yn), we obtain, for every ε ∈ (0, 1) and
all large n, the inequality

x > (1 − ε) log
yn

yn+kn
;

whence,
yn < ex/(1−ε)yn+kn < ex/(1−ε)yn.

Since l(x) is slowly varying, it follows, from the previous inequalities, that

l(y)

l(yn)
→ 1 as n → ∞

uniformly for y ∈ [yn, yn+kn ]. This, together with (33), gives

kn ∼
∫ yn

yn+kn

dy

yl(y)
∼ 1

l(yn)
log

yn

yn+kn
as n → ∞.

Conversely, it follows, from (32), that kn ∼ anx. Hence, recalling that an = 1/l(yn), we obtain

lim
n→∞ log

yn

yn+kn
= x.

This completes the proof.

2.2. Proof of Theorem 2

The function V (x) defined in (3) satisfies the conditions of Lemma 1. Thus, to prove
Theorem 2 it suffices to show that (15) holds with an = [H(1/Qn)]−1 and ϕ(x) = 1 − e−x .

For a critical Galton–Watson process the sequence Qn satisfies the recursion equation

Qk+1 = 1 − f (1 −Qk) = Qk

(
1 −H

(
1

Qk

))
, (34)

i.e. the sequence {Qk} coincides with {yk} defined in Lemma 2 for l(x) := H(1/x). Further-
more, we can easily verify that the function (f (s) − s)/(1 − s) is decreasing. Recalling the
definition ofH(x), (2), we see that l(x) is increasing. By (1),H(x) = L(x) varies slowly at ∞.
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Therefore, l(x) varies slowly at 0. We note, finally, that l(x) ≤ l(1) = p0 < 1 for x ∈ [0, 1].
Summarizing, we conclude that l(x) = H(1/x) satisfies all the conditions of Lemma 3.

Let

sn = sn(x) = exp

{
− 1

G(anx)

}
.

Evidently, sn increases and (1 − sn)
−1 ∼ G(anx) as n → ∞. Hence,

V

(
1

1 − sn

)
∼ anx as n → ∞. (35)

Noting that V (1/x) = W(x) for all x ∈ [0, 1], we can rewrite (35) in the following form:

W(1 − sn) ∼ anx as n → ∞.

Consequently, all the conditions of Lemma 4 are fulfilled with l(x) = H(1/x), yn = Qn, and
bn = 1 − sn. Therefore,

lim
n→∞

Qn+kn
Qn

= e−x, (36)

where
kn := min{k : Qk < 1 − sn}. (37)

From this definition of kn it follows that fkn−1(0) ≤ sn < fkn(0). Thus,

fn+kn−1(0) ≤ fn(sn) < fn+kn(0). (38)

Using the inequality

1 − f (fj (0)) =
∫ 1

fj (0)
f ′(y) dy > f ′(fj (0))(1 − fj (0)),

we obtain
f ′(fj (0))(1 − fj (0)) < 1 − fj+1(0) < 1 − fj (0) (39)

for every critical Galton–Watson process. Since limj→∞ f ′(fj (0)) = 1, we conclude, from
(39), that (1 − fj−1(0)) ∼ (1 − fj (0)) as j → ∞. Combining this with (38) yields

1 − fn(sn) ∼ Qn+kn as n → ∞. (40)

From this relation and (36) we find that

lim
n→∞ E

{
exp

(
− Zn

G(anx)

) ∣∣∣∣ Zn > 0

}
= lim
n→∞

(
1 − 1 − fn(sn)

1 − fn(0)

)
= 1 − e−x.

This completes the proof.

Remark 2. The reduction of (1 − fn(sn)) to (1 − fn+kn(0)) with a proper kn which is realized
in the proof of Theorem 2, was proposed in [8]; see also [2]. If the asymptotic behavior of
the nonextinction probabilityQn is known, we can immediately derive the corresponding limit
theorem; see Theorems 1 and 2 of [2]. Assume, for example, that Qn ∼ n−1/α as n → ∞ for
some α ∈ (0, 1]. Letting sn = 1 − xQn and recalling the definition of kn, (37), we see that
kn ∼ n/xα as n → ∞. Therefore, by (40), we have

1 − fn(sn) ∼ Qn+kn ∼ (1 + x−α)−1/αQn as n → ∞.
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Finally,
lim
n→∞ E{sZnn | Zn > 0} = 1 − (1 + x−α)−1/α,

i.e. we obtain assertions (a) and (d) of Theorem 1.
In contrast to [2], the approach we use to prove a limit theorem for Zn does not require any

information on Qn. Instead, we consider the ratio Qn+kn/Qn, which is in the spirit of [8].

Remark 3. An asymptotic expression for 1−fn(s) can be found under the additional condition

L(x) = o(log−1 x). (41)

By Theorem 1 of [10], this condition is sufficient for the validity of the relation

1 − fn(s) ∼ [G(n+ V ((1 − s)−1))]−1 as n → ∞.

In particular,
Qn ∼ [G(n)]−1 as n → ∞. (42)

Using the method described in Remark 2, we can derive Theorem 2 from (42). Note that
assumption (41) is superfluous.

2.3. Proof of Corollary 1

Obviously,

P(QnZn < x | Zn > 0) = P(H(Q−1
n )V (Zn) < H(Q−1

n )V (xQ−1
n ) | Zn > 0). (43)

It follows, from the definition of V (x), (3), that, for arbitrary ε ∈ (0, 1),

V (y) ≥
∫ y

εy

dx

xH(x)
= log ε−1

H(y)
(1 + o(1)) as y → ∞. (44)

This means that H(y)V (y) → ∞ as y → ∞. Since H(x) (= L(x)) is slowly varying,

L(Q−1
n )V (xQ−1

n ) ∼ L(xQ−1
n )V (xQ−1

n ) as n → ∞. (45)

Combining (44) and (45), we conclude thatL(Q−1
n )V (xQ−1

n ) → ∞ as n → ∞. This relation,
together with (43) and (4), proves the corollary.

3. On the nonextinction probability

In Subsection 3.1 we give sufficient conditions when the sequence yj , defined in Lemma 2,
is asymptotically, as j → ∞, equivalent to W−1(j); see Lemma 7, below. An application of
this result to the sequence Qn gives us the asymptotic behavior of Qn. In Subsection 3.2 we
discuss the influence of the function L(x) of (1) on the nonextinction probability.

3.1. On the inversion problem for the function W(x)

Let {yj } be the sequence defined in Lemma 2. It follows, from (28) and Corollary 2 with
n = 0, that

W(yj ) = j + ψj

and ψj = o(j) as j → ∞. Hence,

yj = W−1(j + ψj ).
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Fix α > 0 and let l(x) = xα in (28). Then W(x) = α−1(x−α − 1), and, consequently,

W−1(x + o(x)) ∼ W−1(x) as x → ∞. (46)

In particular, yj ∼ W−1(j) as j → ∞. But, if W(x) is defined by a slowly varying l(x), then
(46) is not true in general. However, if l(x) goes to 0 sufficiently fast then W−1(j + ψj ) ∼
W−1(j), as Lemma 7, below, shows. The proof of Lemma 7 is based on the following auxiliary
results.

Lemma 5. Let l(y) satisfy the conditions of Lemma 2 and, in addition, let

l′(y) < c
l(y)

y
(47)

for some positive constant c. Then there exists a constant C > 0 such that, for every n ≥ 0 and
j ≥ 1,

j <

∫ yn

yn+j

dy

yl(y)
< j + C

n+j−1∑
n

l(yk). (48)

Proof. It follows, from (47), that, for any x > y,

log
l(x)

l(y)
< c ln

x

y
< c

x − y

y
.

Hence, by applying (21), we obtain

l(yk)

l(yk+1)
< exp

{
c

(
1

1 − l(yk)
− 1

)}
= 1 +O(l(yk)).

Comparing this bound with (25) and (26), we conclude that there exists a C > 0 such that, for
any n ≥ 0 and j ≥ 1,

n+j−1∑
n

yk − yk+1

yk+1l(yk+1)
< j + C

n+j−1∑
n

l(yk).

Applying this bound to (24) and taking into account (23), we complete the proof.

Lemma 6. Let the function f (x) have an increasing second derivative, f (1) = f ′(1) = 1,
and set

l(x) := x−1(f (1 − x)+ x − 1).

Then

l′(x) < l(x)

x
.

Proof. Let
g(x) = f (1 − x)+ x − 1.

Obviously,
g′(x) = 1 − f ′(1 − x), g′(0) = 0, g(0) = 0,

and
g′′(x) = f ′′(1 − x).
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Furthermore,

g′(x) =
∫ x

0
g′′(y) dy > g′′(x)x,

since g′′(x) decreases. Hence,

2g′(x) > g′′(x)x + g′(x) = d

dx
(xg′(x)).

Integrating both sides, we obtain
xg′(x) < 2g(x),

i.e.
g′(x)
x

− g(x)

x2 <
g(x)

x2 .

It remains to note that
g(x)

x2 = l(x)

x

and
g′(x)
x

− g(x)

x2 = l′(x).

This completes the proof.

We are now ready to state the main result of this subsection.

Lemma 7. If l(x) satisfies the conditions of Lemma 5, and, in addition, if l(x) = o(log−1 x),
then, as j → ∞,

yj = W−1(j)(1 + o(1)).

Proof. Letting n = 0 and y0 = 1 in (48) and taking into account the definition of W(x),
(28), we have

j < W(yj ) < j + C

j−1∑
k=0

l(yk). (49)

It follows, from the left inequality and monotonicity of W(x), that yj < W−1(j). Since l(x)
increases, this bound implies that

j−1∑
k=0

l(yk) <

j−1∑
k=0

l(W−1(k)).

Noting that l(W−1(x)) decreases, we have, for every k ≥ 1, the bound

l(W−1(k)) ≤
∫ k

k−1
l(W−1(x)) dx.

Therefore,
j−1∑
k=1

l(W−1(k)) ≤
∫ j

0
l(W−1(x)) dx.
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Substituting x = W(y) in the last integral and taking into account the equality

W ′(x) = − 1

xl(x)
, (50)

we can easily verify that

∫ j

0
l(W−1(x)) dx =

∫ W−1(j)

1
l(y)W ′(y) dy = −

∫ W−1(j)

1
y−1 dy = − logW−1(j).

Thus,
j−1∑
k=1

l(W−1(k)) ≤ − logW−1(j).

Substituting this bound into (49), we obtain, for some C < ∞, the inequality

j < W(yj ) < j − C logW−1(j),

or, equivalently,
W−1(j − C logW−1(j)) < yj < W−1(j). (51)

To show that these bounds for yj are asymptotically equivalent, we consider the difference

logW−1(j)− logW−1(j − C logW−1(j)).

Since logW−1(j) and (logW−1)′(x) are negative, this difference is positive and does not
exceed

C logW−1(j) inf
x∈[j,j−C logW−1(j)]

(logW−1)′(x) < ∞. (52)

Applying (50), we obtain

(logW−1)′(x) = (W−1)′(x)
W−1(x)

= 1

W−1(x)W ′(W−1(x))
= −l(W−1(x)).

Since l(W−1(x)) is decreasing, the left-hand side of (52) equals

−Cl(W−1(j)) logW−1(j).

This means that

lim
j→∞(logW−1(j)− logW−1(j − C logW−1(j))) = 0

if l(x) = o(log−1 x) as x → 0. The statement of the lemma follows from (51) and the last
relation.

Now we use Lemma 7 to determine the asymptotic behavior of the nonextinction probability
of Zn. In view of (34) the recursion formula (19) holds for yn = Qn if

l(x) = H

(
1

x

)
= x−1(f (1 − x)− 1 + x). (53)
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It is easily seen that the generating function f (x) of every critical Galton–Watson process
satisfies the conditions of Lemma 6. Thus, all the conditions of Lemma 5 are fulfilled for l(x)
defined by (53). Now applying Lemma 7 with yn = Qn, we obtain

Qn ∼ W−1(n) as n → ∞,

provided thatH(1/x) = o(log−1 x) as x → 0. This result was obtained in [10] (see Theorem 1
and Corollary 2 therein) using another method.

We conclude this subsection with an example, which shows that the condition l(x) =
o(log−1 x) is close to being necessary for the validity of the statement of Lemma 7.

Example 4. Assume that l(x) = log−α x−1 for some α ∈ (0, 1]. In this case,

yn+1 = yn

(
1 − log−α 1

yn

)
for y0 < e−1.

Taking the logarithm of both sides, we arrive at the equality

log
1

yn+1
= log

1

yn
− log

(
1 − log−α 1

yn

)
.

Using Taylor’s expansion for log(1 − x), we obtain

log
1

yn+1
= log

1

yn
+

∞∑
j=1

1

j
log−jα 1

yn
.

Hence,

logα+1 1

yn+1
= logα+1 1

yn

(
1 + log−α−1 1

yn
+ 1

2
log−2α−1 1

yn
+O

(
log−3α−1 1

yn

))α+1

= logα+1 1

yn
+ (α + 1)+ α + 1

2
log−α 1

yn
+O

(
log−2α 1

yn

)
.

Letting xn := logα+1 y−1
n , we have

xn+1 = xn + (α + 1)+ α + 1

2
x

−α/(α+1)
n +O(x

−2α/(α+1)
n ).

Hence,

xn = x0 + (α + 1)n+
n−1∑
j=0

α + 1

2
x

−α/(α+1)
j +O

(n−1∑
j=0

x
−2α/(α+1)
j

)
. (54)

Clearly, xn = (α + 1)n+ o(n) as n → ∞. Therefore,

x
−α/(α+1)
j = (α + 1)−α/(α+1)j−α/(α+1)(1 + o(1)) as j → ∞.

Summing over j ∈ [0, n), we obtain

n−1∑
j=0

α + 1

2
x

−α/(α+1)
j = c(α)n1/(α+1)(1 + o(1)) as n → ∞,
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where c(α) = 2−1(α + 1)1+1/(α+1). Substituting this equality into (54), we have

xn = (α + 1)n+ c(α)n1/(α+1)(1 + o(1)) as n → ∞.

Recalling the definition of xn, we obtain

yn = exp{−((α + 1)n)1/(α+1) − c′(α)n(1−α)/(1+α)(1 + o(1))} as n → ∞, (55)

where c′(α) = 2−1(α + 1)(1−α)/(α+1).
Conversely, W(x) = (α + 1)−1 logα+1 x−1 if l(x) = log−α x−1. Thus,

W−1(n) = exp{−((α + 1)n)1/(α+1)}. (56)

Comparing (55) and (56), we see that yn and W−1(n) are not asymptotically equivalent for all
α ∈ (0, 1].
3.2. On the connection between the asymptotics of L(x) and Qn

To use (42) we need to determine the asymptotic behavior of G(x) = V −1(x). But this
is not easy, because of the slow variation of V (x). We will demonstrate it with the following
example. Assume that

V (x) = a logθ x + b logθ−β x + o(logθ−1 x), (57)

where a and b are positive, θ > 1, and β ∈ (0, 1]. To find the asymptotic behavior of the
function G(x), we consider the equation

azθ + bzθ−β + g(z) = x, (58)

where g(z) = o(zθ−1). It is easily seen that z = (x/a)1/θ (1 + o(1)) as x → ∞. Letting
z = (x/a)1/θ (1 + δ(x)) in (58), we have

x(1 + θδ(x)+O(δ2(x)))+ b

(
x

a

)1−β/θ
(1 + (θ − β)δ(x)+O(δ2(x)))+ o(x1−1/θ ) = x.

Therefore, as x → ∞,

δ(x) = − b

aθ

(
x

a

)−β/θ
(1 + o(1))

and

z =
(
x

a

)1/θ

− b

aθ

(
x

a

)(1−β)/θ
(1 + o(1)).

This means that under (57), we have

G(x) = exp

{(
x

a

)1/θ

− b

aθ

(
x

a

)(1−β)/θ
(1 + o(1))

}
as x → ∞.

Therefore, in order to find the asymptotics of G(x), it is not enough to know only the main
term of the asymptotics of V (x). Consequently, ifZ(i), i = 1, 2, are Galton–Watson processes
satisfying (1) with slowly varying functions L(i) and L(1)(x) ∼ L(2)(x), then it may happen
that Q(1)

n and Q(2)
n are not asymptotically equivalent.
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