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A computer aided study of a

group defined by fourth powers

M.F. Newman

There is a group defined by fourth powers which did not yield to

attempts to determine its order by coset enumerations. This

group has now been shown to be infinite with the aid of a

computer. An outline of the method is given as well as a simple

direct proof inspired by the results of further computer

calculations.

1 . Introduction

Groups defined by fourth powers have been studied at least since 1902

when Burnside [7] proved (in effect) that the group generated by {a, b}

with defining relations

ak=bh = (ab)h = (a"V = (*"W = ̂ ' W = («W =
= {a-Xbab)k = {b-Xaba)k = ( a V V ^ = fcWa)U = e

12
is finite, of order at most 2 . In 1951* Tobin [6] proved there is a

two-generator group of exponent k (each element has order dividing h )

12
with order 2 . It follows that the freest two-generator gr up of

12
exponent h , B(2, k) , has order 2 . Coxeter and Moser [2, p. 81]

reported in 1957 that B{2, h) has a presentation

(a, b; a = b = (ab) = [a b) = [a b) = \ab ) = [a b J =

)k = e) .

Received 8 January 1976. The author is indebted to Mr Alford, Dr
Cannon, and Mr Sterling for the computer calculations.
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In I963 Leech [4] reported on attempts to reduce the number of fourth

powers needed to define 23(2, h) . He said that computer implementations

of coset enumeration show that B(2, k) is fully defined on the generating

set {a, b] by assigning order k to the elements

(1) a, b, ab, a'H, ab2, a2b

and any three of the elements

(2) a'H'^ab, a2b2, a'hab, db'^ab .

Moreover, if only two of the elements (2) are included, groups of order

2 are obtained and, if only one is included, not the commutator

—1 —1 lU

a b ab , then the order is 2 . Recently Macdonald [5, p. 112] has

shown (using a computer implementation of an algorithm for calculating

nilpotent quotients) that the rank of the multiplicator of B{2, h) is 7

so that every presentation of B(2, k) on two generators needs at least 9

defining relations.
Leech also reported that a coset enumeration on the presentation

(3) <a, b; ak = bk = (ab)k = [a-
lb)k = (ab2)k = [a2b)k = (a"1*"1^) *< = e)

exceeded the capacity of his computer. The reason for this is now clear;

the group is infinite. A simple proof is given below. This proof arose

out of detailed computer aided calculations. It seems worthwhile to give

an outline of what actually happened. Before doing so let me make explicit

a problem arising out of the discussion above.

What is the least number of fourth •pcioers which define a two-

generator finite group?

More generally when the corresponding Burnside problem has a positive

solution:

What is the least number of m-th powers which define an

n-generator finite group?

As far as I know even the simplest case m = n = 2 is open.

2. The computing

An application of the Warns ley implementation of the nilpotent quotient
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algorithm [7] to the group G defined by (3) showed (after about three

minutes on a Univac 1108) that G has a quotient of nilpotency class Ik

and order 2 , and it gave a commutator-power presentation for this

quotient. This presentation suggested strongly that G is infinite and

that the third term YAG) of the lower central series of G might have

an infinite commutator quotient group YAG)/YL(G) . An application of an

implementation (Havas [3]) of the Reidemeister-Schreier algorithm for

obtaining a presentation for subgroups was used to get a presentation for

YAG) (in about one second on a Cyber 76). From this it could be read off

that yAG)/y'(G) is infinite, in fact is the direct product of a free

abelian group of rank k and a cyclic group of order 2 .

The matter could have rested there. However it seemed worth trying

for a "hand" proof. One way would have been to construct G/y'AG) from

the information available but this seemed somewhat unpleasant. So

subgroups of G containing YAG) were investigated using an

implementation of an abelianized version of the Reidemeister-Schreier

algorithm (developed by Leon Sterling, a vacation scholar at ANU). The

quotient G/YAG) is the freest group of rank 2 which has exponent h

and is nilpotent of class 2 . It has seven normal subgroups of order 2 .

The commutator quotient groups of the corresponding seven normal subgroups

of index 16 in G were computed (in about three seconds on the Univac

1108) and three turned out to be infinite. It follows that at most one of

the normal subgroups of index 8 in G containing YAG) could have

infinite commutator quotient group. Another (half second) run showed this

quotient is free abelian of rank h . From here the construction of an

example (described below) was easy.

3. A group

The above calculations show that a suitable extension of a free

abelian group of rank at most It by a quaternion group of order 8 will

be an infinite quotient of the group G presented by (3). This suggested

studying groups H generated by a pair {a, b} of complex matrices
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where u, V, W, x are Gaussian integers. The subgroup T of H

consisting of a l l matrices of the form

1 0 0"

0 1 0

y z 1_

is clearly normal and free abelian of rank at most k , and the quotient

H/T is quaternion. Since
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every element of H not in T has order 2 or

the form

h because those not of

-1

0

s

0

- 1
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0

0
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have their square of this form. It is therefore easy to check that H is

a quotient group of G . How fix H by choosing u = V = x = 0 and

w = 1 then the commutator [a, b, a] is

1

0

-2

0 0

1 0

0 1

Hence H and therefore G is infinite.

Note added in proof, 9 March 1976. I can now show that the answer to

the simplest case of the question posed at the end of Section 1 is, as

expected, that the least number of squares needed to define a 2-generator

finite group is 3 .
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