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Normal-convex embeddings are introduced for inverse semigroups, generalizing the
group-theoretic concept, due to Papakyriakopoulos [4]. It is shown that every £-unitary
inverse semigroup admits a normal-convex embedding into a semidirect product of a
semilattice by a group, a stronger version of a result by O'Carroll [3]. A general
embedding result for inverse semigroups is also obtained.

1. Preliminaries. The general terminology and notation are those of Petrich [5].
Let 5 be an inverse semigroup and let R c 5 x S be a relation on 5. We denote by Rn

the congruence on 5 generated by R, that is, the transitive closure of {(aub, avb): a, b e
Sl and (u, v) e R U R~1}. The natural projection S^>S/R* is denoted by (/?*)".

Let cp: 5—> T be a homomorphism of inverse semigroups and let R be a relation on S.
The relation

Rep = {{ucp, v q > ) : ( u , v ) e R }

is said to be the relation on T induced by R and cp. It follows easily that

R*cp^{R<p)«. (1.1)

If q> is injective, we say that cp is an embedding of inverse semigroups.
Now let cp:S —*T be an embedding of inverse semigroups. We say that (p is

normal-convex if and only if, for every relation R on 5,

(fl(p)# n (S X S)<p c fl V

Note that, by (1.1), the inclusion R**q> c (Rep)" D (5 x S)cp is always true. Also by
(1.1), we know that cp induces a unique homomorphism q>R:S/Rt*^> T/(Rcp)** such that
the canonical diagram

I hcWl* (1.2)

-=T T/(Rcp)*

commutes. Now we have

LEMMA 1.1. Let q>:S-*T be an embedding of inverse semigroups. Then (p is
normal-convex if and only if cpR is injective for every relation R on S.

Proof. Suppose that cp is normal-convex and let R be a relation on 5. Let a, b e S be
such that (aR^y^ibR*)^. Since (1.2) commutes, we have (aq>)(R<p)* = (bq>)(R<p)*.
Hence (acp,bcp)e(R(p)t* n ( 5 xS)cp. Since (p is normal-convex, this yields (aq>,bq>)e
Rncp. Thus aR* = bR* and so (pR is injective.

Conversely, suppose that q)R is injective for every relation R on 5. Suppose that
(a<p, b(p) e {R(p)* for some a,beS. Since (1.2) commutes, we have * *
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and since q>R is injective, aRu = bRu. Therefore (a<p,fc<p) e/?*(p and so cp is normal-
convex.

The following result shows that the class of normal-convex embeddings is closed
under composition.

LEMMA 1.2. Let q>:S—>T and xp:T—>U be normal-convex embeddings of inverse
semigroups. Then (pxp is a normal-convex embedding.

Proof. It is trivial that q>%\> is an embedding. Now let R be a relation on S. Since
(<pV)w is uniquely defined, we certainly have (fpip)R = <PRV/?<P

 a n d s o
 ((PV')R is injective.

Thus, by Lemma 1.1, q>%p is normal-convex.

The next result shows an application of the concept of normal-convex embedding.
Given a semigroup 5 and a relation R on S, the word problem for R consists in

finding an algorithm which determines, for every a,b eS, whether or not {a,b)e /?*.

THEOREM 1.3. Let q>:S—*T be a normal-convex embedding of inverse semigroups
and let R be a relation on S. Then the word problem for R is solvable if the word problem
for Rep is solvable.

Proof. Suppose that the word problem for Rq> is solvable. Let a,b eS. By Lemma
1.1, <pR is injective and so aRu = bR**<^{aRu)cpR = {bRn)q>R. Since (1.2) commutes, we
have («/?*%„ = {bR*)VRO(a(p){R(p)*= (by)(R<p)*:. Since the word problem for Rq> is
solvable, we can determine whether or not this latter equality holds, hence the word
problem for R is solvable and the theorem is proved.

Now let S be an inverse semigroup with semilattice of idempotents £(5) . The least
group congruence on 5 is defined by

( f l , i ) e a«3ce E(S): ae = be.

We say that S is E-unitary if

VaeS, ao = l^>a

Let M denote an inverse monoid with least group congruence a. Then M is said to be
F-inverse if every a-class of M has a maximal element under the natural partial order. It
is well-known that every F-inverse monoid is £-unitary [5, §VII.5].

Let G be a group and let K be a semilattice. An action of G on K by left
automorphisms is a map G x K^>K:(g,A)>-*gA such that, for every g,heG and
A,BeK,

g(hA) = {gh)A,

g(AB) = (gA)(gB),

1A=A.

It follows easily that, for every g e G and A, B e K, we have

The semidirect product of K by G induced by this action is the inverse semigroup
K x G with the operation given by (A, g)(B, h) = (A(gB), gh). When no ambiguity arises
about the action, we shall denote this semigroup by K x G.
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Now suppose that L is an ideal of K such that GL = K. Then we say that (G, K, L) is
a strong McAlister triple and

P(G, K, L) = {(A,g) e L x G :g"U e L}

is an inverse subsemigroup of Kx G [1].

LEMMA 1.4 [1]. Lef M be an inverse monoid. Then M is F-inverse if and only if
M — P(G, K, L) for some strong McAlister triple (G, K, L) such that L has a unity.

Let S be an inverse semigroup and let T be a congruence on 5. We say that x is
idempotent-pure if, for every (a,b)e x,

aeE(S)=>beE(S).

We say that x is idempotent-separating if, for every (a,b) e x,

Finally, an inverse semigroup S is said to be quasi-free if T — F/x for some free
inverse semigroup F and some idempotent-pure congruence x on F.

LEMMA 1.5 [2]. Let S be a quasi-free inverse semigroup. Then S — P(G, K, L) for
some strong McAlister triple (G, K, L) with G free.

2. Strong McAlister triples. In this section we show that, for every strong
McAlister triple (G,K,L), there exists a canonical embedding of P(G,K,L) into a
semidirect product of a semilattice by a group.

THEOREM 2.1. Let (G,K,L) be a strong McAlister triple. Then the inclusion map
<p: P(G, K, L)—» K x G is normal-convex.

Proof. Let S = P(G,K,L) and let T = KxG. Let R be a relation on 5, say
R = {((Ah gj), (Bh hj)):i el}. Without loss of generality, we can assume that R is
symmetric. Let (U, u), (V, v) e S be such that (U, u)(R(p)ff = (V, v)(fl<p)#. We want to
prove that (U, u)R** = (V, v)R*. Since R is symmetric, we know that there exist
(Wo, w0), ...,(Wn,wn)eT such that

(Wo, wo) = (U, u)

(Wn,wn) = (V,v)

Vy e { 1 , . . . , « } 3(Py, Pj), (Qj, q,) € T 3ij e I:

(Wj_1,Wj-l) = (P,,pi){Ail,
and

Now we show that, for every m e {0,. . . , n},

3P'm,Q'm,WmeL:

(W'm,wm)eS,

(2.1)
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We use induction on m. Defining P'o =U,Q'Q = u~xU and W'a = U, we see that (2.1)
holds for m = 0.

Now suppose that (2.1) holds for m=j — \, with / e {1,. . . , n). Then

j}Wjj _ x , wy _,) = (Wj.u 1)(W,L,, Wj_x)(wj}xWj_x,

It is clear that

Wj.x^Pj.xP, (2.2)

and so

Similarly,

and so

gTSpVW'j-^QMjQ'i-x). (2.3)
Hence

(Gy, <7yXGy'-i, l X ^ - i ^ - i . 1) = ( g r V ' ^ - i . 9y)-
Thus

(W;_,, w ,̂) = (Wj-uPjXA,,, gJig-'pi'W^qj).
Since Wj-x^PjAi, we have /?~'Wy'_, «/4(/e L. But L is an ideal of K and so

pJxW'j-x e L. Since w/_, e L, we obtain (Wy'_,,py) e 5. Similarly, we have g,"1^"1^'., «
'XPA) =8VA>, e L ' and ^ ' ^ V r ' ^ - . = ^ - > H e ̂ - Hence

Let P; = W;_,, Gy^HT-Mv;., and W] = W'_x{piBi){wjW-^W'H,). Obviously,
P'j,Q-eL and since L is an ideal of K, we have VVy' e L as well. We have
(W'j, Wj) = (W;_,,py)(fllV, hi){gT,xpJxWi.u q,), that is, (W), wy) is a product of elements of
5. Therefore (Wj, w;) e S. Moreover,

(Wy\ wy)/?* = [(Wj_uPi)(Bir h^p-'Wj^, qj)}R«

It follows from (2.2) that (W-"-i,py) = (w;_,, l)(Py,py). Similarly, (2.3) yields
(g-lp;xWj_x, q,) = (Qj, qj)(w-}xWj_x, 1). Hence

(Wj, w,) = (W;_,,Py)(B;/, h^g-'pj'Wj^q,)

= (Wj.u l)(Py,Py)(B/y, /f/y)(Gy, <?y)«,W;_,, 1) = (P;, 1)(^-, Wj)(Qj, 1)

and so (2.1) holds for m =j.
Thus (2.1) holds for every m e { 0 , . . . , n } . In particular, we have (W^,,u)/?# =

(W'n, wn)R* = (U, u)R* and (W'tt, v) = (P'n, l)(Wn, w,,)(Q'n, 1) = (P'n, \)(V, v)(Q'n, 1).
Therefore W'n^V and so (W'n,v) = (W'n,l)(V,v). It follows that (U,u)R* =
(W'n, 1)R*(V, v)R* and so (U,u)R*^(V, v)R*. Similarly, we obtain (V,v)R°^
(U, u)R* and so (U, u)/?# = (V, v)R*. Thus <p is normal-convex.

Now, Lemma 1.5 and Theorem 2.1 immediately yield
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COROLLARY 2.2. Every quasi-free inverse semigroup admits a normal-convex embed-
ding into a semidirect product of a semilattice by a free group.

Since every free inverse semigroup is quasi-free, we also obtain

COROLLARY 2.3. Every free inverse semigroup admits a normal-convex embedding
into a semidirect product of a semilattice by a free group.

3. Z?-unitary inverse semigroups. In this section we prove that every fs-unitary
inverse semigroup admits a normal-convex embedding into a semidirect product of a
semilattice by a group.

Let S be an £-unitary inverse semigroup. Let M(S) — {0$A cS:E(S) .Ac.Ac.ao
for some aeS} with the operation described by AB = {ab:a eA and beB}. The
following result is due to O'Carroll.

LEMMA 3.1 [3]. Let S be an E-unitary inverse semigroup. Then M(S) is an F-inverse
monoid and the map <p:S—» M(S):s>-^ {t eS:t^s} is an embedding. Moreover, if os and
°M(S) denote respectively the least group congruences of S and M(S), then oM(S) D
(5 x S)<p = os(p.

We prove that this embedding is in fact normal-convex.

LEMMA 3.2. Let S be an E-unitary inverse semigroup. Then the embedding q>:S—*
M(S):s>-+ {t e S:t*S:s} is normal-convex.

Proof. Let R be a relation on 5. Without loss of generality, we can assume that R is
symmetric. Let a,beS be such that {a(p,bq>)e{Rcp)*t. We want to prove that
(a,b)eR*.

Since {aq>, bq>) e (Rq))*, there exist Wo,. . . , Wn e M(S) such that

W0 = a<p;

Wn=bq>;

VJ e { 1 , . . . ,n} 3^, g , e M(S) 3(M,, v,) e R:

and W, = P

We prove the following result. Let z eS and C, D e M(S) be such that C(zcp)D e Sep.
Then

3c,deS:c<pcC, dcpcD and (czd)q> = C(zq>)D. (3.1)

Since C{zq>)D e Scp, there exists some w e S such that C(zq>)D = wcp. Since w e wq>,
there exist ceC, z'ezy and deD such that cz'd = w. Since ccp c C, z'cpc^zcp and
dycD, we obtain wep = (cz'd)(p = (c(p)(z'(p)(d(p) c (ccp)(zq))(dq)) c. C(zcp)D = wq>.
Therefore (czd)cp = C{zcp)D and (3.1) holds.

Since 5 is £-unitary, it is clear that

VAeM(S), AA~lclocE(S). (3.2)

Now we show that, for every / e {0,. . . , n)

Wj and (a,»vy)e/?*. (3.3)
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Let w0 = a. It follows that (3.3) holds for / = 0.
Now suppose that (3.3) holds for j = i — 1, with i > 0 . Then M>,_,<pcV^_| and so,

since 5 is inverse, w,_,<p c V^_, W~.'|(H',_1(p). By (3.2), we also have Wi-XWji}l(wi_l(p) c
Wi-\(p. Hence w,_i<p = Wi-iWji!l(wi_lcp) = Pi{uiq>)QiW~2l{wi_x(p). Now we can apply
(3.1) with z = uh C = Pt and D = 2iW,rl11(»v,_1(p). Hence there exist p,, q, e 5 such that
PM^Pi, ^(psG.-WT-iK-iCp) and {piuiq,)(p = Pi{uiq>)QiW~2x{wi_x(p) = wi_x(p. We de-
fine w—piViq;. Now w,<p = (p,-(p)(u(-<p)(9/<p) s f:(i',q5)e,Wr-1i(H',-1(p) = W;.W7-i(w,_i<p) s
H -̂lVr-'iV -̂i and so, by (3.2), we have wtcp c Wt. E(S). For every s e S and e e £(5), we
have ae = aea"'a, and hence V r̂. £(5) c. E(S). Wj. Therefore w,«p c W;. £(5) c
£(5) . W, c W,. Moreover, w,/?# = {p,v#,)R* = (p,u,<7,)/?# = w,-,/?# = a/?# and so (3.3)
holds for j = /. Thus (3.3) holds for every ; e {0,. . . , n}.

In particular, wncp cWn = bq> and (a, ivn) e R*. Hence wn « b and a/?* = wn/?# =£
bR". Similarly, we prove that bR* ^aR*. Thus (a, b) e Ru and the lemma is proved.

Now we obtain

THEOREM 3.3. Every E-unitary inverse semigroup admits a normal-convex embedding
into a semidirect product of a semilattice by a group.

Proof. Let S be an £-unitary inverse semigroup. By Lemma 3.2, the embedding
cp.S—*M(S):s>-^{teS:t^s} is normal-convex. By Lemma 3.1, M(S) is F-inverse and
so, by Lemma 1.4 and Theorem 2.1, there exists a normal-convex embedding ip:M(S)—>
P, where P is a semidirect product of a semilattice by a group. By Lemma 1.2, the
composition q>ip:S—*P is a normal-convex embedding and the theorem is proved.

4. Inverse semigroups. The results of Section 2 can be used to obtain a general
embedding result on inverse semigroups. We shall make use of the following result on
quasi-free covers, due to Munn and Reilly.

LEMMA 4.1 [2]. Let S be an inverse semigroup. Then there exists a quasi-free inverse
semigroup F and an idempotent-separating congruence r on F such that S = F/r.

Now we have

THEOREM 4.2. Every inverse semigroup admits a normal-convex embedding into an
idempotent-separating homomorphic image of a semidirect product of a semilattice by a
free group.

Proof. Let 5 be an inverse semigroup. By Lemma 4.1, we can assume that 5 = Fix,
with F quasi-free and T idempotent-separating. By Lemma 1.5, we can assume that
F = P(G,K,L) for some strong McAlister triple (G,K,L), with G free. By Theorem
2.1, the inclusion q>:F—>KxG is normal-convex. Therefore, by Lemma 1.1, the
induced map xp:F/T—>(Kx G)/(r<p)# defined by (ar)%p = a{xq>)** is injective. We must
prove that ip is normal-convex and (rep)" is idempotent-separating.

First we prove that ip is normal-convex. Let T = (Kx G)/(r(p)*. Let R be a relation
on 5. We want to show that (Rxp)* D (S x S)rp c R*ip.

Let fi be the congruence on Fsuch that fi/x = R*. It follows that, for every a,b eF,
(a, b) e fi if and only if {ax, bx) e Rn. We prove that

(/?V)#£(M?0#/(r<p)# (4.1)

Since TCJU, we have x(pc.fiq> and so {xcpj* c (juq?)*. Hence (fi(p)*/(xq))* is a
congruence on T and we only need to show that Rijj c (/i<p)*/(T<p)#. Let a, b e Fbe such
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that (ax,bx)eR. Then {ax,bx)&Ru and so, by definition of (i, we have (a,b)e[i.
Hence (a<p, bq>) e ju<pc (ju«p)#. Therefore {aq){xcp)tt,bq>{xq))n) e(ix<p)#l{xq>)u, that is,
((ar)i//, (6T)I/ ;) e (jU(p)#/(T<p)#. Hence (4.1) holds.

Now suppose that a,beF and ((ax)il>,(bx)%p)e(Rxp)'*. Then, by (4.1), we have
({ax)\l>,{bx)xl>)e{nq))ttl{x(p)u. Hence {acp{xcp)u ,bq){xq))u)e{ncp)nl{x(p)u and so
(aq>, bq>) e (iiy)*. Since <p is normal-convex and ju is a congruence on F , we have
(fty)* H (F x F)q) c (up. Hence {aq>,b(p)efiq) and so (a,b)en and (ax,bx)eR*.
Therefore ((ax)xp, (bx)il>) e Rn\p and so xp is normal-convex.

Now we prove that (xq>)n is idempotent-separating. Obviously, E(K x G) =
{ ( , 4 , l ) : / l e K } . Suppose that A,BeK are such that (A, l)(r<p)* = (B, 1)(T<P)#. Since
GL = Â , there exists g eG and C e L such that gC = A. Hence g~Vl = C e L and we
have

Since (g"1/!)^"1^) =sg~M e L and L is an ideal of K, we have (g~lA)(g~lB) e L. Hence
(g-lA,l),((g-lA)(g-lB),l)eF. But

and so, since V ' s injective, (g~'i4, l)r = ((g~lA)(g~lB), l)x. Since T is idempotent-
separating, we obtain ( g ' U , l) = ((g-1i4)(g"1fl), 1), that is, g ' U = (g-'i4)(g-'fl).
Hence A=AB and /I =£ B. Similarly, we obtain B^A and so A = fi. Thus (/4,1) = (5,1)
and {xcp)u is idempotent-separating.
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