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Abstract

This article is devoted to studying maximal n spaces where n = Lindelof, countably compact,
connected, lightly compact or pseudocompact. Necessary and sufficient conditions for Lindelof
or countably compact spaces to be maximal Lindelof or maximal countably compact have been
obtained. On the other hand only necessary conditions for maximal n spaces have been deduced
where n = connected, lightly compact or pseudocompact.

Introduction

A topological space (X, $~) with property n is said to be maximal n if there
is no strictly larger (or stronger) n topology on X. Vaidyanathaswamy [9] showed
that every compact Hausdorff space is maximal compact. Maximal compact
spaces have been characterised in an excellent paper of Smythe and Wilkins [6].
A non-Hausdorff maximal compact space has also been exhibited in the same paper.
Necessary and sufficient conditions for an absolutely closed (or H-closed) space
to become maximal absolutely closed have been obtained by Mioduszewski
and Rudolf [4]. It has been demonstrated that every absolutely closed space
admits a maximal absolutely closed topology finer than the given topology.
Recently Thomas [8] has studied maximal connected spaces and has raised the
question whether there exist maximal connected Hausdorff spaces.

In this article we shall investigate maximal 7r-spaces where n = Lindelof,
countably compact, pseudocompact, lightly compact or connected. As a matter
of fact, we shall obtain only necessary conditions for maximal rc-spaces where
7t = connected, lightly compact or pseudocompact while maximal Lindelof and
maximal countably compact spaces will be completely characterised. Our termi-
nology will be after Bourbaki [1], the only difference is that our topological
spaces need not always be Hausdorff. The term 'space' stands for a topological
space.

1. Lindelof spaces

DEFINITION. A Lindelof space (X,&~) is maximal Lindelof if any Lindelof
topology on X stronger than !7~, necessarily, equals 3~,
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Before we start studying maximal Lindelof spaces let us first recall that
any one-one continuous map from a compact space onto a Hausdorff space (i.e.,
a continuous bijection from a compact space to a T2 space) is a homeomorphism.
Here, the Hausdorff property of the range space is merely a sufficient condition
and a close look into the proof of the above fact will reveal that the closedness of
every compact subset of the range space is precisely what is needed. The fact
has been observed by several authors. But the characterisation of maximal com-
pact spaces, due to Smythe and Wilkins, provides an interesting connection
between maximal compact spaces and those topological spaces onto which any
continuous bijection of a compact space is a homeomorphism as follows:

THEOREM 1. The following are equivalent:
(a) X is maximal compact.
(b) The set of all closed subsets ofX = the set of all compact subsets ofX.
(c) Any continuous bijection ffrom a compact space Y onto X is a homeo-

morphism.

The equivalence of (a) and (b) is due to Smythe and Wilkins. The purpose of
the above paragraph is to motivate our results on maximal Lindelof spaces.
We prove

THEOREM 2. The following are equivalent:
(i) (X,2T) is maximal Lindelof.
(ii) The set of all closed subsets of X coincides with the set of all Lindelof

subspaces of X.
(iii) IfYis a Lindelof space and f is any continuous bijection from Yonto X,

then f is a homeomorphism.

PROOF, (i) => (ii): Suppose there exists a Lindelcf subspace A of (X,$~)
which is not closed. Obviously, Ac(= X—A)i^. Let 3~' be the topology gene-
rated by F u {Ac}. Then

r1 = {{Ac C\XJ)\JV: U,

and is strictly stronger than $~. We shall now show that (X,$~') is Lindelof.
Let {Wt-.iel} be an open cover of {X,&~'). Let

W, = (AcnU,)yJV,.

Obviously U {F;: iel} => A and A is Lindelof. So there exists a countable sub-
set / t of / such that

Put V = U {F;: ieli}. Then VeST. Consequently Vc is closed in F and is,
therefore, Lindelof. Again Vc <= Ac. Consider
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Wtnv0 = (Ac nUif\ vc) u (vc n v,) = vcn (Ut u vt).

Thus F'\ Vc = Sr\vc. Inasmuch as Vc is Lindelof when ST is relativised to it,
there exists a countable subset I2 <= I such that

U {Wi: ieI2}=>Vc

and thence U {W,: iel^ \JI2) => Vc U V = X. But IXVI2 is a countable sub-
set of / . Hence, (X,^r) is Lindelof, a contradiction to the fact that (X,^~) is
maximal Lindelof. Thus (i) => (ii).

(ii) => (iii): Since/is a continuous bijection onto X, the inverse/"1 is well-
defined from X onto Y. We need only to show/"1 is continuous. It suffices to
show that for each closed subset F of Y, (Z"1)"1^) = f(F) is closed in X. Now
F is closed in Y => F is a Lindelof subset of Y => f(F) is a Lindelof subset of X
i.e. f(F) is a closed subset of X.

(iii) => (i): If ^"' is any Lindelof topology on X such that J~ is contained
in y , the identity map i:{X,T')-+ (X,.T) satisfies the conditions of (iii).
So 3~' = y, i.e., (X,y) is maximal Lindelof.

It is easy to see from theorems 1 and 2 that both maximal compact and max-
imal Lindelof spaces are 7\ and, a fortiori, To. If X is a countable set, the max-
imal Lindelof space is nothing but the discrete space. If we restrict our attention
to Lindelof spaces we shall presently obtain another characterisation for such
spaces to be maximal.

Let us first note that in any space an open set is a G-delta. Let us rather
consider those topological spaces where every G-delta set is open. Such spaces
are called P-spaces by Gillman and Jerison [3]. Every discrete space is trivially
a P-space, but Hausdorff non-discrete topological spaces can be constructed in
which, at every point x, the intersection of any countable family of neighbour-
hoods of x is again a neighbourhood of x (cf. Dieudonne [2]; an easy example
is an uncountable set where each point is isolated but for one whose neighbour-
hoods are complements of countable subsets).

The relationship between maximal Lindelof T2 spaces and Lindelof Haus-
dorff P-spaces is brought out through the following theorem.

THEOREM 3. The following are equivalent
(i) X is maximal Lindelof and T2.
(ii) X is a Lindelof Hausdorff P-space.

PROOF, (i) => (ii). By theorem 2 we know that a subset of X is Lindelof if
and only if it is closed. Let G = D n°°=1Gn be a G-delta subset of X where each
Gn is open in X. Now

X - G = U (X - Gn)
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and G£ = X — Gn is closed and so Lindelof for each n. So X — G, being a
countable union of Lindelof subspaces, is Lindelof and hence closed. Thus, G
is open in X. (We have, in fact, proved that any maximal Lindelof space is a
P-space).

(ii) => (i): Since X is Lindelof, every closed subset of X is Lindelof. We need
to show only that every Lindelof subspace is closed, then we are done in virtue
of theorem 2. Suppose, A is a Lindelof subspace of X. Let xeA, the closure
of A in X. It suffices to prove that A = A. Suppose x 4 A. Let JV{X) denote the
filter base of open neighbourhoods of x. Since xeA,

& = {V nA:V

is a filter base of open subsets of A. If {Vn n A] is a countable collection from

Fl (VnnA)^ 0
because " = *

D {vnr\A) = ( n Vn)r\A = V r\A^ 0
n=l

as VejV{x) by (ii). Since *is T2,

{x} = r\{V: VeJ^ix)} and x$A => X - {x} => A

i.e., u {{V)c: VeJ^(x)} => A. But A is Lindelof; therefore there exist Vne^V(x),
n S; 1 such that

i.e.

But fl B°°=1 Fne^T(x) so ^ O( n * = i Fn) ^ 0 , a contradiction. Thus ^ is closed.

A consequence of theorem 3 is that every Hausdorff maximal Lindelof space
is regular and, hence paracompact.

2. Countably compact spaces

DEFINITION. A topological space is said to be countably compact if every
countable open covering of X contains a finite open covering of X. A countably
compact space (X,<T) is called maximal countably compact if X cannot support
any strictly stronger countably compact topology.

Before we mention the theorem characterising maximal countably compact
space let us list some important properties of countably compact spaces without
proof.

https://doi.org/10.1017/S1446788700013197 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013197


[5] Maximal topologies 283

2(a). Every closed subspace of a countably compact space is countably
compact.

2(b). Let f be a continuous mapping of a countably compact space X into
a topological space Y. Then f(X) is a countably compact subset of Y.

2(c). If X is Hausdorff and is first countable, then every countably com-
pact subspace of X is closed in X.

Theorem 4, below, is also motivated by Theorem 1. The proof is, however,
omitted as it is similar to that of Theorem 2.

THEOREM 4. For a topological space (X,^~) the following are equivalent:
(i) (X,^7~) is maximal countably compact.
(ii) The set of all closed subsets of X = the set of all countably compact

subspaces of X.
(iii) Any continuous bijection ffrom a countably compact space Y onto X

is a homeomorphism.

COROLLARY 5. Any first countable, countably compact Hausdorff space is
maximal countably compact.

PROOF. Suppose X satisfies the conditions of the theorem. By property 2(a)
all closed subsets of X are countably compact. Since X is first countable and T2,
property 2(c) yields that every countably compact subset is closed. Thus a subset
of X is closed when and only when it is countably compact. Theorem 4 then helps
us to conclude that X is maximal countably compact.

DEFINITION. A topological space (X,^~) is called minimal first countable
Hausdorff if (i) (X,F) is T2 and first countable and (ii) F does not contain
any strictly smaller first countable Hausdorff topology.

COROLLARY 6. Any first countable, countably compact Hausdorff space is
minimal first countable Hausdorff.

PROOF. Suppose (X, !7~) is a first countable, countably compact T2 space.
Suppose y is a first countable Hausdorff topology strictly smaller than ST.
Then y satisfies all the conditions of Corollary 5 and is, thus, maximal countably
compact. But by Corollary 5, 5" is also maximal countably compact, a contra-
diction as &' is strictly smaller than F.

Corollary 6 easily yields the following known result regarding metric spaces.

THEOREM 7. A countably compact metric space is compact.

PROOF. If (X,&~) is a countably compact metric space, it is minimal first
countable Hausdorff. Naturally ST cannot contain any strictly weaker metric
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topology. So {X, 3~) is a minimal metric space and Scarborough and Stephenson,
Jr. [5] have shown that a minimal metric space is compact.

REMARK. Combination of Corollaries 5 and 6 derives that a first countable,
countably compact Hausdorff space is maximal countably compact and minimal
first countable Hausdorff. This is in the spirit of the exact analogue of the follow-
ing well-known topological fact: A compact T2 space is maximal compact and
minimal Hausdorff.

Theorem 4, incidentally shows that every maximal countably compact space
is T\ and is, hence, To.

3. Connected Spaces

DEFINITION. A connected space (X,3~) is called maximal connected if any
connected topology stronger than 3~ necessarily coincides with 3~.

As mentioned earlier, we shall present only a necessary condition for a con-
nected space to be maximal connected. But this calls for the following prerequisites.

In a topological space (Y,^), Ve^ is called regular-open if V = (F)°
where for any subset A of Y, A and A0 denote respectively the closure and interior
of A in the topology Sf. Now, a topological space is called semi-regular if its
regular-open sets form a base for the given topology. Given any space (Y,Sf)
the regular-open sets in Sf form a base for a unique semi-regular topology,
called the semi-regular topology on Y associated with £f. We shall make the
convention to denote the semi-regular topology associated with an arbitrary
topology £f by £f0. Trivially, a topology £f is semi-regular if and only if

Let ( F , ^ o ) be a semi-regular space. Set E(S^0) = {ST-.F a topology on Y
and &~0 = £f0}. It has been demonstrated in Bourbaki [1] that £ ( ^ 0 ) has a
maximal element with respect to the relation "&~ is weaker than ST'". A maximal
element of £(£"0) is called a submaximal topology and Y endowed with such
a topology is referred to as a submaximal space. Now, our necessary condition
for a connected space to be maximal connected runs as follows:

THEOREM 8. Suppose (X,&~) is a maximal connected space. Then every
dense subset of X is open in ST.

The proof will be accomplished with the aid of the following string of lemmas.

LEMMA 9. A space (X,^) is connected if and only if(X,^0) is connected.

PROOF. By definition 3~0 is coarser than 3T, thus connectedness of $" will
force ^ 0 to be connected. Conversely, if &~ is not connected, there would exist
non-void disjoint open sets G and V in y such that G U V = X. Now, G and V
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are both open and closed subsets in 9", so G and Fare regular-open i.e., they
are in ^~0. Therefore 5"0 is not a connected topology.

LEMMA 10. A maximal connected space (X,&~) is submaximal.

PROOF. 3~ is a member of E(^~o). Lemma 9 together with maximal connected-
ness of &~ implies that &~ is submaximal.

The following result characterises submaximal topologies and can be found
in Bourbaki [1].

LEMMA 11. A topology ^ on X is submaximal if and only if every subset
of X which is dense in the topology &~ is open in 2T.

The proof of theorem 8 immediately follows from lemmas 10 and 11. An
easy consequence of lemma 11 is that every submaximal topology is To. As a re-
sult, every maximal connected space is To. Theorem 8 states that a maximal
connected space is necessarily submaximal. But submaximality of a connected
space is not a sufficient condition for its being maximal connected. We shall
substantiate this by means of the following example.

EXAMPLE 1. X = {1,2,3,4}

ST = {X,0,{1},{2},{1,2},{1,2,3}, {1,2,4}}

(X,^~) is easily seen to be connected and submaximal (dense sets are sets con-
taining both 1 and 2 and they are all open in ST). Let us look at the topology

^ = {X)0,{1},{2},{1,2},{1,3},{1,2,3}, {1,2,4}}

y t is connected and strictly bigger than $~. So S~ is not maximal connected.

REMARKS. It is still an open question whether there exist maximal connected
Hausdorff spaces. Nevertheless, such spaces, if at all they exist, cannot be locally
compact, since a locally compact connected T2 space cannot even be submaximal
(Bourbaki [1]).

4. Lightly compact spaces

DEFINITION. A space X is said to be lightly compact if every locally finite
family of non-void open sets in X is necessarily finite. A lightly compact space
(X,^~) is called maximal lightly compact provided X does not admit any strictly
stronger lightly compact topology.

To start with we shall present 2 characterisations of a lightly compact space.

PROPOSITION 12. (Stephenson [7], page 439). On a space X the following
are equivalent.
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(a) X is lightly compact.
(b) If Ql is a countable open cover of X, then there exists a finite sub-

collection of °U whose closures cover X.
(c) Every countable open filter base on X has an adherent point.

LEMMA 13. A space (X,3~) is lightly compact if and only if(X,&~0) is lightly
compact, where J7~0 is the semi-regular topological structure associated with ^~.

PROOF. Since ^"0
 c ~̂> from t n e definition it follows that (X,J~0) is lightly

compact whenever (X,^) is lightly compact. Suppose, conversely, (X, ^~0) is
lightly compact. Let f b e a countable cover of X consisting of sets from 5". If
® = {Vn:n ^ 1} put

Gn = (Vn)° = ^"-interior of ̂ -closure of Vn.

Then Gne^0, and Vn <= Gn, so that {Gn: n ^ 1} is an open cover of {X,3~o)
and hence admits a finite subfamily {Gn.: 1 ^ i g k} such that

U {^-closure of Gni: i = l,2,--,k] = X.

Obviously, now, Gn. e9~ for i = l,2,---,k and since C/e^~=>

^"0-closure of U = ^"-closure of U

we have U UAt = X i.e., Uk
i = 1(¥J> = X i.e., \Jk

t = 1Vmt = X. This shows
that (X,2T) is slightly compact.

Now results analogous to Lemmas 10 and 11 lead to the following theorem.

THEOREM 14. Suppose (X,3T) is a maximal lightly compact space. Then
every dense subset of X is open in &'.

Next we shall show that theorem 14 provides us only a necessary condition.
That mere submaximality does not guarantee maximality of a lightly compact
space is brought out by the following example.

EXAMPLE 2. X = Any infinite set.

x0 is a fixed point in X.

F = {VcX:xoeV}u{0}.

Then (X, 3~) is a submaximal topological space. We shall first show that (X, 3~)
is lightly compact. If {Gn} is any countable open cover of X, then x0 e Gn for each
n. So Gn = X for each n so that by proposition 12(b) X is lightly compact.

Let us now fix xveX such that xt # x0. Look at the topology 3~' on X
determined by the following base of open sets:

x${xo,xl) => {x,x0} is open
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{x0} and {x j are isolated.

y is strictly stronger than 3~. We shall show that 3~' is lightly compact. Let
{Gn} be a countable open cover of X. There exist nt and n2 such that x0 e Gni

and x, £ Gn3 and obviously ^"'-closure of (Gni nGn,) = X. Then (X,3~) is sub-
maximal and lightly compact but not maximal lightly compact.

5. Pseudocompact spaces

DEFINITION. A pseudocompact space (X,=^)is said to be maximal pseudo-
compact if 3~' = 3~ whenever 3~' is pseudocompact and is stronger than &~.
We first remark that every lightly compact space is pseudocompact. Analogous
to theorems 8 and 14 we prove the following.

THEOREM 15. Every maximal pseudocompact space is submaximal.

In order to prove above theorem the first step is the following lemma:

LEMMA 16. A space (X,^) is pseudocompact if and only if (X,&~0) is
pseudocompact.

PROOF. The only nontrivial part is to show the 'if part of the assertion.
Denote by C(X; 3~0) the space of all continuous real-valued function on (X, ^~0)
and by C{X;!T) the space of real-valued continuous functions on {X,9~). We
shall show that C(X;^) = C(X;f0). We only need to prove that
C{X;3T) c C(X;y0). Let feC(X;3^), and U be any open subset of the real
line. Thenf-l(U)ef. Let xef~\V). Then/(x)_e 17. By using regularity of
the real line we have Ve3~ such that xeV c V c/~1(C7) and this implies

° But (V)°ef0. So / - 1 ( l0e^"o- / t h u s belongs to

PROOF OF THEOREM 15. As usual let E(^o) = {£f\ Sf a topology on X with
y0 = &~0}. By maximality of {X,3~) and lemma 16 and since ^ £ £ ( ^ 0 ) we
conclude that 3~ is submaximal.

Since lightly compact => pseudocompact, Example 2 offers even an example
that a submaximal pseudocompact space need not be maximal pseudocompact.

Next we shall give an example of a compact Hausdorff space which acts
as an omnibus example for a maximal compact, maximal countably compact,
maximal lightly compact or a maximal pseudo-compact space.

EXAMPLE 3. Let N stand for the natural numbers with discrete topology.
Denote by Nt =Nu{to}, the one-point compactification of JV. Nt is compact

T2 and so is maximal compact. Everything will be shown in one stroke if we prove
that Nt is maximal pseudocompact (iV̂  is obviously pseudocompact). Suppose
not. Then there must exist a strictly bigger topology on Nx which is still pseudo-
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compact. In that topology there should be an open neighbourhood of©, say V,
such that iVj — V is infinite. Nt — V is contained in N and is, of course, open in
the latter topology. Define the function f: Nt -> R as follows:

f(n) = n if

= - 1 if neV

f is a continuous real-valued function on JVj, no doubt, but / is not bounded.
There lies the contradiction.

6. Products and subspaces

It has been already mentioned that Hausdorff maximal compact spaces are
nothing except the compact Hausdorff spaces. So Hausdorff maximal compact
spaces are indeed closed under product (in fact, arbitrary product). But if X is
a non-Hausdorff maximal compact space, we intend to demonstrate that X x X
is not going to be maximal compact under the product topology. Let
D = {(x,x): xeX} denote the diagonal of X x X. D is easily seen to be compact.
Since X is not T2, D cannot be closed. The existence of a non-closed compact
set, viz. D, shows that X x X is not maximal compact.

If we turn our attention to maximal absolutely closed (or //-closed) spaces,
the product of a maximal absolutely closed space with itself is going to be abso-
lutely closed (since //-closed spaces are closed under products) but the product
may fail to be maximal absolutely closed. We shall substabtiate this claim by
means of an example.

It was established in [4] that an absolutely closed space is maximal absolutely
closed if and only if it is submaximal. Let Nx be same as in Example 3. iV, is
compact T2 and hence //-closed. Since N and Nt are the only two dense subsets
and both are open, Nt is submaximal (Lemma 11)- It follows from the first line
of this paragraph that Nt is maximal absolutely closed. Consider, now, N1 x Nt

with product topology. Nt x iVt is, obviously, absolutely closed. We shall prove
that Nt x Nt is not submaximal and that will prove our claim. Consider the
subset A = N x N u{(co,cu)}. Since N x N is already dense in JVX x Nlt A
is dense in Nt x Nt. But A does not contain any open neighbourhood of (a>,w)
and so fails to be open in N1 x Nt. Consequently Nt x iV\ is not maximal
absolutely closed.

Thomas [8] has constructed an example of a maximal connected space
X such that X x X with the product topology is not maximal connected. The
study of the product of maximal n spaces where n = Lindelof, countably com-
pact, lightly compact or pseudocompact is, of course, rendered uninteresting by
the mere fact that these topological properties are not, in general, productive.
Still we shall deal with some very special cases.
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Suppose we start with a non-Hausdorff maximal Lindelof space X such
that X x X is Lindelof when endowed with the product topoloy. Still X x X
cannot be maximal Lindelof due to the fact that the diagonal of X x X is not
closed but Lindelof. However, in the Hausdorff case we can prove the following
assertion.

THEOREM 17. X x X is a maximal Lindelof space provided X x X is
Lindelof and X is maximal Lindelof as well as T2.

PROOF. By invoking theorem 3 we can assert that X is a F-space. By hypothesis
I x X is a Lindelof Hausdorff space. If we can show that X x X is a P-space
theorem 3 will imply that it is maximal Lindelof. Let A czX x X be any G-delta
i.e. A = D n°°= i Gn where each Gn is open in X x X. Let (x, y) e Gn for each n.
There exist Un and Vn open in X such that

(X,y)eUnxVnczGn

for each n, so
(x>y)e(nUn)x(nvn)^A.

By hypothesis O Un and n Fn are open subsets of Z . So A is open i n l x l ,

A trivial consequence of Corollary 5 is that every first countable compact T2

space is maximal countably compact. Hence if we start with a first countable
compact Hausdorff space X, the product space X x X is also a space of the same
type and, a fortiori, maximal countably compact.

Next we shall try to determine which subspaces of maximal n spaces are
maximal n where n = compact, Lindelof, countably compact, connected, lightly
compact or pseudocompact. For n = lightly compact or pseudocompact no
satisfactory answers could be obtained. Thomas [8] has proved that connected
open subsets of a maximal connected space are maximal connected. But all
maximal connected subspaces need not, however, be open (Examples can be
easily constructed). In rest of the cases we really possess characterisations of
maximal n subspaces. When n = compact, Lindelof or countably compact, closed
subspaces of maximal n spaces are the only maximal n subspaces. This follows
easily from theorems 1, 2 and 4.

7. Concluding remarks

We are able to obtain only necessary conditions for a rc-space to be maximal
7i when n = connected, lightly compact or pseudo-compact. But sufficient con-
ditions are lacking. Our theorems reveal this fact that a definite relationship be-
tween n subspaces and closed subspaces has played the key-role in characterising
the maximal 7c-spaces in case n = compact, Lindelof or countably compact.
Absence of such a relationship, in the former cases, turns out to be a real snag.
For instance, we cannot in general assert that closed subspaces of a pseudocom-
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pact space are pseudocompact. As a matter of fact, a non-countably compact
pseudocompact 7\ space must have a proper closed subspace that is not pseudo-
compact, the reason being that a 7\ topological space is countably compact if
and only if every closed subspace is pseudocompact. The topological properties
considered in this article are compactness, Lindelofness, countably compactness,
connectedness, lightly compactness and pseudocompactness. Another interesting
feature to be noted is that the first three properties for a space are not usually
determined by the associated semi-regular space (i.e., for n = compact, Lindelof
or countably compact it is not, in general, true that a space has property n if
the associated semi-regular space has property n) while the last three properties
are always so determined (Lemmas 9, 13 and 16). And, strangely, in the first
three cases we have got complete characterisations and we failed to get any in
the latter three cases. As topological properties connectedness and lightly com-
pactness are different, no doubt, but they have at least one interesting property
in common (as mentioned earlier): both are determined by the associated semi-
regular topologies. And, it is this very property that forces two seemingly different
kinds of spaces like maximal connected spaces and maximal lightly compact
spaces to satisfy the condition: every dense set is open (i.e., the condition of
submaximality by lemma 11). We conclude with the observation that all the
maximal n spaces considered in this article are To.
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