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Abstract. One of the main difficulties encountered in the numerical integration of the gravitational 
n-body problem is associated with close approaches. The singularities of the differential equations 
of motion result in losses of accuracy and in considerable increase in computer time when any of 
the distances between the participating bodies decreases below a certain value. This value is larger 
than the distance when tidal effects become important, consequently, numerical problems are 
encountered before the physical picture is changed. Elimination of these singularities by transforma­
tions is known as the process of regularization. This paper discusses such transformations and 
describes in considerable detail the numerical approaches to more accurate and faster integration. 
The basic ideas of smoothing and regularization are explained and applications are given. 

1. Introduction 

The equations of motion for the gravitational «-body problem are 

d2r-. " r, — r, 

where r{ is the position vector and mi is the mass of the ith body. When 

R i j = \ r i ~ rj\> 

becomes small (during a close encounter of the z'th and jth bodies) the above dif­
ferential equation becomes singular. The purpose of this paper is the formulation 
of an algorithm such that these equations are regular, as Ri}->0, thus avoiding any 
loss of significant digits. 

First the regularizing transformation for a single pair of bodies is developed and 
then this result is extended to n pair of bodies. 

2. Basic Principles and a Simple Example of Regularization 

This section is dedicated to the uninitiated to the mysteries of close approaches and 
to the astronomer who encounters numerical (or analytical) difficulties when inte­
grating the differential equations of dynamical systems. 

The following few didactic lines are neither 'practical' nor pleasing to the purist. 
The simplest possible two-body encounter shall be investigated and an attempt will 
be made to convert the reader to the ever-increasing number of believers in the 
method of regularization. The spotlight will be on the essential aspects and neither 
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precision-mathematics nor astronomical applications will be allowed to deviate the 
attention from the simple and straight-forward matters at hand. The practical aspects 
bring complications which will be handled in the later sections and the mathematical 
sophistications are well established and available in the literature. 

First, an over-simplified model is described. Second, the problem to be solved is 
outlined. Third, the roads available to handle the problem are outlined. Fourth, one 
of the possible avenues is selected and the problem is rendered trivial. 

In stellar dynamics and in celestial mechanics collision is a physical, rather than 
a mathematical problem. The centers of two bodies do not occupy the same place 
at the same time, at least not while still central Newtonian gravitational forces 
dominate. Higher order gravitational harmonics present in the description of the 
gravitational field of a planet, for instance, become important when a satellite is in 
close approach. And in stellar dynamics, for instance, the tidal forces acting between 
the members of close binaries alter the central Newtonian gravitational forces. The 
principal question is whether numerical difficulties are encountered as two bodies 
approach each other before the law of force changes or alters. The answer to this 
question is in the affirmative both in the field of celestial mechanics and in stellar 
dynamics. In other words, the tidal effects are still negligible when the close approach 
destroys the accuracy and efficienty of the numerical integration if conventional 
formulations are used. 

In spite of the fact that collisions do not occur in stellar dynamics in the ma­
thematical sense, the over-simplified model used here is still a collision-model in order 
to emphasize the computational difficulties and in order to present a simple problem. 
If the techniques proposed can handle the numerical problems encountered because 
of a collision, they certainly will be able to treat close approaches. Consequently, 
the model has two-point masses in a straight line approaching each other. The as­
sumption of point masses instead of finite bodies is, once again, of no importance 
and allows concentration on the real issues. As the two bodies move, they will 
approach their (fixed) center of mass. If x is the distance between the two bodies, 
the equation describing the dynamics of the problem, with properly selected units, 
\G (wj + m2) = 1], becomes 

(d2xldt2) = -(\lx2). (2) 

As x decreases and approaches zero, the bodies approach each other (and the center 
of mass of the system). The integral of energy becomes 

i (dx /d0 2 = (l/*) + C (3) 

where C is the constant of energy and it is evaluated from the initial conditions. 
For simplicity's sake, the motion shall be started with zero velocity when the bodies 
are apart at a distance x0. Consequently, C= — (l/x0). 

Both of the above equations show singular behavior as x->0. The velocity as well 
as the acceleration approach infinity. Standard numerical integration techniques fail 
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close to the singularity since the accurate evaluation of the right side of the equations 
is not feasible. 

The elimination of such singular behavior is called regularization. The regularized 
equation has no singularity. It is not obvious that the above equations may be 
regularized, in fact, regularization of a differential equation is not possible in general. 
When the elimination of singularities is not feasible, often a smoothing of the singular 
behavior is introduced. Such a smoothing does not regularize but it may ease the 
numerical problems encountered during integration. The purposes of regularization 
and smoothing as applied to the differential equations of stellar dynamics are to 
enhance the process of numerical integration. Consequently, certain regularization 
techniques which are successful from an analytical point of view may not be satis­
factory at all from the point of view of the numerical analyst. 

Regularizations and smoothings are accomplished by transformations of the 
variables occurring in the differential equations of motion. The original regularization 
of the problem of two bodies as proposed by Sundman (1913) used transformations 
of the independent (time) variable only. It is recognized today that such transforma­
tions while rendering the equations of motion regular, do not offer the best formula­
tion for numerical work. Transformations involving both the dependent and the 
independent variables are utilized to put the pertinent equations of motion in their 
optimum form for numerical integration. 

Returning to Equations (2) and (3), first a transformation of the time will be 
introduced to show its effect in the simplest case. The new independent variable is 
introduced through a differential relation, following Sundman: 

dr = di/x. (4) 

Note that the new 'time' T depends on the original time / as well as on the dependent 
variable x. Equation (4) is suggestive of a technique for changing the step-size or 
time-step during numerical integration. As x becomes smaller, the time-step of 
integration, At, decreases also in order to accommodate the large changes occuring 
on the right hand side of the equations to be integrated. In the method of using 
variable time-steps, no new variable is introduced, but, if one were to appear, it would 
abide by Equation (4). As x and At decrease during integration, their ratio may be 
smooth, or even constant. Consequently, if the variable T were used in the differential 
equations of motion instead of the variable t, the steps (A T) used may be more even. 
The essential difference between integration with variable time steps and regulariza­
tion is that in the latter technique the differential equations are rewritten in terms 
of the new independent variable. After the regularizing transformations the new 
equations are integrated. The method of integrating with variable time steps does 
not change the equations to be integrated; it does not eliminate the singularity; in 
fact, it does not even smooth the right side of the equations to be integrated. Such 
a technique must necessarily fail when a singularity is encountered, since as the bodies 
approach collision, the number of integration steps tends to increase beyond limit. 
Every step involves truncation and round-off errors, consequently, there is always 
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a lower limit on the distance between the bodies below which no integration step 
can penetrate, still furnishing meaningful results. 

Note that Equation (4) itself may introduce a (new) singularity. If the integral of 
the right side is not a 'proper' one, in other words, if it is not convergent, then the 
evaluation of the new independent variable T may not be accomplished. Leaving the 
resolution of this problem to a later state, the new 'time' variable will now be intro­
duced into Equations (2) and (3). For this purpose the new 'velocity' dx/dt is com­
puted as follows: 

x' = (dx/dr) = (dx/dt) (dt/dz) = xx. (5) 

The new velocity is the product of the distance between the bodies (x) and the original 
velocity. Since, when x->0, x->oo as shown by Equation (2), their product x may be 
a smoothly behaving quantity. Indeed, if Equation (5) is substituted into Equation 
(3), we have 

(x')2 = 2x + 2Cx2, (6) 

as the new, regular equation of energy. As x->0, the new velocity approaches zero. 
If an exponent of x other than 1 were introduced in Equation (4), the equation 

for the new velocity would have been different. The selection of the exponent of x 
in Equation (4) is one of the interesting numerical problems encountered in the 
numerical integration of the gravitational problem of n bodies and it will be discussed 
later. 

The transformation of Equation (2) is more important than that of Equation (3) 
since that is the equation of motion to be integrated. In the special and over-simplified 
example treated in this section, the integral of energy, Equation (3), describes the 
problem completely and its solution will furnish the solution of Equation (2) also. 
This special situation is the consequence of treating a motion in one dimension. 

The second derivative is evaluated as follows: 

x" = (dx'ldt) (dt/dz) = x(d/dt) (xx), 
or 

x" = xx2 + (x)2x, 

from which 

x=[x" -(x'f x-l]x~2. (7) 

Combining Equations (2) and (7), we obtain 

x" -((x')2/x)+l=0. (8) 

Analytically speaking, Equation (8) is regular since 

(x'f/x = 2 + 2Cx (9) 

according to Equation (6). Nevertheless, if Equation (6) is not used, because an 
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integral of energy is not available, numerical integration of Equation (8) will present 
difficulties. In the two and three-dimensional cases the elimination of terms cor­
responding to (x')2jx in Equation (8) may present serious difficulties. This is one of 
the main reasons for combining the transformation of the independent variable with 
a transformation of the dependent variables in more complicated situations. 

Substituting now Equation (9) into Equation (8), we obtain the regularized dif­
ferential equation of motion: 

x" - 2Cx - 1 = 0. (10) 

First, observe that this equation represents a harmonic oscillator if C<0, that is, 
if the motion is 'elliptic'. By this we mean that if the bodies would be slightly distrubed 
from their straight line collision orbits, they would describe ellipses and the collision 
would become a close approach. Note that using the initial conditions postulated 
before, C = — l/x0. Consequently, C is negative since x0 is the initial distance between 
the bodies. 

The solution of Equation (10) with negative energy and satisfying the postulated 
initial conditions is 

x = (x0/2) (1 + cos J(llx0) T) . (11) 

The tacitly assumed initial condition for the new time variable is that T = 0 when 
f = 0. 

The dependence of the new velocity on the new time may be obtained either by 
integrating Equation (6) or by differentiating Equation (11): 

x =- V (x0/2) sin V(2/x0) x. (12) 

The relation between the new and original 'time' variables is obtained by integrating 
Equation (4): 

X 

t= J x dt = (x0/2) [x + y/(x0l2) sin V(2/x0) T] . (13) 

o 

At this point the observant reader will have discovered that % is playing the role 
of the eccentric anomaly and Equation (13) is essentially Kepler's equation. The fact 
that the eccentric anomaly (and, in fact, also the true anomaly) are regularizing 
variables is interesting but probably the most significant result is that Equation (10) 
replaces Equation (2). In other words, the original differential equation of motion 
containing a \\x2 type singularity is replaced by a linear differential equation without 
singularity. 

In conclusion, we recall that the above example did not intend to be either practical 
or precise but was arrived at presenting regularization divested from all possible 
complications and from mathematical niceties. The essential features are the existence 
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of a singularity in the original equation of motion, the transformation of the inde­
pendent variable and the resulting new regular equation of motion. 

3. Jacobian Transformation of the Coordinates 

Assume that bodies k and / are the closest of the n bodies. Defining the vectors Q 
and R by 

„ mkrk + m,r, 

mk + m, 

and 

R = rt r(, 

(14) 

there results two differential equations relating the kth and the /th bodies. This 
process is discussed in detail by Szebehely (1968) and by Peters (1968) where it is 
shown that the equations of motion in this (Jacobian) coordinate system become 

Q = 
l 

mk + m,;=i 
m k »3 

and 

or 

where 

R = -(mk + m,) p 3 - + £ m,\ — 3 - - 3 - , 
Kkl i=l L K'k KU J 

i*k 

R = - (mk + mi) (R/R3) + F , 

05) 

(16) 

(17) 

¥=Y,mt 
i=l 
i*k 
1*1 

Tj-Tk 

. R-ik 

r,- - n 
R,3, 

Equation (15) will not suffer from a near singularity since it does not contain Rkl, 
Thus it may be considered as an auxiliary equation and solved with the other equations 
of motion. In order to determine rk and r( from Equations (14), R has to be found. 
This will be accomplished by a regularizing transformation. If we have m distinct 
pair of bodies that are near each other, then m transformations according to Equations 
(14) may be performed to yield a set of equations of the form (15) and (16). This 
gives us the capability of handling m close approaches. 

4. Smoothing Transformations 

First we will consider transformations of only the independent variable: 

d* = gdx, 
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where g is some function and x is the new independent variable. If 

g = R\ (18) 

where a is an unspecified constant, then 

(d/dO = 0/Ka)(d/dT) 

and 

(d2/df2) = (1/R2a) (d2/dz2) - (alRl+2a) (dR/dt) (d/dt). 

Thus, Equation (17) becomes 

a (mk + m,) n 
R" - - R'R' + v — , ,— R = R2"F, (19) 

R R3~2x y ' 

where the prime denotes differentiation with respect to the new independent variable T. 
Expressed as a first order system, Equation (19) becomes 

R' = SRa, 

s, = j - _ K + m;)R + F j R . (20) 

No matter what value of a is selected, there still remains a singularity in Equation 
(19). However, even though the singularity has not been removed, its severity has 
been reduced, i.e., the term R3 appears in the denominator of Equation (17), while 
in Equation (19), with a = §, there is only a factor ofR as the divisor. A transformation 
of this type that only reduces the effect of the singularity will be referred to as a 
smoothing transformation. 

For unperturbed Keplerian motion, the choice a = 1 corresponds to the use of the 
eccentric anomaly as the independent variable, and a = 2 is equivalent to using the 
true anomaly. For perturbed Keplerian motion numerical experiments indicate that 
the choice a = f is better than a = 1 or a = 2. In fact, numerical investigations of orbits 
of artificial satellites show that the true anomaly has advantages near perigee, and 
that near apogee the eccentric anomaly is more efficient. Therefore, the use of a. — \ 
may be considered a compromise for the sallite problem. Experiments with «-body 
problems described by Szebehely and Bettis (1970) corroborate these findings and 
demonstrate that the selection a = f is the most advantageous choice for the smoothing 
transformation given by Equation (18). 

Other choices for the smoothing function g have been suggested by various 
investigators. Szebehely (1967) discusses the use of the inversion of the velocity vector 
as the function g. Heggie (1970) has recently investigated the use of the potential 
energy and of the kinetic energy for g. The classical choice by Sundman (1912) is 
a = 1 which regularizes the problem of two bodies but leaves much to be desired 
regarding its applicability to numerical work. 
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5. Regularizing Transformations 

A. MOTION IN TWO DIMENSIONS 

In order to remove the singularity in Equation (17) that occurs when R becomes 
small as well as to offer a method useful for numerical work, Levi-Civita (1903) 
introduced a coordinate transformation in addition to a transformation of the 
independent variable for two-dimensional motion. Kustaanheimo and Stiefel (1965) 
generalized Levi-Civita's transformation to the case when motion takes place in three 
dimensions. 

Levi-Civita proposed Sundman's transformation for the independent variable: 

dt = Rdx. (21) 

This gives Equation (19) with a = 1 as expected: 

R' , (mk + m,) , , .. 
R" R + v—k y R = R2¥. (22) 

R R 

In addition, Levi-Civita introduced the coordinate transformation 

R, = u2 — u\, 
n i ( 2 3 ) 

I\2 — ZU^U2 , 

where Rt and R2 are the components of R, and ux and u2 are the new dependent 
variables. The transformation given by Equations (23) may be written as 

R = i ? ( u ) u , (24) 
where 

^ ( „ ) = { " 1 - M 4 
(«2 " l j 

and u(ut, u2). 
Note that Levi-Civita's transformation may be written as 

z = w2, 

where z = R1+iR2 and w = u1+iu2 are complex vectors. In the following, with one 
exception, the matrix formulation is used because of its potential for generalization 
to higher dimensions. While the complex notation renders an opportunity to be 
generalized to four-dimensions by quarternions, it was felt that a straight forward, 
real matrix notation might be more widely understood without special preparation. 

As the idea of the transformation of the independent as well as the dependent 
variables is introduced, a remark regarding the relation between these might be 
appropriate. Equation (22), the new form of the equation of motion, is the result 
of transforming only the independent variable. This equation may be considerably 
simplified or complicated by transforming also the dependent variables. Besides 
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regularization, a possible simplification and stabilization of the equations is desirable. 
In general, the two transformations, using complex notation, may be written as 

and 

dt = g (z) dt 

z = / ( w ) . 

The proper selection of the function f(w) which introduces the new dependent 
variable is crucial, since the form of the function g (z) is well established. The choice 
of/, once g is given, is arbitrary in principle. In order to obtain a simple form of 
the transformed equations of motion, it may be shown (Szebehely, 1966) that the 
relation 

g = a dw 

must be satisfied. Here a is an arbitrary real constant. It should be emphasized that 
satisfying this relation is not pertinent to the regularization of the equation of motion 
but it has considerable practical importance. 

The afore-mentioned transformation of the time is 

g = R = JR\ + R\\= |Z| 

and Levi-Civita's transformation is z = w2. Consequently, 

d / 
dw 

= 2|w| 

and the relation to be satisfied between/and g is 

or 

g = 4a|w| 

g =4a\z\ 

Comparing this with the function g = R=-JR\ + R\ used for the time-transformation 
as given above or by Equation (21), we have a = \. 

Now, we return to Equation (22) and introduce the new dependent variables given 
by Equations (23). First, we compute the derivative of R. Differentiating Equation 
(24) with respect to the new independent variable we obtain 

R' = 2 - 2 » u ' . 

From Equations (23) follows the important relation 

R = u2
1+u2

2 = (R2
1+R2

2y
12, 

(25) 

i.e., in the u-space the expression for the relative distance R does not require the 
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calculation of a square root. Furthermore, angles at the origin of the R-space are 
doubled in the new u-space. Consequently, if in the R-space one body makes one 
revolution about the other, then in the u-space, this body will make only one-half 
of a revolution. The absence of the computation of the square root, and the halving 
of the angles at the origin result in considerable computational advantage when the 
Levi-Civita transformation, or its generalization the Kustaanheimo-Stiefel trans­
formation is used. 

Levi-Civita's matrix JSf(u) has the following properties (Stiefel and Scheifele, 1970): 

^T (u) ^ (u) = RI, (26a) 

J2?'(n) = J2'(u'), (26b) 

j5f(u)v = =Sf(v)u, (26c) 

and 

(u-u) Se(v) v - 2(u-v) J?(u) v + ( y v ) i f ( u ) u = 0 (26d) 

where I is the unit matrix, u and v are arbitrary vectors and the scalar product is 
defined by the notation (u-u). We proceed now to express Equation (22) in terms 
of the new dependent variable u. From Equation (25) it follows that 

R" = 2J^(u)u" + 2 j r ( u ) u ' , 

or 

R" = 2 ^ ( u ) u " + 2i?(u ')u ' , since £"(u) = ^ ( « 0 -

Using this expression for R" and Equations (24) and (25), Equation (22) becomes 

2 ( u - u ) ^ ( u ) u " + 2 ( u - u ) ^ ( u ' ) u ' - 4 ( u - u ' ) i ? ( u ) u ' + 

+ (mt + m, )^ ' (u )u = (u-u)3F, (27) 

where R' was eliminated by the relation 

R' = 2(u-u') . 

With the aid of the Equation (26d), Equation (27) may be expressed as 

2(u-u) -S?(u)u" - 2(u'-u') =S?(u) u + (mk + m,) .S?(u)u = (u-u)3F. 

Multiplying this expression by J ? _ 1 (u) and by using Equation (26a), we obtain 

(mk+m,) — 2(u'-u') (u-u) _ , N 
u" + ^ - l-}—-± ' u = V —'- J?T (u) F . (28) 

2 (u-u) 2 w v J 

Observe that the coefficient of u is one-half of the negative of the two-body binding 
energy per unit mass h, since, in the R-space, 

(R-R) (mk + m,) 
h = V }- - — - ' < 0 (29a) 

2 R 
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and in the v space 

2(u'-u') — (mk + m,) 
h = '—->, -• . (29b) 

(u-u) 

The transformed equation for R may now be written as 

h (u-u) T , 
U " ~ 2 U 2 ( U ) F ' ( 3 0 ) 

Equation (29b) contains a singularity. Consequently, if it is used to compute the 
binding energy, h, then Equation (30) will have a singularity. A regular differential 
equation may be obtained for the binding energy. If Equation (17) is multiplied by 
R we have 

(R-R) = - ( m ^ + 3 W ' ) ( R - R ) + (R-F ) . (31) 

Since 

(R-R) = J?R, 

Equation (31) becomes 

R-R + (mk + m,) (R/R2) = R -F , 

or 

d|~R-R (mk + m,y 

<k|_ 1 JR _ 
= R F . 

The expression in the brackets above is the two-body binding energy per unit mass, 
therefore 

(d/j/df) = R - F , 

or, 

/i' = R ' -F . 

In the u-space this becomes 

/t' = 2( i?(u)u ' -F) 

or, 

/i' = 2 ( u ' - ^ T ( u ) F ) . (32) 

Equations (21), (30), and (32) form a system of regular differential equations which 
may be solved for u and for the time, t. Then R may be obtained by using Equation 
(24). 

B. MOTION IN THREE DIMENSIONS 

In order to extend Levi-Civita's transformation to three dimensions, Kustaanheimo 
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and Stiefel (1965) introduced two four-dimensional vectors R and u which are con­
nected by 

R = J 2 » U , 

where 

J 2 » : 

and where 

R = 

— u-i 

— u-, 

u = 

— Ui 

The components of R are 

Rx =u\-u\ •u\ + u\, 

R4 = 0, 

and its magnitude is 

R2 = 2(ulu2 — M3W4), 

R3 = 2(M1U3 + w2u4), 

R = ^R^R = «i + ul + ul + ul • 

(33) 

(34) 

Hurwitz (1933) has shown that the generalization of Levi-Civita's transformation 
to three dimensions is not possible, but that the transformation may be extended 
to four dimensions. Indeed, by using the four-by-four matrix .S? (u), Equations (30) 
and (32) remain valid. 

Since one of the four components of the vector u is arbitrary, the question arises 
as to how to select the initial values of the components of u where R is given. Adding 
the first of Equations (33) to Equation (34) we have 

« ? + «4 = i (Ki + R)- (35a) 

Keeping in mind the arbitrariness of one of the components of u, we will select 
«! and «4 such that this relation is satisfied. For simplicity we will select either ut 

or M4 identically equal to zero or ut equal to w4. From the second and third equations 
of Equations (33) there results 

M , = 
R2ut + R3uA 

~R^+R~' u, = 
R3u1 — R2u4 

R[TR 
(35b) 

When Ri^O, Equations (35a) and (35b) are used to determine the initial values of 
the components of u. In order to avoid the loss of significant digits when i?j<0, 
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it is advantageous to use the set of relations 

«! + « ! = i ( K - . R i ) , (36a) 

R2u2 + R3u3 R3u2 - R2u3 
M, = , UA = , ( 36b) 

R~Rt R-Rt 

choosing either u2 or u3 arbitrarily. 
Once the components of u are determined, then u' is determined from Equations 

(25) and (26a): 

u' = ( l / 2 R ) ^ r ( u ) R ' , 

or 

u' = iJS?T(u)R. (37) 

To obtain the time, t, it is necessary to solve the differential equation 

t' = R, (38) 

where R is computed from Equation (34). It is assumed at this point that the differential 
equation of motion, Equation (30) has been solved, so u (T) is known. An alternative, 
which may be used either as a check on the accuracy of the computation of R or 
to obtain R for using it in Equation (38), is to solve a differential equation for R. 
By differentiating Equation (34) twice with respect to T, there results 

R" = 2(u"-u) + 2(u'-u ') . 

By using Equations (29b) and (30) this becomes 

R" - 2hR = (mk + m,) + R [ u - ^ T ( u ) F] . (39) 

Jf the perturbation forces F are zero, Equations (30) and (39) become the dif­
ferential equations of a harmonic oscillator which are stable in the Liapunov sense. 
It is well known that the original equation of motion, Equation (17), for R is unstable 
in the Liapunov sense. Since F is not zero in our «-body problem, strict Liapunov 
stability no longer exists, but the transformed equations represent a much more stable 
system of differential equations than the original. 

6. Summary of the K-S Formulation 

This section lists the computational steps to be performed when the K-S method 
of three dimensional regularization is used. It is assumed that the components of R 
and R are given. 

First compute R from 
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If Rt ^ 0 , let H4. = 0, and compute the remaining components of u as: 

« i = V i ( K i + K ) > 
u2 = (R2/2ui), U3 = ( R 3 / 2 M 1 ) . 

If i?t <0, let u 3 =0 and use the relations 

ut = (R2/2u2), u4 = (R3/2u2). 

Then to compute u' from Equation (37) use 

u[ = i(«i-Ri + u2R2 + u3R3), 

U'2=H- "2-^1 + "1^2 + "4^3) ' 

"3 = i ( ~ "3^1 - "4^2 + " 1 ^ 3 ) . 

"4 = i ( « 4 - ^ i - "3^2 + " 2 ^ 3 ) -

The initial value of the binding energy as given by Equation (29a) is 

R-R (mk + ml) 
h = 

2 R 

Using the initial values obtained above for u, u' and h, solve the system of dif­
ferential equations: 

h R T x 

u'{-2ut=-{J? TF\, 

h R _ s 

^ ~ 2 " 2 = 2 ( ) 2 ' 

h R , T x 

« 3 - 2 " 3 = 2 ( ^ F ) 3 > 

U : " 2 M 4 = 2 ( ) 4 ' 

R" - 2/iK = (mk + m,) + R'£ (^TF),£/,, 
4 

E 
i = l 

4 

Here 

h' = 2 £ (^rF)iM; 
i = l 

( ^ F j ^ u ^ + M j F j + UaFs, 

(j5frF)2 = - u2Fi + UlF2 + uAF3, 

( ^ r F ) 3 = - u3Fx - u4F2 + M l F 3 , 

(.S?rF)4 = u^F, - u3F2 + u2F3. 
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The formulae necessary for the transformation from the U-space to the R-space are 

Rt = u\ — u\ — u\ + u\, 

R2 = 2(ulu2 - u3u4), 

R3 = 2(u1u3 + M 2 « 4 ) , 

and 

2 

K 

2 
Rl = „ ("2" ' l + " l " 2 ~ «4«3 - U2U\), 

K 
2 

R3 = D («3" ' l + M4M2 + " l « 3 + « 2 " 4 ) -

During the solution of the system of differential equations, the following checks may 
be employed: 

(i) the distance 

R=iuf, 
i = l 

(ii) the binding energy 
4 

2 £ «;2 - (mk + m,) 
h = 

R 

7. The Use of Several Independent Variables 

Whenever transformations of the independent variable are performed there will be 
at least two 'time' variables which have to be related. For example, assume that 
bodies 1 and 2 on one hand and bodies 3 and 4 on the other hand, form two pairs 
so that these two pairs are not close to each other. Also assume that the other bodies 
4, 5, ..., n are far from these pairs. Denoting the relative distance of bodies 1 and 
2by Rl2 and that of bodies 3 and 4 by R34, we have for the new independent variables 

dt = R12dt12 = R34dT34. 

By selecting the independent variable with the smallest factor, for example T12 we 
may relate the other times to this T12 by 

dt = K 1 2 d t 1 2 and dT45 = (# 1 2 /K 3 4) d*i2 • 

This idea may be extended to any distant pair of bodies. By writing the equations 
of motion as a system of first order differential equations, the correlation of the 
different times may be accomplished by multiplying all of the equations by the 
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suitable factor of RtJ. That is, if the original equations of motion, 

(d2ri/df2) = / i ( r 1 , . . . , r„) 

are written as 

( d r j d t u ) = V„ (dV1/dT12) = f1, 

(dr2/dt12) = V2, (dV2/dT12) = f2, 

(dr3/dT34) = V3, (dV3/dT34) = f3, 

(dr4/dr34) = V4, (dV4/dr34) = f4, 

(dtjldt) = \j, (dVjldt) = fj, j = 5,6, . . . ,n , 

then by multiplying all but the first four of these equations by the appropriate factors 
of Rij, we obtain the system 

(dr i /dx12) = V1; (dV1/dr12) = f i , 

(dr2/dr12) = V2, (dV2/dr12) = f2, 

(dr3/dt12) = V2 (R12/R34), (dV3/dx12) = f3 (K12/tf 3 4 ) , 

(dr4/di12) = V4(R1 2/R3 4), (dV4/dt12) = f4(R1 2/K3 4), 

(dr,/dT12) = \jR12, (dVjldx12) = tjR12 . 

Thus the single independent variable T12 may be used during the numerical integra­
tion, even though several different time variables were introduced. 

8. Numerical Solution of the Differential Equations 

Traditionally in celestial mechanics, finite difference methods have been used for the 
numerical solution of differential equations, such as the Stormer-Cowell or the 
Adams-Bashforth-Moulton methods. More recently methods based on power series 
gained popularity, such as straight forward Taylor series or recurrent power series. 
The choise of the particular method is dependent upon the speed and the memory 
capacity of the electronic computer being used. In general, the limitations of the 
computer become more critical as the number of bodies increases. 

A special problem emerges when numerical integration is performed with m pair 
of bodies regularized by the K-S transformation. Everytime the configuration (i.e., 
the participating bodies) changes, the K-S transformation must be re-initialized. This 
is of no consequence to the self-starting power series methods, but it is difficult for 
the multi-step methods which require knowledge of the solution of the differential 
equations for several previous values of the independent variable. However, if the 
configuration is rather stable, the K-S transformation does not need to be re-initia­
lized, and a starting routine does not need to be called. 

In order to reach a compromise between computational accuracy and computer 
time during the close encounter of m pair of bodies, some criterion must be established 
as to when to regularize. In general, a close pair should be regularized by the K-S 
transformation only when there is reason to suspect that there is, or will be, a loss 
of significant digits in the calculation. While establishing such a criterion one must 
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remember the most apparent advantages of the K-S transformation, (i) regular 
differential equations for a pair of bodies, (ii) no computation of a square root in 
order to determine, R and (iii) angles at the origin are doubled. These advantages 
should be weighed against the following disadvantages: (i) the differential equations 
are not regular if there are more than two bodies in the encounter, (ii) there are 
additional differential equations to be solved, and (iii) time consuming transforma­
tions to the Jacobian coordinates and to the K-S coordinates must be executed and 
vice-versa. 

9. Numerical Methods 

For an explanation of the use of the finite difference methods we refer the reader 
to any or all of the following articles: Henrici (1962), Schubart and Stumpff (1966), 
Aarseth (1970), Bettis (1970), and Stiefel and Bettis (1969). 

It has been found that if the number of bodies is of the order of one-hundred to 
two-hundred, high order Runge-Kutta methods are very efficient when the configura­
tion of the m pair of regularized bodies is rapidly changing. In particular, a Runge-
Kutta method by Fehlberg (1968) has proved very efficient with a CDC 6600 Com­
puter for accurate work as shown by Szebehely and Bettis (1970). 

For the sake of the convenience of the reader, Fehlberg's algorithm is outlined. 
For a system of differential equations of the first order, 

(dyldt) = f(t,y) 

the solution for the value t = t0+s, Fehlberg gives 

fo = f(t0, y0)> 

/« = f(t0 + ««*, y0 + s X pKJx), K = 1, 2, 3, ..., 12, 
A = 0 

12 

y = y0 + s I cK/K + o(^9), 
k = 0 

where s is the step-size. 
Even though this method requires thirteen evaluations of the function f(t,y) for 

each step, the precise estimate of the step sizes of Fehlberg's method compensates 
for this disadvantage. The truncation error for this method is 

"8T0 (/o + 7l0 + /l 1 + fll) S • 

From this relation, the step-size s may be estimated. The reader is referred to the 
original article by Fehlberg (1968) for further details and for the coefficients ax, fixX, 
and Cx. 
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