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The object of the present paper is to establish the equivalence of the well-known theorem
of the double-six of lines in projective space of three dimensions and a certain theorem in
Euclidean plane geometry. The latter theorem is of considerable interest in itself for two
reasons. In the first place, it is a natural extension of Euler's classical theorem connecting the
radii of the circumscribed and the inscribed (or the escribed) circles of a triangle with the
distance between their centres. Secondly, it gives in a geometrical form the invariant relation
between the circle circumscribed to a triangle and a conic inscribed in the triangle. For a
statement of the theorem, see § 13 (4).

1. The configuration of the double-six of lines was discovered by the Swiss mathematician
Schlafii in connection with the theory of the twenty-seven lines on a cubic surface.

Schlafli showed that from the twenty-seven lines, two sets of six lines, say

a, b, c, d,e,f;
a',b',c',d',e',f>

could be selected (and that in thirty-six ways), with a corresponding to a', b to b', and so on,
so that any line of either set of the double-six is met by the five which do not correspond to
it in the other set; that is, a' meets b, c, d, e,f; a meets V, c', d', e', / ' ; and so on.

2. Dropping all reference to a cubic surface, we have, in the above double-six, twelve lines
and twelve examples of one line meeting five.

But only one theorem is involved; for the configuration may be built up as follows.
Begin with any line / and take any five lines meeting it, but with no pair of these meeting
each other, viz., a', b', c', d', e'. Any four of these is intersected by a second line besides/;
we thus obtain a, b, c, d, e. The theorem is that a, b, c, d, e are met by a twelfth line / ' ; in
other words, the two sets form a double-six.*

From the datum that no two of a', b', c', d', e' intersect, it is easy to prove that no two
of a, b, c, d, e, f intersect; and that no two of a', V, c', d', e', / ' intersect.

3. Any line in projective space of three dimensions can be specified by means of six
homogeneous coordinates pi} (i, j = l, 2, 3, 4 ; i^j) defined in terms of the homogeneous
coordinates (xlt x2, xz, a;4) and (yx, y2, y3, ?/4) of any two points in it by the equations

These six coordinates pit are connected by the homogeneous equation of the second degree

=0-
It follows that the lines of projective space of three dimensions may be represented by the
points of a quadric Q in projective space of five dimensions.

Our main concern is with the condition that two lines should intersect. This condition
is in effect that the two points on Q which represent the lines are conjugate with respect to Q.

* Salmon, Analytic Geometry of Three Dimensions, Vol. II (5th edition) §§ 534, 536a. H. F. Baker,
Principles of Geometry, Vol. I l l , p. 159 ; Vol. IV, pp. 58-64.

A G.M.A.
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2 JOHN DOUGALL

In fivefold space, instead of a tangent plane to a surface we have a tangent fourfold and
the condition that two points on Q are conjugate with respect to Q is that the tangent fourfold
at either passes through the other ; or again, that the line joining the points lies entirely on Q.
Thus, using the same symbols to denote the lines of § 1 and the points which represent them on
Q, the fourfold bcdef is the tangent fourfold at a'; acdefis the tangent fourfold at 6'; and so on.

The theorem of the double-six can now be stated in the equivalent form :
If a, b, c, d, e, f are six points on Q, and if bcdef, acdef, abdef, abcef, abcdf are tangent

fourfolds, then abode is also a tangent fourfold.
4. By means of the change of coordinates

p12=x+iw, Pi2=y + iu, pu

psi=x-iw, pi2=y-iu, Pn=z-it,

in the five-dimensional space in which Q lies, the equation of Q is brought to the form

x2 + y2 + z2 + w2 + t2 + u2 =0, (1)

By homogeneous linear transformations which leave the quadratic form

invariant, other coordinate systems can be found in which the equation of Q takes the same
form. Among these there are systems for which any given fourfold is one of the coordinate
fourfolds, say the fourfold u = 0. Furthermore, since there exist fourfolds which do not pass
through any one of a particular set of six given points, it is possible to choose a coordinate
system such that Q has the form (1) and the coordinate fourfold «=0 does not pass through
any of the six points a, b, ... , / . Let us choose such a system of coordinates and then introduce
non-homogeneous coordinates by replacing the ratios of x, y, z, w, t to u by ix, iy, iz, iw and
it respectively, so that, in the non-homogeneous coordinate system, Q has equation

Prom now on we shall only use, in the five-dimensional space in which Q lies, coordinate
systems obtained from this system by orthogonal transformations. We shall introduce the
terminology of metric geometry into this space by calling the function

(x1-x2)
2 + (y1-y2)

2+ ... +(t1-t2)
2,

in any one of these coordinate systems, and therefore in all of them, the square of the distance
between the points (xv yx, ... , tj) and (x2, y2,... , t2) and referring to the coordinate systems
as rectangular cartesian coordinate systems.

When this has been done the quadric Q becomes a hypersphere, or as we shall call it to
indicate its dimensions, a five-sphere in the, now complex Euclidean, five-dimensional space.
It is the five-sphere with centre at the origin and radius unity.

5. The point/ (§ 1) can be taken to be the point (0, 0, 0, 0, 1). For if it is not initially
this point, a new rectangular cartesian coordinate system can be introduced in which it is.
(Compare with the ordinary sphere x2+y2+z2=a2).

The equation of the tangent fourfold to Q at the point (xlt yx, zlt wlt tj) is

xx1+yy1+zzx+ww1+tt1 = \. (1)

Let this pass through/; then^ = l. But

therefore
V+2/i2 + Zia+Wi2=O, (2)

a relation which is fundamental for what follows.
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6. As a first step towards reaching a plane figure, we now project the figure on Q from /
onto the fourfold t = t0 where t0 is a constant. This fourfold we shall refer to as $4.

The five relations given and the one to be proved, as stated in § 3, have now to be trans-
ferred to the figure in $4.

Let a, b, c, d, e project into A, B, C, D, E. The points B, C, D, E lie on two fourfolds,
viz., on the tangent fourfold at a' (bcdef) and on t =t0. Hence B, C, D, E lie on a threefold in
the fourfold t = t0 ; in this fourfold the variable coordinates are x, y, z, w.

If a' is the point (xlt ylt zv wx, t^), the equation of this threefold in terms of these co-
ordinates is, from § 5(1), since t =t0 and t1 = l,

where, by § 5(2),
'=l -t0 (1)

Any threefold (in any Sit i.e., in any fourfold whose equation in some rectangular cartesian
coordinate system is t = t0) whose equation is of the form

Ix + my + nz+ pw =q, (3)
where

l2 + m2+n2+p*=0, (4)
we shall call a special threefold.

Thus, in virtue of (1) and (2), BCDE is a special threefold ; and so also, similarly, are the
threefolds ACDE, ABDE, ABCE and ABCD.

7. To make certain that the definition is consistent, it is necessary to verify that, if the
condition for a special threefold is satisfied in one rectangular cartesian system, it is true in
all those for which the $4 has equation t = t0. For this and other reasons we consider the effect
of the orthogonal transformation relating two such coordinate systems. This transformation
is given by the scheme :

X

Y

Z

w

X

h
h

h

h

y

m^

m2

m3

m.

z

n i

n2

nz

n.

w

Pi

V%

Ps

Pi
signifying that

and so on ; where, since

X=l1x+ mry + nxz + px

xi W\

and so on.
We note that if

then

= 0,
1 + l2m2+ l3m3 + Z4m4 =0 ,

•(1)

•(2)
.(3)
•(4)

lx+my + nz +pw =LX + MY+NZ + PW,
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4 JOHN DOUGALL

so that I2 + m2 + n2 +p2, like x2 + ya + z2 + wa, is invariant under these changes of coordinates.
I t follows that the definition of special threefolds is consistent.

A comparison of (1) here and § 6 (4) shows that a special threefold cannot be used as a
coordinate threefold.

We note also that for two points or two threefolds we have the following invariants :

(x1 -x2)
2 + (yx - y2)

2 + (Zl - z2)2 + (Wl - w2)
2,

8. In Sit the locus with equation

yo)
2
 + (z-zo)

2 + (w-wo)
2=C2 (1)

is the four-sphere with centre (x0, y0, z0, w0) and radius C.
The case where (7=0 is of particular importance ; the locus is then at once the four-

sphere of radius zero with centre (x0, yQ, z0, w0) and a four-cone, the asymptotic cone of the
sphere (1).

The tangent fourfold to Q at any point g on it meets Q in the four-sphere with centre g
and radius zero.

To prove this we need only, as we may, introduce in the five-dimensional space, a rect-
angular cartesian coordinate system in which g has the coordinates given to / in § 5. The
tangent fourfold at g is then t = l, which meets Q in points at which x2+y2 + z2+w2=0, as
required.

9. In the figure ABODE in $4 we now have five data, viz., that the five threefolds BCDE,
ACDE, ABBE, ABCE and ABCD are all special (§ 6). These five data represent in £4 the
five data in the original five-dimensional space stated at the end of § 3. We have now to con-
sider the transform to $4 of the conclusion from these data, stated at the same place, viz.,
that the fourfold abcde is a tangent fourfold to Q.

We assume that this conclusion is correct; that is, we assume that the double-six theorem
is true, and deduce from the tangency of abcde that A, B, C, D, E lie on a four-sphere of
radius zero.

We first form the equation of the four-cone with vertex a t / and base the section .of Q by
the fourfold abcde. Let the equation of this fourfold be

lx+my + nz+pw + qt = r (1)

If the origin is changed to / by writing t = 1 + T, this equation becomes

Ix + my + nz+ pw +qr=r-q; (2)

and the equation of Q becomes

x2 + y2 +z2 +w2 +r2
 + 2T =0 (3)

Hence, using the method familiar in three-dimensional space, the four-cone has equation

x2 + y2 + z2 +w2 +T2 + 2r(lx +my + nz+pw + qr)l(r -q) =0,

and this meets t = t0, i.e., T =t0 - 1, or T =h, say, in the four-sphere

x2 + y2 + z2 + w2 + h2 + 2h(lx + my + nz +pw + qh)j(r - q) = 0.

The square of its radius is

(I2 + m2 +n2 +p2) -h2 -P^r ,y r> (r-q)'
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that is,
n2+p2-(r-q)*-2q(r-q)} (4)

The second factor of (4) is

which is zero, since (1) is a tangent fourfold to Q.
It has therefore been proved, from the double-six theorem, that the four-sphere through

A, B, C, D, E has radius zero.
Thus, to return to the beginning of § 9, it has been shown that the equivalent in 8t of

the double-six theorem is that, if the five threefolds BCDE, ACDE, ABDE, ABCE and ABCD
are special (end of § 6), then the four-sphere ABCDE has radius zero, i.e., is a four-cone.

10. We now confine our attention to the four-dimensional space $4 and particularly to
the triangle ABC.

We choose, as origin of coordinates in $4, the centre of the circle ABC and axes such that
the plane ABC is the x-y plane having equations 2=0, w =0. This can be done in the follow-
ing way. Take as Ox and Oy any two perpendicular lines through the origin 0 and in the
plane ABC; for Oz take any line in St perpendicular to the plane ABC and for Ow take
either direction on the line in St perpendicular to the lines Ox, Oy, Oz.

In the coordinate system so chosen, let D be the point (x4, yit z4, w4) and E the point
(xs, y5, zb, w5), and let D' be the point (xt, yit 0, 0) and E' the point (CK5, y5, 0, 0). If the co-
ordinate system is changed so that the plane ABC remains the plane z =0, w =0, the x and y
coordinates of D' will still be equal to those of D, and similarly with E' and E.

11. In the type of coordinate system just chosen, the threefold ABCD has equation of
the form

for it passes through the plane z =0, w =0. Since it is a special threefold,

Aa+/*a=0.

Hence ABCD is either z + iw =0 or z -iw =0, and ABCE is the other. It is merely a matter
of notation to take z + iw=Q for ABCD and z-iw=0 for ABCE. Then D is the point
(H> Vi> z4> izi)and E i s t n e P o i n t (xs> y&> z5> ~izs) (§10)-

12. The remaining special threefolds BCDE, ACDE and ABDE all pass through D and E.
Consider first BCDE. Let us choose the x- and y-axes in the plane ABC so that BC has

equation y —y' =0. It may be remarked that this would not be possible if b, c intersected ;
but it has been observed in § 2 that they do not. The equation of BCDE has .then the form

for it passes through the line y - y' = 0, z = 0, w = 0. Since the threefold is special,

Since it passes through D and E,

and X(y5 - y') + (p - iv) z8 = 0 ;

hence W(yi-y
>){y&-y') =(/A2+V2)Z4Z5, or, since A2+/i2+v2=0,

If (<x4, )84, y4) and (<x5> /?5, ys) are the ordinary trilinear coordinates of D' and E', (1) gives

- z4z6.
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6 JOHN DOUGALL

Similarly, yS4y86 = — z4zs

and y4y5 = -z426.

D' and E' are therefore isogonal points of the triangle ABC. This property represents the
data of the double-six theorem (§ 9).

If k2 is the common value of <x4 <x5, )84 j86 and y4 y5, then

% = - * 2 (2)
13. Next for the conclusion (§ 9) of that theorem, which was shown to be represented by

the property that the four-sphere ABCDE has zero radius.
What does this give in the triangle ABG1
The equation of the sphere ABODE has the form

(x2 + y2 -R2) + z2 + w2 + 2pz + 2qw = 0, (1)

for it contains the circle whose equations are

x2 + y2-R2=0, 2=0, w=0,

R2 being the square of the radius of the circumcircle of the triangle ABC.
(i) The sphere (1) is to pass through the points D(xi, yit z4, izt) and E(x5, y5, z5, -iz5).

For both of these points z2 + w2 = 0. Hence, from (1),

*4a + Vi ~R2 + 2^t(P + k) = 0
and xs

2 + y5
2-R2 + 2zlt(p-iq)=0.

Thus (x* + y2 - R2) (xb
2 + y2 - R2) = 4Ziz6(p

2 + q2)
= -4Jc2(p2 + q2), (2)

from § 12 (2).
(ii) The radius of (1) is zero ; i.e.,

p2 + q2+R2=0 (3)

From (2) and (3),
(x2+y2-R2)(xb

2+y2-R2)=±km2, (4)

that is to say, we have the theorem :

In a plane triangle, the product of the powers, with respect to the circumcircle, of two
isogonal points is equal to 4k2R2; where, if (a, £, y) and (a!, §', y') are the trilinear coordinates
of the isogonal points, k2 is the common value of oca', $S' and yy', and R2 is the square of the
radius of the drcumcircle.

The preceding analysis can be regarded as a deduction of this theorem from the theorem
of the double-six (§ 3, last sentence). But the analysis could be reversed, so the two theorems
are equivalent.

Further, instead of thinking of D' and E' as isogonal points of the triangle, we may, in
virtue of a fundamental focal property of conies, consider them to be the foci of a conic
inscribed in the triangle, in which case k2 is b2, the square of the minor semi-axis.

If the conic is a circle, the theorem (4) at once reduces to the familiar theorem, due to
Euler :

where S2 is the square of the distance between the circumcentre and the centre of the inscribed
or of an escribed circle, and p is the radius of the inscribed or escribed circle.
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14. An algebraic proof of the theorem of § 13 (4) may be derived from the invariant
theory of two conies.*

If the conies are

the four invariants are :

^ + g
a2 b2

The origin being at the centre of the ellipse, the coordinates of the foci are ±ae, 0 (where
a2e2=a2 -b2), and those of the centre of the circle are a, /?.

The condition that a triangle can be circumscribed to 8 and inscribed in 8' is :

6>2=4zI6>' (1)

The expression of this formula in terms of a, b, a, fi, r does not lend itself to immediate geo-
metrical interpretation. We know, however, from the analysis in this paper that it must be
equivalent to § 13 (4), with k2 =b2; that is, to

{(a-ae}2+P2-r2}{(ot. + ae}2+P2-r!i}=4:b2r2 (2)

The proof that (1) and (2) are the same is a matter of the simplest algebra.

* Salmon, Conic Sections, Chapter on Invariants and Covariants of Systems of Conies.

GLASGOW
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