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The partial transposition from quantum information theory provides a new source to
distill the so-called asymptotic freeness without the assumption of classical
independence between random matrices. Indeed, a recent paper [10] established
asymptotic freeness between partial transposes in the bipartite situation. In this
paper, we prove almost sure asymptotic freeness in the general multipartite situation
and establish a central limit theorem for the partial transposes.
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1. Introduction

The origin of free probability theory can be traced back to Voiculescu’s works
around 1985, and one of the key discoveries is the so-called asymptotic freeness of
independent random matrices with Gaussian entries [21]. This phenomenon extends
beyond the Gaussian models and applies to various other models as well. Amongst
them are non-Gaussian Wigner matrices [5], independent Haar unitary random
matrices [22], random permutation matrices [13], etc.

It is worth noting that all the results mentioned above are assuming independence
between the random matrices, resulting in the phenomenon of asymptotic freeness.
A natural question arising from this perspective is whether there are fundamentally
different approaches to obtaining asymptotic freeness. A positive answer to this
question is obtained from the partial transposition [10], which plays a crucial role
in quantum information theory (QIT). Indeed, partial transposition is crucial in
the problem of entanglement of quantum states and quantum channels [2, 6, 15,
23], as well as in computing the transmission rate of information [16, 19], PPT?
conjecture [1, 3, 4, 7, 17], and so forth.

© The Author(s), 2025. Published by Cambridge University Press on behalf of
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This paper focuses on partial transposes of Wishart random matrices, which arise
naturally in the context of QIT since the normalizations of Wishart matrices are
standard models for random quantum states [8, 18, 20, 24]. An important recent
discovery is the asymptotic freeness between partial transposes of a Wishart matrix
in the bipartite situation [10]. Let di, d2 and p be natural numbers, and let Gg, 4,
be a dids x p random matrix with independent complex Gaussian random vari-
ables whose mean and variance are 0 and 1, respectively. Then the Wishart matrix
Wi, d,,p is given by

1 *
Wi, dyp = mGdldg,deldz,p € My, 4,(C). (1.1)

Let us denote by T4 or simply by 7' the transpose map A — A’ on M,(C) if there

~

is no possibility of confusion. Then the partial transposes of Wy, 4, » € Mg, a,(C) =
M4, (C) ® My, (C) in the bipartite situation are given by

Wdldz,P = (idd1 ® idd2)(Wd1d27P)7
Wcll—;dz,p = (iddl ® sz)(Wdldz,p)a (1 2)
Wi = Ta ®ida,)(Waydsp),
Wéldz,p = (le ®Td2)(Wd1d2,P)'
One of the main results of [10] is that the family
{Wd1d2,p’WidQ,p’Warlidz,WW;dz,P} (1'3)
is asymptotically free under the assumption limd; = oo = limds with lim dpd =
102

¢ € (0,00). From the QIT perspective, it is natural to consider a multipartite
scenario of quantum communication. Indeed, the bipartite setting is the standard
framework to model interactions between two parties, and it is standard to use a
multi-fold tensor product to describe possible interactions between multiple parties.
In the general n-partite situation, we have 2™ types of partial transposes of

1 *
Waydop = mGdl»--dn,delmdn,p € My, (C)® -+ ® Mg, (C), (1.4)
n
given by
Wty = (5 @ @ T Wy ot ), (1.5)
where o = (01,092,-+,0,) is an arbitrary element of {0,1}". This paper focuses

on two research questions for these partial transposes W7 wd, p- Lhe first main
question is as follows.

QUESTION 1. Is the family {Wi...d p} o1 of partial transposes asymptotically
n oe{0,1}"

free in the general n-partite situation assuming limd; = oo for all j =1,2,--- ,n

with lim dlfd =c € (0,00)? What about almost sure asymptotic freeness?

Note that a partial positive answer to the above Question 1 can be obtained
from a recent paper [11]. Indeed, [11, Corollary 4.15] provides an asymptotically
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free family consisting of 2n partial transposes out of 2™ choices. We establish
the positive answer with full generality to this problem in Theorem 2.5 where
we prove almost sure asymptotic freeness for the whole family of partial transposes

{ng d p} oy Then, an important advantage of this shift to the multipartite
mP ) oe{0,1}"

setting is that we have a limitless number of asymptotically free partial transposes
Wé’l___ dyyp> SO it becomes possible to discuss the following problem.

QUESTION 2. If the partial transposes are asymptotically free, then is it possible to
establish a natural analogue of the central limit theorem?

To do this, in Section 3, we consider an arbitrary sequence of finite length
d=(dy, - ,dy) € [ J{2.3,4,--}", (1.6)
r=1

and denote by p(d) = m%n] d; > 2 and p = p(d). An important difference
JEIN

from Section 2 is that the length n = n(d) varies depending on d. The main
object in Section 3 is the following average after centring

1
=g 3 (Wi...dn,p@) e Id) (1.7)

for certain subsets Bq C {0, 1}"(d). In Theorem 2.3 (2), we prove that

¢ if lim |Bq4| = oo and

o if lim |Bg|™ (H(ld) +

7 g('_i,?d — CD = 0 for all natural numbers m,
142 n

then (sq)q converges in moments to the semicircular element of the mean 0 and
the variance c, i.e.

tm

Vac? — t2dt.

Im(E ® tr)(s]) = /

[—2¢,2¢] 2mc?

2. Asymptotic freeness of partial transposes

Let us begin with generalizing some notations and terminologies in [10] to the
multipartite setting. Let p and dy,ds,- - - ,d,, be natural numbers with n > 2, and
let

G = Gdld27"'dnap (21)

be a dyds - - - dy, X p random matrix whose entries are independent complex Gaussian
random variables with mean 0 and variance 1. We denote by [d] = {1,2,--- ,d} for
any natural number d, and [dyds - - - dy] = [d1] X [d2] X - - - X [d,,] for simplicity. Using
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a canonical linear isomorphism

M, dy--.d, p(C) = CHE= 0t @ My, (C), (2.2)
dn P
let us write G = Z e; ® Gj and Gy = ZZg;")yew,y € My, »(C). Then
i€ldida---dn_1] r=1y=1
the Wishart matrix W = dl__l_d GG* € My, 4,...4, (C) is given by
1 *
ﬁ Z €iyj1 @ Ciyjy @ D€,y 5, & GiGj : (23)

" i j€ldidadp_1]

Note that we should consider 2™-types of partial transpositions of W in the n-
partite situation. For any o = (01,09, -+ ,0,) € {0,1}", we define the associated
partial transposition

W = (Tlgl ® T202 ®-- & T;”) (W) € Ma,dy---a, ((C) (2.4)

where T is the transpose operator on each My, (C).

To compute (non-commutative) joint moments of the partial transposes, let us
consider a Zy-valued m X n matrix € = (€;j)icm],je[n]- Then there exist m rows
sequences €; = (€;;)}—; € {0,1}" and their associated partial transposes are given
by

We We, ... Wem, (2.5)

2.1. Joint moments of partial transposes

In this section, we discuss the k-th moments E(XF) of the following random variable

1
X(—: = tr(WGl wez... Wﬁm) S mTr(WGI wez... me). (26)

Here, tr = 1Tr is the normalized trace on My(C) and € = (€;5)ic(m] jeln] IS & Zo-
valued m x n matrix with e; = ()7, € {0,1}". Tt is unclear whether X, is a
real-valued random variable for now, but it will be explained later in Appendix A.

Recall that [10, Theorem 3.7] covers the case (n,k) = (2,1), and our focus is

about the general cases of (n, k). For any natural numbers k& and m, let us introduce
some elementary permutations on

[£km] = [km|U[-km] ={1,2,--- ;km}U{-1,-2,---  —km} (2.7)
as follows. Recall that the following permutations

A=(1,-1)o(2,-2)o---0(m,—m) (2.8)

I=(1,2-,m) (2.9)
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on [+m] were introduced in [10] to prove asymptotic freeness of partial transposes
in the bipartite situation. We define their natural extensions A*) and T'*®) on
[£km] = [k] x [£m)] as the product maps

AP =id, x A, (2.10)

%) —id;, x T (2.11)

Then, it is immediate to see that their cycle decompositions on [£km] are given by
AR =(1,-1)0 (2,-2) 0--- 0 (km, —km), (2.12)

I8 =1, ,m)(m+1,-,2m) - (k= )m+1,--- ,km). (2.13)

While the m row sequences €1, , €y, Of (€5)icm],je[n] Were used to describe
multiple partial transposes W€ W<€ ... W let us use the j-th column e;-
(€ij)icim) € {0,1}™ to define a permutation &; on [+m] by

&j(x) = { v e =0 (2.14)

—x if €|m|j =1

Additionally, £; extends to a permutation

EW = idy, x & 1 [k] x [£m] = [k] x [£m] (2.15)

J

given by 5;’6)(57 s') = (s,&;(s)).
Now, we are ready to provide an explicit formula for the following k-th moments

E(X*) =E ([tr(WelW” ---Wﬁm)]’“) , (2.16)

generalizing [10, Theorem 3.7] with full generality under the following notations.

NOTATION 2.1 Note that any permutation o € S, is associated with a partition w
of [m] using the cyclic decomposition of o. We denote by §(co) the number of blocks
of m, and denote by wV 7' the supremum of two partitions © and ©'. When we
regard o € Sy, as a permutation on [£m], the extension is considered the identity
function on [-m] = {—m,--- ,—1}.

Our proof for the following theorem is systematic but requires heavy use of
notations, so let us present the proof separately in Appendix A.

THEOREM 2.2 Let € = (€i5)icm],je[n] be @ Zz-valued m xn matriz with ¢ =

(€ij)j=1 € {0,1}" for all i € [m], and let X = tr(WWe...We). Then, for
any natural number k, we have
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o) n
ky _ p fkyj(ﬁvo')
E(xF) = > (M> de : (2.17)
0E€Skm Jj=1

where the exponent fi (€, o) is given by
HEPT®A®TE)~1e®) v g AP G=1) (o) — k(m + 1) (2.18)
for all o € Skm and j € [n].

Recall that we have
2-f(m Vo) = §(m o ma) (2.19)
for any pairings m,m € Pa(n) by [9, Lemma 2], and both the permutations
£;k)F(k)A(k)(F(k))*15;k) and o A®) g1 are indeed pairings. Thus, our main focus
from now on is to analyze

(k) (k) A (k k)\—1 (k) k) _—1
2 4(ETWAWEN)T1e) v g AR T (2.20)
= ¢(EM TR AR (P0)~1e® AR -1 (2.21)
= t(T®A®[TE) AR B AR AR 5= 1), (2.22)

2.2. Almost sure asymptotic freeness in the multipartite setting
To establish the almost sure asymptotic freeness, our main technical question is how
to compute the exponents f ;(e, o). Let us write f; = f1 ; for simplicity if there is
no possibility of confusion. Recall that the case (n,k) = (2,1) was studied in [10]
for the bipartite situation. To consider the general cases of (n, k), it is necessary to
develop a new framework to study the general situation k > 2.

Let us consider the following family of sets

Ak = {Al,AQ,"' ,Ak}, (223)

for general k, where A; = [jm|\ [(j — 1)m| = {(j —1)m +1,---,jm}. We also
denote by (Ag) := {UaesA : S C Ai}. Then the main theorem of this section is
stated as follows.

THEOREM 2.3 Let 0 € Sk and let € = (€55)icim),jen] be a Zo-valued m x n matriz.
(1) Assume that k > 2 and there exist non-empty disjoint subsets C1 € (Ayg)
and Cy € (Ay) such that o(Cy) = Cy, 0(Ca) = Cy and [km] = C1 U Cy.

Let |Cy] = kym and |Ca| = kam and consider bijective increasing functions

¢y : [kym] — Cy and ca : [kam] — Ca. Then we have

£ (9O AM TO) 1R v A6 (2.24)

3

=Y ¢ (g;k”r(’%m(kﬂ(r“%))*lg](’“” v (cflaci)A(’m(c;lgci)*l) (2.25)
i=1,2
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for all j € [n]. In particular, we have

frjle,0) = fkl,j(e,cl_locl) + fkm-(e,c;lacg). (2.26)

(2) Assume that k > 2 and there are no non-empty disjoint subsets C1 € (Ag)
and Cy € (Ay) such that o(Cy) = Cy, 0(Cy) = Csy and [km] = Cy U Cs.
Then we have

frjle,0) <2 -2k < -2 (2.27)
for all j € [n].

A proof of the above Theorem 2.3 will be presented in the next subsection 2.3.
In this section, let us focus on how this result is applied to prove almost sure
asymptotic freeness of the partial transposes {W7} {0,137 To proceed, let us
recall an important lemma from [10]. For a function x : [m] — Y, let us denote by

ker(z) = {z7(t) : t € Y}\{0}. (2.28)

In particular, € = (€;;)ic[m],jc[n) can be understood as a function i € [m] — ¢; €
{0,1}", so ker(e) is a partition of [m)].

LEMMA 2.4. Let 0 € Sy, and let € = (€;j)icm],je[n] be @ Zz-valued m x n matriz
with 6;— = (eij)ie[m] S {O, 1}m'
(1) Then fi(e,0) = f1,(e,0) <0 holds unless € is constant on the cycles of o.
(2) If €; is constant on the cycles of o, then fi(e,0) < 0 with equality holds
precisely when the associated partition of o is non-crossing.

In particular, if fj(e,0) =0 for all j € [n] and if 7 is the associated partition of
o, then m is non-crossing and ker(e) > m holds, i.e. each block of w is contained in
a block of ker(e).

Then, applying Theorem 2.3 with Lemma 2.4, we reach the following almost sure

asymptotic freeness for the general cases of (n, k). Let us denote by p(dy, -+ ,d,) =

min d; > 2.

1<j<n

THEOREM 2.5 Let n be a fized natural number. If limu(dy, -+ ,d,) = oo and

limﬁ = c € (0,00), then the family {W?},c01y» of the partial transposes
Lo

is almost sZrely asymptotically free.

Proof. As the first step, let us prove asymptotic freeness by showing that
all the mixed cumulants vanish as in [10]. Recall that the joint moment
(E®tr)(WeWe...Wen) is given by

fi(o) n
p fi(e,o)
_— d;’ 2.29
> () 11 220

oESm
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for any Zs-valued m x n matrix € = (€;5)ic[m],je[n) by Theorem 2.2. By Lemma 2.4,

n
we have H d;j(e’g) < pu(d)2i=1fi(69) and
j=1

n if ¢ NC(m)

< —
< . (2.30)
< -1 if 7€ NC(m)and ker(e) ? 7

g
g

21 file0)
21 file0)
where NC(m) is the set of all non-crossing partitions of [m] and = is the associated

partition of o € S,,. For each partition 7 of [m], let us denote by S(m,7) the set
of all permutations o € S,,, whose associated partition is 7. Then (2.30) implies

lim(E @ tr) (W We ... Wen) = > |8 (m, )| (2.31)
TeNC(m):ker(e)>m

Let V4, Vs, -+, V,. be the disjoint block decomposition of 7 € NC(m), and write

1 if€t1:6t2:"':€tl (2 32)

or(Wer,Wez ... Wem) =
7 ) {0 otherwise

for any subset T = {t1,t2, -+ ,t;} C [m] with t; < to < --- < ¢;. Then (2.31) can
be written as

S ] (il =Dt sy, (W, wee e W, (2.33)
TENC(m)i=1

A crucial step here is to note that
T
[Te: (Wil = 0t dv, (e wee, oo wen)
i=1
coincides with namely the free cumulant

(W W2 e W) = [ oy, (W, W, W), (2.35)

i=1

Thus, the above (2.32) tells us that all mixed cumulants vanish, and this fact allows
us to conclude that the given family {W?} is asymptotically free by [12, Theorem
16] or [14, Theorem 11.20].

Now, our second step is to prove

Var(X,) = O(dy?---d,;?) (2.36)

n

to establish almost sure asymptotic freeness. Note that the following identity

(o) n
2 _ 2 : p | I f2,5(€,0)
n i1

0ESam
o([m])=[m]

https://doi.org/10.1017/prm.2025.10054 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10054

A central limit theorem for partial transposes 9
is a direct consequence from Theorem 2.3 (1). Indeed, for any o € Ss,, such that
o([m]) = [m] and j € [n], we have

2)1(2) A (2) (T(2)) -1 ¢(2) 2),.—1

§&7THARNIT) 7 VoA o)

= 3" HETATE V (¢ oe) Al oe) ) (2.38)

i=1,2

and fo j(e,0) = f1(e,c;tocr) + fii(e,¢c; ocz) by Theorem 2.3 (1). Here, ¢; :
[m] — [m] is the identity map and cq : [m] — [2m]\[m] is given by c3(i) = m + 1.
Furthermore, since {0 € Say, : o([m]) = [m]} is naturally identified with S, X Sy,
via 0+ (¢; tocy, ¢y tocy), we can see that

f(o) n
p f}‘z\j(E,O’) 2
Z (dl"'dn> jl;[ldg (2.39)

ocE€Sam
o ([m])=[m]

ﬁ(cl_lacl)Jrﬂ(cz_lo'cQ) n . .
_ § : p I I fri(ecr “oen)+f1,5(ec;  oc2)

oESam ’ j=1
o([m])=[m]

p o\ i em) T s (e) )
1,51 (671 1,49 (€,72)
- Z (d1~~~dn) Hdn " de2 2 =E(X.)*. (2.41)

T1,72€Sm Jj1=1 Jj2=1

Then Theorem 2.2 and Theorem 2.3 (2) tell us that

Var(X.) = E(X2) — E(X,)?

By no
- > (32y) I .02

0E€Sam j=1
o([m])#[m]

with fa j(e,0) < —2 for all j € [n]. Finally, since m has a uniform upper
bound M >1 from the assumption, we can conclude that

Var(X,) < (2m)!M*™(dydy - - - d,,) 2. (2.43)

O

2.3. Proof of Theorem 2.3

Let 0 € Sy, and let € = (€55)icm],je[n] be a Zo-valued m X n matrix. Let us begin
with a proof of the first part of Theorem 2.3.

THEOREM 2.3 (1) Let 0 € Sk, with k > 2 and suppose that there exist non-empty
disjoint subsets C1 € (Ag) and Cy € (Ag) such that o(Cy) = C1, o(Cy) = Cs and
[km] = C1 U Cy. Let |Ch| = kym and |C3| = kam and consider bijective increasing
functions ¢y : [kym] — Cy and cq : [kam] — Cy. Then we have
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4 (sj(k)r(kwk) (PW)~1e®)y UAU%*) (2.44)
=Y ¢ (5}’“)r<ki>A<k0(r<ki>)—15§’“> v (cglaci)AW(c;laci)—l) (2.45)
i=1,2
for all j € [n]. In particular, we have
fri(€,0) = fry (e oer) + fua (e, c3 o) (2.46)
for all j € [n].
Proof. Note that we have

2 4(EMTEA® (PR =1e®) v g ARG (2.47)

= t(EM TR AR (P0)~1e®sAR) -1 (2.48)

for all j € [n] thanks to (2.19), and the given condition ¢(Cy) = Cy and o(C3) = Cy
implies

(5J(k)F(k)A(’“)(F(k))’lgj(k)aA(k)a’l) (C;U(=Cy) = C; U (—C) (2.49)

for both cases ¢ =1 and i =2. Thus, we reach the following conclusion

2 4(EMTEA® (TR =1e® v g AR L) (2.50)
= HEWTE AR (D)1 5 AR 51 (2.51)
=y jj<€J(k)F(’“)A(’“)(F(’“))*S](k)aA(k)a*l|CiU(_Ci)) (2.52)
i=1,2
= 3 (eI TR AF) (DR L ED (e ) A (7 o) 7). (2.53)
1=1,2

)

Additionally, the last conclusion is immediate since 4(c) = #(c; *oc1) +4(cy Locs)
and k(m+ 1) = ki(m + 1) + ka(m + 1). O

From now on, let us suppose that k£ > 2 and there do not exist non-empty disjoint
C; € (Ay) and Cs € (Ay) such that o(Cy) = Cy, 0(C3) = Cs and [km] = C; U Ch.
In this case, we can construct a sequence of elements (z;);er—1] and a bijective
function 7 : [k] — [k] such that

*x; € Ar(l) U--- UAT(i) for all ¢ € [k — 1],
* O'(.’L‘i) S A’r(i+1) for all 7 € [k‘ — 1].
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For two disjoint subsets S and T of [+km], let us write S ~y T if there exists
an element x € S such that ¢(z) € T or an element y € T such that ¢(y) € S by a
bijective function ¢ on [+£Am|. Note that ~4 is a symmetric relation.

LEMMA 2.6. From the above notations, there exist subsets V;i1,Vja, -, Vi of
[£km] such that

* Vji is one of Ar;y and —A,q for all i € [k],
« U Vit~ Vi for alli € [k — 1] by EF AW AR g1

te(i]

Proof. Let us use the above sequence x1,xs,- - ,xr_1 to construct the subsets
Vi1, V2, -, Vjk. Let us start with Vj; = Arq). Then, the following table of
direct calculations tells us how to decide V11 from Vj1,---,Vj;.

(1) P, T = EMAW AW G-1g®) (7)1 T

J O'(:EZ) — O’(xl) 7 J —X; 7G(xi)

2) g), T i = ENAWGAB-1gh  —o@) =

@ ET ) s —o(w) g IS s o)

3) 5]@) . T = N E;k)A(k)aA(k)a_IE;k) . T —o(zi)

o(z;) — o(x;) o(xs) = —x;

4) g® T > —; — fAR GAR g-1gh) , Tit> o(xs)
J o(zi) — —o(xs) J ’ —o(zi) = —xi

Indeed, if x; € AT(i) and V}’i = Ar(i) (resp. V},i = 7A7(i)), then we take V}',i-{-l =
Ar(iy1)y (resp. Vjiy1 = —Ar(i41)) in the first or the fourth cases and take Vj ;11 =
—A; (1) (xesp. Vjip1 = A-(i11)) in the second or the third cases. O

Under the notations above, let us denote by Wj; = —Vj;, V; = U,y Vji and
W; = Uie[k] W;i. Then we are ready to prove the second part of Theorem 2.3.

Our strategy is to adapt the proof of [10, Lemma 4.3] and to divide the general
situation into the case where V; ~ W; and the other case where V; = W; by

E;k)A(k)aA(k)aflfj(»k).

THEOREM 2.3 (2). Suppose that k > 2 and there do not exist non-empty disjoint
Ci € (A) and Cy € (Ay) such that o(Cy) = C1, 0(Cy) = Cy and [km] = C1 U Cs.
Then we have

frjle,o0) <22k < -2 (2.54)
for any Zs-valued m x n matrices € = (€:5)icim),jen]-

Proof. (Case 1: V; ~ W, by Ej(k)A(k)oA(k)a_lé'j(k)) In this case, the subgroup

generated by 5](k)A(k)aA(k)a_1€](k) and TR AE)(TEN)=LAK) acts on [+km] tran-
sitively by Lemma 2.6 and the given assumption, so there exists a non-negative
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integer g satisfying
2km+2(1—g) = ﬁ(gj(k)A(k)UA(k)a—ng(k))
(k) A (k k) —1e(B) (k) A (k) (k)N —1 A (k
+H(EP AW GAR LR P AR (D)) =1 AR)
+ 4T AW (T E)TTAW) (2.55)

=2t(0) + H(EM AP G AW gL T AR (DN "L AR 4 o, (2.56)

See [12] for more details about the existence of g, and the second equality comes
from direct calculations. Then we have

2 4(EMTEA® (pR) e v g ARG (2.57)

= HEWTE AR (D)1 AR 51 (2.58)

= B AB (R ~1eF g AR 5Ly (2.59)

= 4T ®A® (TR LAR B AR G AR = 120) (2.60)
= 4(EM AR G AR =1 PE AW (D)) =LA R)) (2.61)
= 2km +2(1 — k — g) — 24(0), (2.62)

where we used EJ(-k)A(k) = A(k)é'](k) at the third equality. Thus, we obtain
frj(e,0) = HEPTWABTE) LM v g AR 1) 4 #(0) — k(m + 1)
=(km+(1—-k—g)—4(0))+t(c) —k(m+1) (2.63)
—1-2%—g<1-2k<2—2k (2.64)
(Case 2: V; = W, by Ej(k)A(k)JA(k)a_lé'j(k)) In this case, we have
EMAW AR G 1eW () = v (2.65)
and the subgroup generated by 71y, = g](k)A(k)UA(k)J_lg](-k) and 7oy, =
TR A (T ) =1 AR) v acts on Vj transitively by Lemma 2.6. As in the case
V; ~ Wj, there exists a] non-negative integer g satisfying

km +2(1 —g) =t#(r,v;) +i(r,v; o T2v;) + 8(72,v;) (2.66)
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=t(ry,) + (1L, o2 y;) + K, (2.67)

implying
f(riy, omay,) = km+2—k —2g —4(11v,). (2.68)
On the other side, we define 71w, = S;k)A(k)aA(k)a’lé’;k) and oW, =

j
) Ak) (F(k))_lA(k) similarly. Then there exists a non-negative integer g’
W;

satisfying

lj(Tl,Wj OTQ,Wj) = km+27k72gl 7ﬁ(7’1,wj). (269)

Thus, we obtain

2 4(EMTEA® (-0 =1e®) y g AR5 (2.70)

= (&N AW G AR g1 P AW (D)) =LA () (2.71)
=H(m,v; o Tov;) + (LW, © Tow;) (2.72)
=2(km+2—k)—2(g+g) —t(ry) — trw;) (2.73)
=2(km+2—k) —2(g+g) — (P AP FAE ;1) (2.74)
=2(km+2—k)—2(g+g') - 24(0), (2.75)

which leads us to reach the following conclusion

Frile,0) = H(EFTOAR (TN =1e®™ v g AR 1) 4 4(g) — k(m + 1)
=2-2k—(9+4¢) <22k (2.76)
O

3. A central limit theorem for partial transposes

In this section, let us consider an arbitrary sequence of finite length
d=(dy, - ,dy) € [ J{2.3.4,--}", (3.1)
r=1

and denote by p(d) = m%n] d; > 2 and by n = n(d) the length of d. A key
JEIN

distinction from Section 2 is that n = n(d) varies depending on d. Let p = p(d)
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be a natural number-valued function of d and consider the multipartite Wishart
matrices Wq = Wy, ...q, p- Recall that there exist partial transposes

n(d)
(W} eeroayn@ S Q) My, (C). (3.2)
j=1
In this section, the following product
n(d)
D(d,¢,0) H alfj(6 7 (3.3)

will play a crucial role.
To establish a central limit theorem, for each d, we take a subset Bq C {0,1}
satisfying the following conditions

n(d)

1

e lim Bg m ( =+
Bal™ @

* lim |Bq| = 0.

p(d)
d1d2 . dn

c)zOforaHmeN,

Note that the above conditions imply

. 1 p(d)
fim <M(d) - ‘dld%"dn ¢

p(d)
dids -+ d,,
Now, we consider a family {aq .}, €Bq consisting of the centred partial transposes

so we obtain lim = c and lim pu(d) = co.

n(d)
ag.e=Wg—c-1d € Q) My, (C). (3.5)
j=1

The main result of this section is the convergence in moments of the following
random matrices

(3.6)

Sd = /7 Z ad,e
|Bd e€Bg

to the semi-circular element of mean 0 and variance c¢. To compute the limit of
the m-th moments im(E ® tr)(s]'), for any natural number m and an arbitrary
function x : [m] — Baq, let us denote by

n(d)
Adm,z = ad,e(1)0d,z(2) *** Ad,z(m) € ® My, (C). (3.7)
j=1

Our basic strategy is to recover the arguments in [12, Section 2.1] with a detailed
analysis of asymptotic bounds. Let us begin with the following lemma.
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LEMMA 3.1. For arbitrary functions € : [m| — Baq and € : [m| — Ba such that
ker(e) = ker(€’), we have

|(E ® t?”) (adm,e) — (JE X t?”) (ad7m,€/)| (38)

2+l (14 0)™ p(d) \°
ST@ (%) (39)

Proof. Let us begin with the following formula

e = (W0 e-10) - (W5 o) = 3 (oo T[ g
EC[m] teE
(3.10)

and write [ = | F| for simplicity. Consider €|g as a function from [I] = [|E|] into Bq.
Then, since

Hr)
(E @ tr) (H Wg(“) =Y (dp_(.d.)d ) [T abt=" (3.11)

teE res, VUL j=1

#(r)
-3 (%) paden @1

for each E C [m| by Theorem 2.2, we have

I(E ® tr)(ad,m,e) — (E & tr)(ad,m,e )| (3.13)

g(7)
| X ot ¥ (G} e ) - Dl )

EC[m] res
Note that the given condition ker(e) = ker(e’) implies
D(d,¢|g,7) =1 <= D(d,€¢|g,7) = 1. (3.15)

Indeed, any restriction €|g can be considered a function which is of the form

elp(i) = Y z-x5.() (3.16)

zE€Bg
for alli € [I] where E, = (¢|g)~'(2) = {i € [I] : €|g(i) = z}. Then the given assump-

tion D(d, €|, 7) = 1 implies that the partition of 7 is non-crossoing by Lemma 2.4
(2), and €|g is constant on each cycle of 7, i.e. each FE, is a union of cycles of 7 by
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Lemma 2.4 (1). Thus, we can write

e =Y 2 xp.()= > > z-xe,(i) (3.17)

z€Bg z€EBq P
where F, = U ¢.p and ¢, ,’s are the disjoint cycles of 7.

p
On the other hand, €| is also written as
lp) = S wexm, () (3.18)
wéeBg

where E!, = (¢|g) Y (w) = {i € [I] : €| (i) = w}, and the given condition ker(e) =
ker(€’) forces E., to be equal to one of E,, which is a union of cycles ¢, , of 7.
Hence, €|g is a linear combination of characteristic functions on cycles of 7. In
other words, €'|g is constant on each cycle of 7. This leads us to conclude that
D(d,€|g,7) = 1 by Lemma 2.4 since the partition of 7 is non-crossing.

Let us return to (3.13). Using the above conclusion

D(d,€|lg,7) =1« D(d,€|g,7) =1, (3.19)
we obtain

I(E ® tr)(ad,m,e) — (E® tr)(ad,m,e )| (3.20)

m—|E| p(d) \F7 /
S Z C Z m ‘D(d,€|E,T)_D(d,€|E,T)|.
EC[m]

T7€S;:D(de|g,T)<1
(3.21)

Furthermore, since

#(7)
S (Y i

T7€S1:D(d,e|g,T)<1

S (%)M D(d, el 7)

dy
T7€S1:D(d,e|g,T)<1

£(7)
+ > (Zq(d)d) D(d,€|g,7) (3.23)

dl -
T€S;:D(d,e'|g,7)<1

> ()T s () e

di
T7€S;:D(de|g,T)<1 5=0

we can conclude that

(E @ tr)(aa,m.e) — (E & tr)(ad,m.e)l (3.25)
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_ 2 m! — d 3
< ey (22 (3:26)

EC[m] s=0

2 m! d ®
< > (4™ e ; <dﬁ(~)dn) (3.27)

EC[m]

2+l (14 o)™ & p(d) \°
<) 52

s=0

0

The above Lemma 3.1 allows us to rely on ker(e) whose structure is categorized
in the following four distinct cases:

+ (Case A) ker(e) contains a singleton element

* (Case B) ker(e) does not contain a singleton element, and e is not a pairing.

* (Case C) ker(¢) is a pairing and there exists ¢ € [m—1] such that {i,i + 1} €
ker(e)

* (Case D) ker(e) is a pairing, and €(i) # e(i + 1) for all ¢ € [m — 1].

Our strategy is to prove Lemma 3.3, Lemma 3.4, Lemma 3.5 to cover (Case A),
(Case C), (Case D), respectively, and the following technical Lemma 3.2 is an

important ingredient to establish Lemma 3.3 and Lemma 3.4.

LEMMA 3.2.
(1) For any 7 € Sy, let us denote by 71 = 70 (I 4+ 1) € Si+1. Then we have
BETATTEV AT ) =4 ET A T) 1 v A'rh. (3.29)
Here, £, A, T are acting on [+l], whereas &', A', T' are the analogous
permutations on [+(1 + 1)].
(2) For any T € S, let us denote by 7o = 7o (I+1,142) € Siyo. Then we have
ﬂ(SFAF_lg vV TAT_l) 4+1= ﬁ((”:HFHAH(FH)_lgﬂ vV 7_2A1/7_2—1) (3.30)

if sgn(E"(1 4+ 1)) = sgn(E"(l + 2)). Here, E", A" T" are the analogous
permutations on (I + 2)].

Proof. (1) First of all, it is straightforward to check the following facts:
(A) At =7AT o (—(141),1+1),

(B) (—=&(1),£(1)) is one of the disjoint cycles in ETAT 1€,
(C) ETATIE =ET'A(T)1E on [+1]\ {=£(1),E(1)},
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(D) (=&'(14+1),&(1)) and (&’'(1+1), —&(1)) are disjoint cycles of E'T'A/(T)~1E".
In particular, we have

ETATTIE = ET'A(I) P o Al o ETVA/(T)2E . (3.31)
on {—£&(1),E(1)}.

Let us suppose that {B1, B, -+, By} is the disjoint decomposition of blocks of
ETAT'EV TAT™!, and we may assume that

By = {£(1), €)Y UT C [£]] (3.32)

since (B) implies —&(I) ~ &(1) by ELATE. Here, we may assume that T is
disjoint from {£(1), —&(1)}.
On the other hand, we now claim that

{ByU{xE (1 +1)}}U{By, -, By} (3.33)

is the disjoint decomposition of blocks of £ T"A(I")"1&" v r A'r 1. Indeed, (A)
and (C) explain why Bs, --- , By are the disjoint blocks, so the only remaining part
is to prove that

BiU{xE 1+ 1)} ={£Q),—EM}U{xE U+ 1)IUT (3.34)

is a disjoint block of ET'A'(I)~1& v TlA/Tfl. Firstly, let us prove that any
elements z, 2’ in T are connected by &€ T'A(I')~1&" and 7 A'r; . Our assump-
tion provides a sequence (x;)!_, such that zo = = € T, z, = 2/ € T and
z; = (ETAT1E)(wi—1) or x; = (TAT71)(24_1) for each i € [t]. If (z;)!_, C T, then
all the actions of ETAT 1€ and TA7~? coincide with the actions of £&'T'A’(I") =1’
and 7 A7, ! by (A) and (C), so the conclusion follows immediately. Now, if we
suppose that x; = (TAT77)(z;-1) € {£(1),—E(1)} at the i-th step, then we may
assume that the next two elements are given by

zip1 = (ETATIE) () € {€(1),—E()},

Tito = (TAT_l)(xH_l) eT. (335)

Furthermore, the action EFAT ™€ at the (i + 1)-th step can be replaced by
ETA () oAl Lo ET/A(TV)1E! (3.36)

as noted in (D), and the action TA7T~! coincides with 7 A’7; " by (A). Thus,
we can conclude that g = x and x; = 2’ are connected by the pairings
ET/A(T")~1&" and T A'ry*. For example, if z; = —&(I), then the original
sequence - - - ,&;_1,T;, Tit1, Tit2, - corresponds to the blue-green-blue paths, and
the green path from z; to x;41 is replaced by the three red paths in the following
figure:
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gra (€

Furthermore, (A) and (D) tell us that all elements of {£(1), =€) }U{£E' (I + 1)}
are connected by ElF/A/(I‘/)*lé'l and TlA/Tfl. Lastly, if we assume there is no
element of T connected to {€(1), —E(1)} U {£E'(I + 1)}, then it implies that T is
one of the disjoint blocks of ETAT '€ vV 7AT~!, which contradicts to the fact that
T is a strict subset of Bj.

(2) In this case, it is straightforward to check the following facts

) A"t =7AT Vo (—(14+2),1+ 1) o (—=(1+1),1+2),

) (=&(1),£(1)) is one of the disjoint cycles in ETATLE,

) ELATTLE = TV A"(T)71E" on [\ {—=E(1),E(1)},

) (E(1),=E"(1+2)), (E"(1 +1),—&(1)) are cycles of E"T"A"(I")~LE", and
(=E"(1+2),E"(1+1)) is a cycle of A" 75 L. In particular, we have

5FAF_15 — g//FI/AI/(I\I/>—1gII o TQA//T;1 o g//FI/A//(F//)—lgl/ (337)
on {£(1), -&(1)}-

As in the proof of (1), let us suppose that {B;, Ba, -, Bx} is the disjoint block
decomposition of ETAT™1E V 7AT~1, and we may assume that

By = {£(1), ~EW)}UT C [£]] (3.38)

and T is disjoint from {£(1), —&(l)} since (B) implies —E(I) ~ £(1) by ETATLE.
From now on, we will claim that there exist precisely N + 1 disjoint blocks of
E'T AT TLE" v 7 A7y Indeed, (A) and (C) imply that By, Bs,--- , By are
N —1 disjoint blocks and it is immediate to check that (£”(1 4 2),—-&"(1+1)) is a

cycle of both E'T" A"(I")~1&" and T, A"7; . Thus, the only remaining part is to
prove that all elements in

BiU{E"(1+1),-E"(1+2)} (3.39)
=TU{E),-EMFU{E"(1+1),=-E"(1+2)} (3.40)

are connected by £ A”(T")~1€" and 7o A" 15 1. Firstly, all elements in T are con-
nected by (A), (C), (D), and all elements in {€(1),—-E" (I +2)}U{E"(1+1),-E(1)}
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are also connected by £"T”A”(T")~1&£" and 7 A" 7, thanks to (D) as in the proof
of (1). Then, if we assume that there is no element of T' connected to

{€Q),=E"1+2)yu{e"1+1),-E0)}, (3.41)

then T should be one of the disjoint blocks of ETAT 1€V 7A7~1. This contradicts
the fact that T is a strict subset of B;. O

Now, let us present an estimate of (E ® tr)(aq,m,) for (Case A).

LEMMA 3.3. Let € : [m] — Bq be a function and suppose that ker(e) contains a
singleton set. Then we have

[(E @ tr)(aa,m.c)|

< 2"(1 4 ¢)™m! (u(ld) p(d)

dids -

Proof. If m=1 and € € By, then

(E®tr)(adqi,) = (E@tr)(Wg—c-1d) = % —c (3.43)

by Theorem 2.2, so the desired inequality (3.43) follows immediately.

From now on, let m > 2 and we may assume €(i) # ¢(m) for all i € [m — 1]
thanks to the given assumption and the traciality of E ® tr. Let us begin with the
following formula

aame = (WD —c.1d) - (W™ — ¢-1d) (3.44)
=| Y (om0 wi” | W™ - c-1d), (3.45)
EC[m—1] teE

and write [ = |E| for simplicity. Note that

#(o)

tek ocESI+1

B(r)
(E ® tr) (H W;“) — Z (dlp-(.d_)dn) D(d,e|g,T) (3.47)

teE TES;

for each E C [m — 1] by Theorem 2.2. Now, let us understand o € S;41 as a
permutation acting on [l 4+ 1] = E U {m}. Then the image of the map 7 — 7 =

o (I + 1) consists of the permutations ¢ € S;y; satisfying o(Il + 1) = [ + 1.
Furthermore, Lemma 3.2 provides the following identity
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Filelgogmy,m) = (ET A @)TE VA T +4(n) — (1 +2) (3.48)
=4(&TAT T VAT ) + (B(1) + 1) — (1 +2) (3.49)
= 4(ETAT I VAT ) + (1) — (1 + 1) = fi(e|p,T), (3.50)

and we obtain

(E® tr) (lH We“l wem _ e Id)) (3.51)

tek
f(o)
p(d)
= 2 d1~~dn) D(d, €|pu{my, o) (3.52)
oES 41
o(l+1)#l+1
#(7)
p(d)
D(d . ,
+ %; ( ) (dl d > ( 7€‘E77-) (3 53)
T 1

In particular, for o € S;y1 with o(l+1) # [+ 1, the given assumption {m} € ker(e)
implies that e(t) # e(m) for any t € E C [m — 1], i.e. there exists j € [n] such that
€(t)j # €(m);. This means that [¢| pugmy (-)]; is not constant on the cycle containing
[+ 1, so we should have

filelBugmy,0) < =1 (3.54)

for some j and D(d, €|gugmy.0) < p(d)~! by Lemma 2.4 (1). Then, combining all
the discussions above with the standard triangle inequality, we obtain

(E ® tr) ([HW“”] wetm c~Id)>| (3.55)

<mid (dlp-@d)s | u(ld) o dlp( )d "é (dlp(d

s=0
—ec ) zm: (%)S. (3.57)

s=0 1

)dn)s (3.56)

= (u(ld) *

Hence, we reach the following conclusion

dy---d,

|(E ® tr)(ad,m.e)] (3.58)
m=n-1gl 0 (L p(d) . — ([ pd) \°
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An estimate of (E®tr)(ad,m,c) for (Case C) is provided in the following Lemma.

LEMMA 3.4. Let e: [m] — Bq be a function with m > 2.

(1) Let m = 2 and suppose that € : [2] — Bq satisfies €(1) = €(2). Then we have

p(d)
dy---d,

p(d) ?

dy--d,

(E® tr)(ad,2,) — ¢ < —c|+ —c (3.61)

(2) Let m > 3 and suppose that there exists i € [m — 1] such that {i,i+ 1} €

ker(e), and let us understand €|\ (i,i+1} @s a function from [m — 2] into
Bg. Then we have

‘(E ® tr)(adme) — ¢ (E® tr)(ad,m,z,ehmmw)‘ (3.62)
1 p(d) ) - ( p(d) >
<21 4e)™(2+c + —c| | m! — .
=~ ( C) ( )<M(d) dl"'dn ;0 dldn
(3.63)
Proof. For the case m =2, note that Theorem 2.2 implies
2
e(1)rrre(2) p(d) p(d)
= .64
(E@tr)(Wd w3 ) o \T (3.64)
(E ® tr) (WE“)) = (E®tr) (W“?)) O (3.65)
d d dy---dp,

since €(1) = ¢(2). Thus, we obtain

(E® tr)(aqze) — ¢ = (E® tr) ((Wg(” sy Id) (Wg@) —e Id)) —c (3.66)

2
p(d) p(d)
— _ - 3.67
(2% )+ (%) 67
implying the desired conclusion.
From now on, let us focus on the cases m > 3. As in the proof of Lemma 3.3, we
may assume {m — 1,m} € ker(e) using the traciality of E@tr and we have following

identity

ad,m,e — C* ad,m—276|[m,2] (368)

https://doi.org/10.1017/prm.2025.10054 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10054

A central limit theorem for partial transposes 23

= Y (mommeHIED [HWQ(”] (WD — e 1dy (W™ — ¢ 1d) - (3.69)

EC[m—2] teE

—ec Z (7C)m*(2+|E|) lH Ws(t)] (3.70)

EC[m—2] teE

Let us write [ = |E|. Then similar arguments from the proof of Lemma 3.3 give us
the following two identities:

(E ® tr) (lﬂwe“] wemDyysim [HW “] W >> (3.71)

tcE teE
t(p)
p(d
= Z ( ) D<da6|Eu{m71,m}ap)
dy---d,
PESiy2:
p(142)#1+2
p(d) f(o)
<X (@a ) @cg) Peduwnn. o)
o€Si41
(E ® tr) (l]’[ Wf(t] W™ — . lH Wg(“D (3.73)
teE teE
d #(7)
= Z p( ) D(d7€‘Eu{m}aT)
dy---d,
TESI41:
T(I4+1)#l+1
#(v)
p(d)
+> < ) (d1~-~dn) D(d, €|g,v). (3.74)
vES]
Here, both the second sums of (3.74) and (3.76) are dominated by
p(d) & e )
——— —¢|-m! 3.75
o (%) 5.7)
. . m! < p(d) S
and the first sum of (3.76) is dominated by () 2 Z 4 d as in the proof
14 1

of Lemma 3.3. Thus, it is straightforward to check that

(E ® tr) (

HWE(”] W e 1ayws™ — ¢ 1d) — ¢ HWQ‘”)

teE teE

(3.76)
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#(p) #(v)
p(d) p(d)
< —c-
< E (dl"'dn> D(d, €|lgugm—1,m},p) — € g (dl"'dn D(d,¢|g,v)

PES 4o: vES)
p(I+2)A1+2
1 pd) N~ (_pd) N’
+(1+4¢) (p,(d) + I CD m.SE:O 4.4 ) (3.77)

Recall that the image of a function v € S; — ve = vo (I+1,142) € Sj4o consists
of the permutations whose one of the disjoint cycles is (I + 1,1 + 2) and that

filelBugm—1,m}> v2) (3.78)

= §(EJT"A(T")E] v e Avy ) + 8(va) — (14 3) (3.79)
= (#(&TATE VoA ™) +1) + (B(v) + 1) — (1 +3) (3.80)
= 4(&TATE Vorv ™) +#(v) — (14 1) = fi(e| g, v) (3.81)

by Lemma 3.2. (2). Let us write ¢ ¢ p if ¢ is not a disjoint cycle of p € S;12. Then
we have

d #(p) d #(v)
Z (dlp()d ) D(dve‘EU{mfl,m}vp) —c: Z (dlp()dn) D(d,€|E,’U)

PES 42: " vES]
p(142)#1+2
(3.82)
#(p)
p(d
< Z (d ( )d ) D(d76|EU{m—1,m}ap)
1°:-dn
PES|42:
p(1+2)#14+2
(I+1,1+2)¢p
p(d) ) ( p(d) )’““)
—_ = —_— D(d . 3.83
" vél(dl'“dn ¢ dl"'dn ( 7€‘E7'U) ( )

From the conditions (I+2) ¢ p and (I+1,1+2) ¢ p, there exists by € [I] such that p(bg) =1+1
or p(bo) =1+ 2. Note that

€lpufm—1,m}(b0) # €lpUfm-1,m}( + 1) = €lEUfm-1,m}( +2) (3.84)

https://doi.org/10.1017/prm.2025.10054 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10054

A central limit theorem for partial transposes 25

from the given assumption, so there exists j € [n] such that

lel Bugm—1,m} (b)) 7 [l BUtm—1,m} (I + D)]; = [elgum—1,m} (L + 2)];- (3.85)

This means that [ ‘Eu{m 1, m% )]; is not constant on the cycle containing bg in p, implying
D(d, elpufm—1,m}>p) < p(d for such p by Lemma 2.4 (1). Thus, we obtain

Z ( p(d) )u(p)D(dyﬁlEU{m—l,m})p)_C' Z( p.('é) )u(v)D(d:E\E,v)

PES| 1o di---dn vesy N rdn
p(I+2)£1+2
(3.86)
1 = s
< (7 + P _ CD m! Z (ﬂ) . (3.87)
u(d)  |di---dn \didn
Finally, combining (3.79) and (3.89), we can conclude that
’(E ®tr) (adm.e) — ¢+ (E@ tr) (ad’m_gﬂ[md]) ) (3.88)
- 1 p(d) o~ (_p(d) \*
< M CHED (2 4 ¢) (— + - cD m! ( (3.89)
Py @ Haea )" LG
1 p(d) D S ( p(d) )S
<2M™M(14e)™(24+c (— —c| ) m! . 3.90
"I @ o dn 2 4 a, (3.90

O

As of the last ingredient to reach the main conclusion, let us present an estimate
of (E ® tr)(aa,m.e) for (Case D) in the following lemma.

LEMMA 3.5. Let € : [m] — Bq be a function and suppose that €(i) # €(i + 1) for
all i € [m —1]. Then we have

|(]E & t'r)(ad,m,e” (391)

Domsmn (G2 o)™, ao

1
p(d)

Proof. Note that d, n(d), p(d), m, € are fixed , and we have

p(d)
dy - dy,

<2mm!< +’

E®tr)(agmd) = Y. (" P(Eotr) (H WE“) (3.93)

EC[m] tel

(o)
-y Elz< p(d) ) D(d, e, 0) (3.94)

EC[m] o€S;
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where | = |E|. Let us consider d' = (d},--- ,d,) satisfying lim u(d’) = oo and

R

d/
lim % = c. Note that n = n(d) does not rely on the choice of d’. Thus, we
e d
have
0 =1lim(E ® tr)(aa’ m.c) (3.95)
= > (=" Y A lim D(d', €|, 0) (3.96)
EC[m] oES;
by the asymptotic freeness of {Wg, }06{0,1}" (Theorem 2.5). Thus,
[(E @ tr)(ad,m,c)| = |(E @ tr)(ad,m.e) — 0| (3.97)
p(d) ) ’
< > ety (M) D(d, e|g,0) — D lim D(d', €|z, 0)|  (3.98)
EC[m)] cES,
and the standard triangle inequality tells us
#(o)
<p(d)> D(d,e|g,0) — D lim D(d’, €| g, 0) (3.99)
dy--dy

<

p(d) _ o)
di--d,
Furthermore, the binomial theorem implies

@)
dy---d,

and it is immediate to see that

D(d,e|p,0) + ) |D(d,e|p,0) —lim D(d, €| g, 0)| .

(3.100)

< —cC

(m+1)! (dp.(.d) +ot 1) " (3.101)

|D(d,€|g,0) —limD(d', €| g, 0)| (3.102)
T ) YT (el 1
=\I1a" —lim [ [(d})% < — (3.103)
11 11t i

for all permutations o € S;. Thus, we can conclude that

p(d) (o)
<dd> D(d, e|g,0) — D lim D(d', €|, 0) (3.104)
d
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p(d) \*
<9 |D(d,e|p,0) —limD(d, €|p,0)| + (dd> — I D(d, e|g,0)
L dy,
(3.105)
d) p(d) o
< H@) . LG 1)! 1 1
<c u(d)+ 4 d ¢l (m+1) d1-~-dn+c+ (3.106)
1 p(d) p(d) o
< — D ——— 1 .1
_<u(d)+d1---dn c)(m+ )(dl---dn+c+ , (3.107)
and this implies the desired conclusion
[(E @ tr)(ad,m,e)| = |(E @ tr)(ad,er) - - Ad,e(m)) | (3.108)
- 1 p(d) p(d) o
< Zcmlz< + —c)(m+1)!(+c+1
5] o \w(@) - fdaedy dy---dy
(3.109)
1 p(d) p(d) o
< 2™m)! — D —— 1 . A1
< m(u(d)+d1"'dn c)(m—i— )<d1-~-dn+c+ (3.110)
O

Finally, we are ready to establish a central limit theorem for partial transposes
by applying Lemma 3.3, Lemma 3.4, and Lemma 3.5.

THEOREM 3.6. Letp = p(d) and n = n(d) be N-valued functions of d, and consider
a sequence of subsets Bq C {0, 1}"(d), If

p(d)
d1d2 e dn

1
lim | Bg4|™ ( + —c

p(d)

for all natural numbers m and lim |Bg| = oo, then the following random matrices

) =0 (3.111)

L > (Wi —c-Id) (3.112)

\ ‘Bd| r€Bg

converge in moments to the semicircular element of the mean 0 and the variance
c, i.e. we have

Sd =

Ve — t2dt. (3.113)

lim(E @ t)(sT) = /

[—2¢,2¢] 2mc?
Proof. 1t is enough to prove that

lim(E ® tr)(sg') = c¢2 - [NCy(m)| (3.114)
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where NCs(m) is the set of all non-crossing pairings on [m]. Note that, for any m
and d, we have

(E®tr)(sg) = Z (E @ tr)(ad,m,z) (3.115)

1
Vv |Bd|m z:[m]— Ba

(E® tr)(adm.z)- 3.116

\/\BT Z Z d,m.z) ( )
w€P(m) x:[m]—Baq:
ker(z)=n

For each d and m € P(m), let us take a representative function x4 . : [m] — Ba
satisfying ker(zq ) = 7. Then we have

Y (E@tr) (aame) — kax - (B tr) (ddme, ) (3.117)

z:[m]— Bqa
ker(z)=m

2m+1k | 1 m m s
< axmi(l+c Z( ) (3.118)

M s=0
27+ By mml(1 4 ) ( p(d) )
< _ 3.119
= () 2\ (3.119)

by Lemma 3.1, where kg = |Bal- (|Bal — 1) -+ (|Ba| — (7)) + 1). Thus, the given
condition |Bg4|™ = o(p(d)) implies

im(E @ tr)(sg) = > lim|Ba|™? kar(E @ tr)(admz,.,)- (3.120)
mTEeP(m)

As the first step, let us prove that
lim [Ba| ™ % ka» (E ® tr)(ad,m,zq ) = 0 (3.121)
for the following situation
(Case A)the partition 7 contains a singleton block.

Indeed, Lemma 3.3 provides the following estimate

|Ba|™ % ka,x |(E® tr)(adm.aa., )| (3.122)
2™ By|% (1 + ¢) <u(1d) + dlp.(.(%)d —C>Z<dp'(_c?)d ) . (3.123)
n s=0 1
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and the given conditions imply

lim | By| % <u(1d) + d1p-(-é>dn —c> (3.124)
< lim [Bg|™ <u(1d) + dlp'(.d')dn - c) ~0. (3.125)

From now on, it is enough to suppose that the permutation 7 does not contain
a singleton set, implying #(7) < %. Furthermore, if we suppose that = is in (Case
B), i.e. f(m) < %, then it is straightforward to see that

lim [Ba|™ % ka,x (E ® tr)(ad,m,zq ) (3.126)
< lim |Bq|*™ =% (E @ tr)(ad,m ey . ) (3.127)
=0-limsup(E ® tr)(ad,m,zq..) = 0. (3.128)

Here, limsup(E ® tr)(ad,m,zq.,) < m!- 2" (1+¢)™ < oo is clear from (3.96).
Now, let us focus on the cases where 7 is a pairing, i.e. all disjoint blocks of 7 are
given by cycles of length 2. In this case, we have f(7) = % and the representative

function x4, : [m] — Bq should be one of the following two cases:
* (Case C) ker(zqr) is a pairing, and there exists ¢ € [m — 1] such that
{i,i+1} € ker(zq r)
* (Case D) ker(zgq,r) is a pairing, and 2q (i) # zq,-(i+1) for all i € [m—1].
If 7 is in (Case D), i.e. ker(zq ) is a pairing satisfying

Idyﬂ(i) #* xdm—(i +1) (3.129)

for all i € [m — 1], then we have

lim [Ba|™* kax |(E @ tr) (ad,m.eq., )| (3.130)
. w1 p(d) p(d) o
< lim 2™m!| B - 1)! 1
< lim 2"m!| dz(u(d)+d1"'dn c)(m+ )(d1-~-dn+c+
(3.131)
. 1 p(d) p(d) o
< 2™ D!im | Bg|™ - S 1
< 2"ml(m + 1)!lim | Bq| <M(d)+d1-~-dn C><d1~~dn+c+
(3.132)
—0 (3.133)
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by Lemma 3.5. Now, for the last situation (Case C), there exists ig € [m — 1] such
that 24 »(i0) = za,x(ip + 1) and Lemma 3.4 implies

lim [Ba|™ % kg, (E ® tr) (ad,m,za ) (3.134)

= lim |Bd|_%kd’ﬂ(E ® tr) (H ad7xd,7r(i)> (3.135)
i=1

= ¢-lim(E @ tr) 11 Qdza (i) | - (3.136)

i€[m]\{i0,i0+1}

Note that the restricted function xq r |jm)\{i,io+1} defines a new pairing on [m — 2],
which should be in one of (Case C) and (Case D). Thus, we can repeat the above
arguments, leading us to conclude that

m 0 if NC
lim [Bal~ % kan (B ® tr) (damay) = 4 0 L7 ENCm) g a0y
2

cz, if m e NCy(m)

Now, combining all the above discussions, we obtain

lim(E® tr)(sy) = > lim|Bal” % kax(E @ tr) (adm.za,) (3.138)
mTEP(m)
= > % =c? |NCym)|. (3.139)
TENC2(m)
O
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Appendix A. Proof of Theorem 2.2

Let us begin with generalizing [10, Lemma 3.2] to the multipartite situation. More
precisely, let us explain how to write the random variable

X = tr(WaWe ... Jyem). (A.1)
as a polynomial of Gaussian variables for arbitrary Zs-valued m x n matrices € =
(€ij)iem],jein)- Note that any € = (€:j)icim],je[n] can be decomposed to €En71] =
(€ij)icim),jeln—1) and €, = (€in)ieim). Then €, _, and €, define the associated

functions

Em—1] : [n = 1] x [£m] = [n — 1] x [m]and &, : [+m] — [+m],
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where £, 1 is given by &),y (J,z) = (4,&(x))

NoTATION A.1 We denote by A(e) the set of all functions ¢ : [n — 1] X [£m] —

U?;ll [d;] satisfying

(1) u(4,-) € [d;] for each j € [n — 1],
(2) tL=1o0 g[n—l] (idn_l X FAFfl) E[n_l],

and by B(e) the set of all functions q : [£m] — [d,] satisfying
q=qo&,TATLE,. (A.2)
Using the notations above, we explain how to express
Xe =tr(Wawe...WWem), (A.3)

as a polynomial of Gaussian variables in the following Lemma, which directly
generalizes [10, Lemma 3.2] to the multipartite setting.

LEMMA A.2. Let € = (€ij)icim).jen) be @ Zo-valued m X n matriz with ¢ =

(€ij)j=1 € {0,1}" for all i € [m], and let X = tr(W W= ... We). Then we
have

m+l
(cy -+ Xe= > > Z H Gat) 9o ") 100) (A-4)
L€A(€) g€B(€) t:[m]—[p] y=1
Proof. As the first step, in order to focus on an entrywise expression of

n—1
Q) T (e, 5,)

r=1

@ =Y

ijeldy--dpn_1]

® T (G5 GY),

let us introduce two functions k = k;, j and n; as follows.
* Let us identify the following set

Fn—1)=[dp_1] X -+ X [d1] x [d1] X - -+ X [dp—1] (A.5)

= [dldg"'dn_l] X [d1d2~'~dn_1] (A6)
with the set of all functions k : [£(n—1)] — U}:ll [d;] satisfying that k(£t) €
[d¢] for all ¢ € [n — 1]. More specifically, each pair (i,j) € [dida - dp—1] X

[dyds - - dp—1] is associated with

k= (k(i(n - 1))7 T 7k(71)7k(1), o 7k(n - 1)) (A7)

= (jnfl?"' ajlaila"' ’infl) € F(n_ 1) (AS)
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In this case, let us write k* = i and k™ = j as functions from [n — 1] into

Uy [dy).

* For each i € [m], we define n; : [£(n — 1)] — [£(n — 1)] by

ni(x) = (=1)%I=l - . (A.9)

Then 7; o n; is the identity function on [+(n — 1)], and we have

T (ek( ) k(= )) — €k(5),k(—7) if €ij = 0 (AlO)
B ex(—j)k(j) if € =1
= €(kom:)(5), (komi)(—j)> (A.11)

where T is the transpose operator.

Using the notations above, we obtain

n—1
QT (ex@) k(-a))

x=1

(dy--d))W = > ® T (Gy+ Gy )

keF(n—1)

n—1
Z [@ € (kon;) (), (kon; ) (—x)

keF(n—1) Lz=1

QT (Ge+Gy-)  (A12)

by (A.11). Furthermore, since k — k o 7; is a bijective function on F(n — 1) and
;i 0N = 1d[x(n—1)], we have

® T (G(koni)+G>(‘<koni)*) - (A13)

n—1
(dy - dp)W = Z [@ €k(z) k(—2)

keF(n—1) Lz=1

Thus, the joint moment (dy - - dpy1)"™ " X, is written as

n—1[ m m
> T <® lH ekym,ky(—x)D - Tr (H Tey“(G<kyony)+G?kyony>)> )
y=1

ki, km€F(n—1) z=1 y=1
(A.14)

and we have

n—1[ m n—1 m
Tr <® [H eky(@ky(‘@}) = H Tr (H eky(m),ky(—m)> . (A15)
y=1 z=1

x=1 y=1
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To deal with the multiple functions ki, ks, -+, k,,, simultaneously, let us define
Ko : [m] x [£(n — 1)] = UjZ][d;] by

Ko(i,j) = ki(j) € [d};], (A.16)
and its natural extension K on [£m] x [£(n — 1)] given by
K (i,5) = ki (sgn(i) - j) € [d)z]. (A.17)

Then it is straightforward to see that (A.15) is given by

n—1 m
H TI' (H eky(x),ky(—x)> (A.18)
r=1 y=1

_ { 1 if K(—i,j) = K(U(i), ), € [m],j € [n —1] (A.19)
0 otherwise

where I' = (1,2,--- ;m) € S,,. Now, let us define Fy(m,n) as the set of Ky =
(k1,ka, -+ , k) € F(n — 1)™ satistying the condition

K(—i,j) = K(T'(é), j)for all i € [m]and j € [n —1]. (A.20)
Then the expression (A.14) is simplified to
m
Z Tr (H Teyn(G(kyony)+GE‘kyony))) . (A.21)
(k1,7 k) EFp(m,n) y=1

On the other hand, any (ki, ks, -+ , k) € F(n—1)™ is associated with a function
t:n—1] x [£m] — U?;ll [d;] given by

WGy i) = K ma () € () (A.22)

Indeed, the above condition (A.20) is equivalent to that ¢ € A(e), i.e.
t=10&p_ (idn,l X FAF_l) En—1] (A.23)
on [n—1] x [£m], and the restricted functions ¢, = ¢(-,y) and ¢_, = ¢(-, —y) satisfy

ty(7) = K(y,ny(5)) = ky(ny (7)) = (ky 0 1) () (A.24)

by (9) = K(=y:my (7)) = ky(=ny (7)) = ky (1 (=))) = (ky o my)(=j)  (A.25)

for all j € [n — 1] and y € [m]. Thus, combining (A.14) and (A.21), we have

(dl - dn)erl X, = Z Tr (ﬁ Tﬁyn(GLyG’:_y)> . (A26)

LEA(e) y=1
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Note that
Teun (GbyGZ‘,y) (A.27)
dn p
=T | >0 | X Gl SiCnew | wrw (A.28)
r(y),r(—y)=1 [t(y)=1
dn
= Z E gr(y t(y)g L) t(y) | Erogn) ). (ro€n)(—v) (A.29)
r(y),r(—y)=1 [t(y)=1
dn, I p
= Z Z g(iogn)(y),t(y)g(;:&”)(7y),t(y) €r(y),r(—y) (A.30)

r(y),r(-y)=1 | t(y)=1

m

for any y € [m], and that the non-trivial terms of the trace of H T (G.,G_,)
y=1

arise only from the cases where we have

r(=1) =7r(2), r(=2) =r@3), ---,r(=m) = r(1). (A.31)

Furthermore, (A.31) is also equivalent to that ¢ € B(e), i.e. ¢ = 1r0&, : [£m] — [d,,]
satisfies

q=qo&,TATTE,. (A.32)

Finally, combining all the discussions above, we obtain

Tr(HTEy"(GLyGT ) > > H9q<y)t<y>9 )ty (A.33)

y=1 q€B(e) t:[m]—[p] y=1

which leads us to the following conclusion

(di - mHX - Z Z Z Hg%y) t(y)QQ( y)t(y)" (A.34)

LEA(€) g€ B(e) t:[m]—[p] y=1
O

A non-trivial fact from Lemma A.2 is that X, is a real-valued random variable
and, moreover, the explicit expression (A.4) can be applied to compute the following
k-th moments

E(X*) =E ([tr(Wﬂsz . -W%)]k) . (A.35)

Let k be an arbitrary natural number and let € = (€;5)ic[m],je[n) be a Zz-valued
m x n matrix with €; = (€;) ;e € {0,1}". Let us apply the explicit formula (A.4)

https://doi.org/10.1017/prm.2025.10054 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10054

36 G. Park and S.-G. Youn

of
dy - dp X =Te(WaEWe...Wen) (A.36)

to find a suitable expression of the k-th powers

(dl"'dn)(mﬂ)k Xf = Z Z Z ng(y y)g )t(y) (A.37)

LEA(€) g€ B(e) t:[m]—[p] y=1
where we need to consider the following multiple choices of functions:
1) e Ae), ¢ e Ble), t9) : [m] — [p] (1 < s < k). (A.38)

To deal with all these functions simultaneously, let us introduce the following three
multivariate functions:

o I:[k] x [£m] — [d1d2 - - - d;,—1] given by
I(s,s") = (I1(s,8"), I2(s,8), -+ , I[,_1(s,8")). (A.39)
and each I; : [k] x [£m] — [d;] is given by
Li(s,s') = ) (j,s') € [dy). (A.40)
Then all /), (& ... ,*) are in A(e) if and only if
Ij = I; 0 £ TM AR (PR =1 (A.41)

for all j € [n — 1]. We denote by A(e, k) the set of such functions I.
* Q: [k] X [xm] — [d,] given by

Q(s,s) = ¢(s"). (A.42)
Then all ¢V, ¢, -, ¢(®) are in B(e) if and only if
Q = Qo EMTT AR (KR =1ek) (A.43)

Let us denote by B(e, k) the set of such functions Q.
« T : [k] x [m] — [p] given by

T(s,s") =tV (s"). (A.44)

Note that, for each (s,s’) € [k] x [m], the above I(s,s’) can be considered a
function from [n — 1] into U?;ll [d;] satisfying

(s, s)]() = I;(s,8') € [dy]. (A.45)

Then all our discussions are summarized in the following form:
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Z Z Z H H ‘IQ(?SSS ,T (s, 5’)95?;’7_882)7 T(s,s’) (A46)

IcA(e,k) QEB(e,k) T:[k]x [m]—[p] s=1 s'=1

Now, let us present a proof of Theorem 2.2 using the above notations. Our
arguments are analogous to the proof of [10, Theorem 3.7].

Proof of Theorem 2.2. By (A.46), we have

(dy---dy) ™R E(XF) (A.AT)

= > > > <HH93?583>,T(“ gfé,_—s;))T(s,s»)'

IcA(e,k) QEB(e,k) T:[k]x[m]—[p] s=1s'=1
(A.48)
For any I € A(e, k), Q € B(e, k), and T : [k] x [m] — [p], let us write
I(s,s
Ga(s,s’) = 9(;5(5 32) T(s,s') (A49)
_ A(s,—s)
9B(s,s") = gQ(ss —ss "), T(s,s") (A50)

for all (s,s’) € [k] x [m] 2 [km] to pursue simplicity. Then we have

I(s,s’ “1(s,—s)
(H H 9q(s s’) T(s,5)9Q(s,— "), T(s,s’ )> (A.51)

s=1gs'=1

=E( [ ow- Il @w|=Ho€S%m:B=aca} (A.52)

x€[k]x [m) y€[k]x[m]

where the second equality comes from the Wick formula. Let us denote by C(o)
the set of all triples (I, Q, T) satisfying 8 = a o ¢ for o € Sky,. Then we have

(di - dy) " TIRE(XE)

=) > 1= Y ooo1= > [Co)l. (A.53)

I,Q,ToESkm: B=aoo 0€Skm (1,Q,T)eC(0) 0ESKm

~

Using the natural identification [£km] = [k] x [£m], we can regard maps from
[k] X [&m] as maps from [£km]. Also bijections on [k] X [£m] can be regarded
as permutations on [tkm]. Then (I,Q,T) € C(o) if and only if the following
conditions hold:

(A) I; =00 AW~ for all j € [n— 1],
(B) Q= Qoo
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(C) T=Too.

Since the conditions I € A(e, k) and Q € B(e, k) should be taken into account,
|C(o)| is equal to the number of triples (I,Q,T) consisting of general functions
I:[k] x[2m] — [dids - dn_1], Q : [k] X [£m] = [d,], T : [k] x [m] — [p] satisfying

(A) I; = L; 0 EFTWAR (T0)=1W) = [ 6 g AR o1 for all j € [n — 1],

(B)) Q= Qo &PTWA® TN -1eH) — qogAWs1,

(C) T=Too.
Thus the number of such triples (I, Q, T) is given by

n

Hdﬁ(é‘](.k)l‘(k)A(k)(F(k))*lej(.k)vUA(k)o’l)
J

j=1
which leads us to the following identity

(di -+ dy) "IN E(XE)

B ﬁdﬁ(g;k)r(k)A(k)(F(k))—lgj(k)va,A(k)o_—l)
- j : J
=1

o€Skm |J=

This implies the following desired conclusion

k 3 P o) H" Frs(60)
_ k,j(€0
j=1
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