NORMAL-CONVEX EMBEDDINGS OF INVERSE SEMIGROUPS by PEDRO V. SILVA

(Received 20 September, 1991)

Normal-convex embeddings are introduced for inverse semigroups, generalizing the group-theoretic concept, due to Papakyriakopoulos [4]. It is shown that every E-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group, a stronger version of a result by O'Carroll [3]. A general embedding result for inverse semigroups is also obtained.

1. Preliminaries. The general terminology and notation are those of Petrich [5].

Let S be an inverse semigroup and let $R \subseteq S \times S$ be a relation on S. We denote by $R^{\#}$ the congruence on S generated by R, that is, the transitive closure of $\{(aub, avb): a, b \in S^1 \text{ and } (u, v) \in R \cup R^{-1}\}$. The natural projection $S \to S/R^{\#}$ is denoted by $(R^{\#})^{\natural}$.

Let $\varphi: S \to T$ be a homomorphism of inverse semigroups and let R be a relation on S. The relation

$$R\varphi = \{(u\varphi, v\varphi): (u, v) \in R\}$$

is said to be the relation on T induced by R and φ . It follows easily that

$$R^{\#}\varphi \subseteq (R\varphi)^{\#}.\tag{1.1}$$

If φ is injective, we say that φ is an embedding of inverse semigroups.

Now let $\varphi: S \to T$ be an embedding of inverse semigroups. We say that φ is normal-convex if and only if, for every relation R on S,

$$(R\varphi)^{\#} \cap (S \times S)\varphi \subseteq R^{\#}\varphi.$$

Note that, by (1.1), the inclusion $R^{\#}\varphi \subseteq (R\varphi)^{\#} \cap (S \times S)\varphi$ is always true. Also by (1.1), we know that φ induces a unique homomorphism $\varphi_R: S/R^{\#} \to T/(R\varphi)^{\#}$ such that the canonical diagram

$$S \xrightarrow{\varphi} T$$

$$(R^{\#})^{\natural} \downarrow \qquad \qquad \downarrow^{[(R\varphi)^{\#}]^{\natural}} \qquad (1.2)$$

$$S/R^{\#} \xrightarrow{\varphi_{R}} T/(R\varphi)^{\#}$$

commutes. Now we have

Lemma 1.1. Let $\varphi: S \to T$ be an embedding of inverse semigroups. Then φ is normal-convex if and only if φ_R is injective for every relation R on S.

Proof. Suppose that φ is normal-convex and let R be a relation on S. Let $a, b \in S$ be such that $(aR^{\#})_{\varphi_R} = (bR^{\#})_{\varphi_R}$. Since (1.2) commutes, we have $(a\varphi)(R\varphi)^{\#} = (b\varphi)(R\varphi)^{\#}$. Hence $(a\varphi, b\varphi) \in (R\varphi)^{\#} \cap (S \times S)\varphi$. Since φ is normal-convex, this yields $(a\varphi, b\varphi) \in R^{\#}\varphi$. Thus $aR^{\#} = bR^{\#}$ and so φ_R is injective.

Conversely, suppose that φ_R is injective for every relation R on S. Suppose that $(a\varphi, b\varphi) \in (R\varphi)^\#$ for some $a, b \in S$. Since (1.2) commutes, we have $(aR^\#)_{\varphi_R} = (bR^\#)_{\varphi_R}$,

Glasgow Math. J. 35 (1993) 115-121.

and since φ_R is injective, $aR^\# = bR^\#$. Therefore $(a\varphi, b\varphi) \in R^\# \varphi$ and so φ is normal-convex.

The following result shows that the class of normal-convex embeddings is closed under composition.

Lemma 1.2. Let $\varphi: S \to T$ and $\psi: T \to U$ be normal-convex embeddings of inverse semigroups. Then $\varphi\psi$ is a normal-convex embedding.

Proof. It is trivial that $\varphi\psi$ is an embedding. Now let R be a relation on S. Since $(\varphi\psi)_R$ is uniquely defined, we certainly have $(\varphi\psi)_R = \varphi_R\psi_{R\varphi}$ and so $(\varphi\psi)_R$ is injective. Thus, by Lemma 1.1, $\varphi\psi$ is normal-convex.

The next result shows an application of the concept of normal-convex embedding.

Given a semigroup S and a relation R on S, the word problem for R consists in finding an algorithm which determines, for every $a, b \in S$, whether or not $(a, b) \in R^{\#}$.

THEOREM 1.3. Let $\varphi: S \to T$ be a normal-convex embedding of inverse semigroups and let R be a relation on S. Then the word problem for R is solvable if the word problem for R φ is solvable.

Proof. Suppose that the word problem for $R\varphi$ is solvable. Let $a, b \in S$. By Lemma 1.1, φ_R is injective and so $aR^\# = bR^\# \Leftrightarrow (aR^\#)\varphi_R = (bR^\#)\varphi_R$. Since (1.2) commutes, we have $(aR^\#)_{\varphi_R} = (bR^\#)_{\varphi_R} \Leftrightarrow (a\varphi)(R\varphi)^\# = (b\varphi)(R\varphi)^\#$. Since the word problem for $R\varphi$ is solvable, we can determine whether or not this latter equality holds, hence the word problem for R is solvable and the theorem is proved.

Now let S be an inverse semigroup with semilattice of idempotents E(S). The *least group congruence* on S is defined by

$$(a,b) \in \sigma \Leftrightarrow \exists e \in E(S) : ae = be.$$

We say that S is E-unitary if

$$\forall a \in S$$
, $a\sigma = 1 \Rightarrow a \in E(S)$.

Let M denote an inverse monoid with least group congruence σ . Then M is said to be *F-inverse* if every σ -class of M has a maximal element under the natural partial order. It is well-known that every F-inverse monoid is E-unitary [5, §VII.5].

Let G be a group and let K be a semilattice. An action of G on K by left automorphisms is a map $G \times K \rightarrow K: (g, A) \mapsto gA$ such that, for every $g, h \in G$ and $A, B \in K$,

$$g(hA) = (gh)A,$$

$$g(AB) = (gA)(gB),$$

$$1A = A.$$

It follows easily that, for every $g \in G$ and $A, B \in K$, we have

$$A \leq B \Rightarrow gA \leq gB$$
.

The semidirect product of K by G induced by this action is the inverse semigroup $K \times G$ with the operation given by (A, g)(B, h) = (A(gB), gh). When no ambiguity arises about the action, we shall denote this semigroup by $K \times G$.

Now suppose that L is an ideal of K such that GL = K. Then we say that (G, K, L) is a strong McAlister triple and

$$P(G, K, L) = \{(A, g) \in L \times G : g^{-1}A \in L\}$$

is an inverse subsemigroup of $K \times G$ [1].

LEMMA 1.4 [1]. Let M be an inverse monoid. Then M is F-inverse if and only if $M \simeq P(G, K, L)$ for some strong McAlister triple (G, K, L) such that L has a unity.

Let S be an inverse semigroup and let τ be a congruence on S. We say that τ is idempotent-pure if, for every $(a, b) \in \tau$,

$$a \in E(S) \Rightarrow b \in E(S)$$
.

We say that τ is idempotent-separating if, for every $(a, b) \in \tau$,

$$a \in E(S) \Rightarrow b \notin E(S)$$
.

Finally, an inverse semigroup S is said to be *quasi-free* if $T \simeq F/\tau$ for some free inverse semigroup F and some idempotent-pure congruence τ on F.

LEMMA 1.5 [2]. Let S be a quasi-free inverse semigroup. Then $S \simeq P(G, K, L)$ for some strong McAlister triple (G, K, L) with G free.

2. Strong McAlister triples. In this section we show that, for every strong McAlister triple (G, K, L), there exists a canonical embedding of P(G, K, L) into a semidirect product of a semilattice by a group.

THEOREM 2.1. Let (G, K, L) be a strong McAlister triple. Then the inclusion map $\varphi: P(G, K, L) \to K \times G$ is normal-convex.

Proof. Let S = P(G, K, L) and let $T = K \times G$. Let R be a relation on S, say $R = \{((A_i, g_i), (B_i, h_i)) : i \in I\}$. Without loss of generality, we can assume that R is symmetric. Let $(U, u), (V, v) \in S$ be such that $(U, u)(R\varphi)^{\#} = (V, v)(R\varphi)^{\#}$. We want to prove that $(U, u)R^{\#} = (V, v)R^{\#}$. Since R is symmetric, we know that there exist $(W_0, W_0), \ldots, (W_n, W_n) \in T$ such that

$$(W_0, w_0) = (U, u)$$

$$(W_n, w_n) = (V, v)$$

$$\forall j \in \{1, \dots, n\} \ \exists (P_j, p_j), (Q_j, q_j) \in T \ \exists i_j \in I:$$

$$(W_{j-1}, w_{j-1}) = (P_j, p_j)(A_{i_j}, g_{i_j})(Q_j, q_j)$$

 $(W_i, w_i) = (P_i, p_i)(B_i, h_{ii})(Q_i, q_i).$

and

Now we show that, for every $m \in \{0, ..., n\}$,

$$\exists P'_{m}, Q'_{m}, W'_{m} \in L:$$

$$(W'_{m}, w_{m}) \in S,$$

$$(W'_{m}, w_{m})R^{\#} = (U, u)R^{\#},$$

$$(W'_{m}, w_{m}) = (P'_{m}, 1)(W_{m}, w_{m})(Q'_{m}, 1).$$
(2.1)

We use induction on m. Defining $P'_0 = U$, $Q'_0 = u^{-1}U$ and $W'_0 = U$, we see that (2.1) holds for m = 0.

Now suppose that (2.1) holds for m = j - 1, with $j \in \{1, ..., n\}$. Then

$$\begin{aligned} (W'_{j-1}, w_{j-1}) &= (W'_{j-1}, 1)(W'_{j-1}, w_{j-1})(w_{j-1}^{-1}W'_{j-1}, 1) \\ &= (W'_{j-1}, 1)(P'_{j-1}, 1)(W_{j-1}, w_{j-1})(Q'_{j-1}, 1)(w_{j-1}^{-1}W'_{j-1}, 1) \\ &= (W'_{j-1}, 1)(P'_{j-1}, 1)(P_{j}, p_{j})(A_{i,j}, g_{i,j})(Q_{j,j}, q_{j})(Q'_{j-1}, 1)(w_{j-1}^{-1}W'_{j-1}, 1). \end{aligned}$$

It is clear that

$$W'_{i-1} \le P'_{i-1}P_i \tag{2.2}$$

and so

$$(W'_{i-1}, 1)(P'_{i-1}, 1)(P_i, p_i) = (W'_{i-1}, p_i).$$

Similarly,

$$W'_{i-1} \leq (p_i g_{i_i} Q_i)(p_i g_{i_i} q_i Q'_{i-1})$$

and so

$$g_{i_j}^{-1} p_j^{-1} W'_{j-1} \le Q_j(q_j Q'_{j-1}). \tag{2.3}$$

Hence

$$(Q_j, q_j)(Q'_{j-1}, 1)(w_{j-1}^{-1}W'_{j-1}, 1) = (g_{i_j}^{-1}p_j^{-1}W'_{j-1}, q_j).$$

Thus

$$(W'_{j-1}, w_{j-1}) = (W'_{j-1}, p_j)(A_{i_j}, g_{i_j})(g_{i_j}^{-1} p_j^{-1} W'_{j-1}, q_j).$$

Since $W'_{j-1} \leq p_j A_{i_j}$, we have $p_j^{-1} W'_{j-1} \leq A_{i_j} \in L$. But L is an ideal of K and so $p_j^{-1} W'_{j-1} \in L$. Since $W'_{j-1} \in L$, we obtain $(W'_{j-1}, p_j) \in S$. Similarly, we have $g_{i_j}^{-1} p_j^{-1} W'_{j-1} \leq g_{i_j}^{-1} p_j^{-1} (p_j A_{i_j}) = g_{i_j}^{-1} A_{i_j} \in L$, and $q_j^{-1} g_{i_j}^{-1} p_j^{-1} W'_{j-1} = w_{j-1}^{-1} W'_{j-1} \in L$. Hence

$$(g_{i_i}^{-1}p_j^{-1}W'_{j-1},q_j) \in S.$$

Let $P'_{j} = W'_{j-1}$, $Q'_{j} = w_{j-1}^{-1}W'_{j-1}$ and $W'_{j} = W'_{j-1}(p_{j}B_{i_{j}})(w_{j}w_{j-1}^{-1}W'_{j-1})$. Obviously, P'_{j} , $Q'_{j} \in L$ and since L is an ideal of K, we have $W'_{j} \in L$ as well. We have $(W'_{j}, w_{j}) = (W'_{j-1}, p_{j})(B_{i_{j}}, h_{i_{j}})(g_{i_{j}}^{-1}p_{j}^{-1}W'_{j-1}, q_{j})$, that is, (W'_{j}, w_{j}) is a product of elements of S. Therefore $(W'_{j}, w_{j}) \in S$. Moreover,

$$(W'_{j}, w_{j})R^{\#} = [(W'_{j-1}, p_{j})(B_{i_{j}}, h_{i_{j}})(g_{i_{j}}^{-1}p_{j}^{-1}W'_{j-1}, q_{j})]R^{\#}$$

$$= [(W'_{j-1}, p_{j})(A_{i_{j}}, g_{i_{j}})(g_{i_{j}}^{-1}p_{j}^{-1}W'_{j-1}, q_{j})]R^{\#} = (W'_{j-1}, w_{j-1})R^{\#} = (U, u)R^{\#}.$$

It follows from (2.2) that $(W'_{j-1}, p_j) = (W'_{j-1}, 1)(P_j, p_j)$. Similarly, (2.3) yields $(g_{i_1}^{-1} p_j^{-1} W'_{j-1}, q_j) = (Q_j, q_j)(w_{j-1}^{-1} W'_{j-1}, 1)$. Hence

$$(W'_{j}, w_{j}) = (W'_{j-1}, p_{j})(B_{i_{j}}, h_{i_{j}})(g_{i_{j}}^{-1}p_{j}^{-1}W'_{j-1}, q_{j})$$

$$= (W'_{j-1}, 1)(P_{i}, p_{i})(B_{i_{i}}, h_{i_{i}})(Q_{i}, q_{i})(w_{i-1}^{-1}W'_{j-1}, 1) = (P'_{i}, 1)(W_{i}, w_{i})(Q'_{i}, 1)$$

and so (2.1) holds for m = j.

Thus (2.1) holds for every $m \in \{0, ..., n\}$. In particular, we have $(W'_n, v)R^{\#} = (W'_n, w_n)R^{\#} = (U, u)R^{\#}$ and $(W'_n, v) = (P'_n, 1)(W_n, w_n)(Q'_n, 1) = (P'_n, 1)(V, v)(Q'_n, 1)$. Therefore $W'_n \leq V$ and so $(W'_n, v) = (W'_n, 1)(V, v)$. It follows that $(U, u)R^{\#} = (W'_n, 1)R^{\#}(V, v)R^{\#}$ and so $(U, u)R^{\#} \leq (V, v)R^{\#}$. Similarly, we obtain $(V, v)R^{\#} \leq (U, u)R^{\#}$ and so $(U, u)R^{\#} = (V, v)R^{\#}$. Thus φ is normal-convex.

Now, Lemma 1.5 and Theorem 2.1 immediately yield

COROLLARY 2.2. Every quasi-free inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a free group.

Since every free inverse semigroup is quasi-free, we also obtain

COROLLARY 2.3. Every free inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a free group.

3. *E*-unitary inverse semigroups. In this section we prove that every *E*-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group.

Let S be an E-unitary inverse semigroup. Let $M(S) = \{\emptyset \notin A \subseteq S : E(S) : A \subseteq A \subseteq a\sigma \text{ for some } a \in S\}$ with the operation described by $AB = \{ab : a \in A \text{ and } b \in B\}$. The following result is due to O'Carroll.

Lemma 3.1 [3]. Let S be an E-unitary inverse semigroup. Then M(S) is an F-inverse monoid and the map $\varphi: S \to M(S): s \mapsto \{t \in S: t \leq s\}$ is an embedding. Moreover, if σ_S and $\sigma_{M(S)}$ denote respectively the least group congruences of S and M(S), then $\sigma_{M(S)} \cap (S \times S)\varphi = \sigma_S \varphi$.

We prove that this embedding is in fact normal-convex.

LEMMA 3.2. Let S be an E-unitary inverse semigroup. Then the embedding $\varphi: S \to M(S): s \mapsto \{t \in S : t \leq s\}$ is normal-convex.

Proof. Let R be a relation on S. Without loss of generality, we can assume that R is symmetric. Let $a, b \in S$ be such that $(a\varphi, b\varphi) \in (R\varphi)^{\#}$. We want to prove that $(a, b) \in R^{\#}$.

Since $(a\varphi, b\varphi) \in (R\varphi)^{\#}$, there exist $W_0, \ldots, W_n \in M(S)$ such that

$$W_0 = a\varphi;$$
$$W_n = b\varphi;$$

$$\forall i \in \{1, \dots, n\} \ \exists P_i, Q_i \in M(S) \ \exists (u_i, v_i) \in R:$$

$$W_{i-1} = P_i(u_i \varphi) Q_i \quad \text{and} \quad W_i = P_i(v_i \varphi) Q_i.$$

We prove the following result. Let $z \in S$ and $C, D \in M(S)$ be such that $C(z\varphi)D \in S\varphi$. Then

$$\exists c, d \in S : c\varphi \subseteq C, \qquad d\varphi \subseteq D \quad \text{and} \quad (czd)\varphi = C(z\varphi)D.$$
 (3.1)

Since $C(z\varphi)D \in S\varphi$, there exists some $w \in S$ such that $C(z\varphi)D = w\varphi$. Since $w \in w\varphi$, there exist $c \in C$, $z' \in z\varphi$ and $d \in D$ such that cz'd = w. Since $c\varphi \subseteq C$, $z'\varphi \subseteq z\varphi$ and $d\varphi \subseteq D$, we obtain $w\varphi = (cz'd)\varphi = (c\varphi)(z'\varphi)(d\varphi) \subseteq (c\varphi)(z\varphi)(d\varphi) \subseteq C(z\varphi)D = w\varphi$. Therefore $(czd)\varphi = C(z\varphi)D$ and (3.1) holds.

Since S is E-unitary, it is clear that

$$\forall A \in M(S), \quad AA^{-1} \subseteq I\sigma \subseteq E(S).$$
 (3.2)

Now we show that, for every $j \in \{0, \ldots, n\}$

$$\exists w_j \in S : w_j \varphi \subseteq W_j \quad \text{and} \quad (a, w_j) \in R^{\#}. \tag{3.3}$$

Let $w_0 = a$. It follows that (3.3) holds for j = 0.

Now suppose that (3.3) holds for j = i - 1, with i > 0. Then $w_{i-1}\varphi \subseteq W_{i-1}$ and so, since S is inverse, $w_{i-1}\varphi \subseteq W_{i-1}W_{i-1}^{-1}(w_{i-1}\varphi)$. By (3.2), we also have $W_{i-1}W_{i-1}^{-1}(w_{i-1}\varphi) \subseteq w_{i-1}\varphi$. Hence $w_{i-1}\varphi = W_{i-1}W_{i-1}^{-1}(w_{i-1}\varphi) = P_i(u_i\varphi)Q_iW_{i-1}^{-1}(w_{i-1}\varphi)$. Now we can apply (3.1) with $z = u_i$, $C = P_i$ and $D = Q_iW_{i-1}^{-1}(w_{i-1}\varphi)$. Hence there exist p_i , $q_i \in S$ such that $p_i\varphi \subseteq P_i$, $q_i\varphi \subseteq Q_iW_{i-1}^{-1}(w_{i-1}\varphi)$ and $(p_iu_iq_i)\varphi = P_i(u_i\varphi)Q_iW_{i-1}^{-1}(w_{i-1}\varphi) = w_{i-1}\varphi$. We define $w_i = p_iv_iq_i$. Now $w_i\varphi = (p_i\varphi)(v_i\varphi)(q_i\varphi) \subseteq P_i(v_i\varphi)Q_iW_{i-1}^{-1}(w_{i-1}\varphi) = W_iW_{i-1}^{-1}(w_{i-1}\varphi) \subseteq W_iW_{i-1}^{-1}W_{i-1}$ and so, by (3.2), we have $w_i\varphi \subseteq W_i$. E(S). For every $s \in S$ and $e \in E(S)$, we have $ae = aea^{-1}a$, and hence $W_i \cdot E(S) \subseteq E(S) \cdot W_i$. Therefore $w_i\varphi \subseteq W_i \cdot E(S) \subseteq E(S) \cdot W_i$. Moreover, $w_iR^\# = (p_iv_iq_i)R^\# = (p_iu_iq_i)R^\# = w_{i-1}R^\# = aR^\#$ and so (3.3) holds for j = i. Thus (3.3) holds for every $j \in \{0, \dots, n\}$.

In particular, $w_n \varphi \subseteq W_n = b \varphi$ and $(a, w_n) \in R^{\#}$. Hence $w_n \leq b$ and $aR^{\#} = w_n R^{\#} \leq bR^{\#}$. Similarly, we prove that $bR^{\#} \leq aR^{\#}$. Thus $(a, b) \in R^{\#}$ and the lemma is proved.

Now we obtain

THEOREM 3.3. Every E-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group.

Proof. Let S be an E-unitary inverse semigroup. By Lemma 3.2, the embedding $\varphi: S \to M(S): s \mapsto \{t \in S: t \le s\}$ is normal-convex. By Lemma 3.1, M(S) is F-inverse and so, by Lemma 1.4 and Theorem 2.1, there exists a normal-convex embedding $\psi: M(S) \to P$, where P is a semidirect product of a semilattice by a group. By Lemma 1.2, the composition $\varphi \psi: S \to P$ is a normal-convex embedding and the theorem is proved.

4. Inverse semigroups. The results of Section 2 can be used to obtain a general embedding result on inverse semigroups. We shall make use of the following result on quasi-free covers, due to Munn and Reilly.

LEMMA 4.1 [2]. Let S be an inverse semigroup. Then there exists a quasi-free inverse semigroup F and an idempotent-separating congruence τ on F such that $S \simeq F/\tau$.

Now we have

THEOREM 4.2. Every inverse semigroup admits a normal-convex embedding into an idempotent-separating homomorphic image of a semidirect product of a semilattice by a free group.

Proof. Let S be an inverse semigroup. By Lemma 4.1, we can assume that $S = F/\tau$, with F quasi-free and τ idempotent-separating. By Lemma 1.5, we can assume that F = P(G, K, L) for some strong McAlister triple (G, K, L), with G free. By Theorem 2.1, the inclusion $\varphi: F \to K \times G$ is normal-convex. Therefore, by Lemma 1.1, the induced map $\psi: F/\tau \to (K \times G)/(\tau \varphi)^{\#}$ defined by $(a\tau)\psi = a(\tau \varphi)^{\#}$ is injective. We must prove that ψ is normal-convex and $(\tau \varphi)^{\#}$ is idempotent-separating.

First we prove that ψ is normal-convex. Let $T = (K \times G)/(\tau \varphi)^{\#}$. Let R be a relation on S. We want to show that $(R\psi)^{\#} \cap (S \times S)\psi \subseteq R^{\#}\psi$.

Let μ be the congruence on F such that $\mu/\tau = R^{\#}$. It follows that, for every $a, b \in F$, $(a, b) \in \mu$ if and only if $(a\tau, b\tau) \in R^{\#}$. We prove that

$$(R\psi)^{\#} \subseteq (\mu\varphi)^{\#}/(\tau\varphi)^{\#}. \tag{4.1}$$

Since $\tau \subseteq \mu$, we have $\tau \varphi \subseteq \mu \varphi$ and so $(\tau \varphi)^{\#} \subseteq (\mu \varphi)^{\#}$. Hence $(\mu \varphi)^{\#}/(\tau \varphi)^{\#}$ is a congruence on T and we only need to show that $R\psi \subseteq (\mu \varphi)^{\#}/(\tau \varphi)^{\#}$. Let $a, b \in F$ be such

that $(a\tau, b\tau) \in R$. Then $(a\tau, b\tau) \in R^{\#}$ and so, by definition of μ , we have $(a, b) \in \mu$. Hence $(a\varphi, b\varphi) \in \mu\varphi \subseteq (\mu\varphi)^{\#}$. Therefore $(a\varphi(\tau\varphi)^{\#}, b\varphi(\tau\varphi)^{\#}) \in (\mu\varphi)^{\#}/(\tau\varphi)^{\#}$, that is, $((a\tau)\psi, (b\tau)\psi) \in (\mu\varphi)^{\#}/(\tau\varphi)^{\#}$. Hence (4.1) holds.

Now suppose that $a, b \in F$ and $((a\tau)\psi, (b\tau)\psi) \in (R\psi)^{\#}$. Then, by (4.1), we have $((a\tau)\psi, (b\tau)\psi) \in (\mu\varphi)^{\#}/(\tau\varphi)^{\#}$. Hence $(a\varphi(\tau\varphi)^{\#}, b\varphi(\tau\varphi)^{\#}) \in (\mu\varphi)^{\#}/(\tau\varphi)^{\#}$ and so $(a\varphi, b\varphi) \in (\mu\varphi)^{\#}$. Since φ is normal-convex and μ is a congruence on F, we have $(\mu\varphi)^{\#} \cap (F \times F)\varphi \subseteq \mu\varphi$. Hence $(a\varphi, b\varphi) \in \mu\varphi$ and so $(a, b) \in \mu$ and $(a\tau, b\tau) \in R^{\#}$. Therefore $((a\tau)\psi, (b\tau)\psi) \in R^{\#}\psi$ and so ψ is normal-convex.

Now we prove that $(\tau\varphi)^{\#}$ is idempotent-separating. Obviously, $E(K \times G) = \{(A,1): A \in K\}$. Suppose that $A,B \in K$ are such that $(A,1)(\tau\varphi)^{\#} = (B,1)(\tau\varphi)^{\#}$. Since GL = K, there exists $g \in G$ and $C \in L$ such that gC = A. Hence $g^{-1}A = C \in L$ and we have

$$(g^{-1}A, 1)(\tau\varphi)^{\#} = [(g^{-1}A, g^{-1})(A, 1)(A, g)](\tau\varphi)^{\#} = [(g^{-1}A, g^{-1})(B, 1)(A, g)](\tau\varphi)^{\#}$$
$$= ((g^{-1}A)(g^{-1}B), 1)(\tau\varphi)^{\#}.$$

Since $(g^{-1}A)(g^{-1}B) \le g^{-1}A \in L$ and L is an ideal of K, we have $(g^{-1}A)(g^{-1}B) \in L$. Hence $(g^{-1}A, 1), ((g^{-1}A)(g^{-1}B), 1) \in F$. But

$$[(g^{-1}A,1)\tau]\psi = (g^{-1}A,1)(\tau\varphi)^{\#} = ((g^{-1}A)(g^{-1}B),1)(\tau\varphi)^{\#} = [((g^{-1}A)(g^{-1}B),1)\tau]\psi$$

and so, since ψ is injective, $(g^{-1}A, 1)\tau = ((g^{-1}A)(g^{-1}B), 1)\tau$. Since τ is idempotent-separating, we obtain $(g^{-1}A, 1) = ((g^{-1}A)(g^{-1}B), 1)$, that is, $g^{-1}A = (g^{-1}A)(g^{-1}B)$. Hence A = AB and $A \le B$. Similarly, we obtain $B \le A$ and so A = B. Thus (A, 1) = (B, 1) and $(\tau \varphi)^{\#}$ is idempotent-separating.

ACKNOWLEDGEMENTS. This work has been carried out while I held a research grant from the Calouste Gulbenkian Foundation, which I thank. I am also grateful to Prof. W. D. Munn for all the help and advice provided.

REFERENCES

- 1. D. B. McAlister, Groups, semilattices and inverse semigroups II, *Trans. Amer. Math. Soc.* 196 (1974), 351-370.
- 2. W. D. Munn and N. R. Reilly, E-unitary congruences on inverse semigroups, Glasgow Math. J. 17 (1976), 57-75.
- 3. L. O'Carroll, Reduced inverse and partially ordered semigroups, J. London Math. Soc. (2)9 (1974), 293-301.
- 4. C. D. Papakyriakopoulos, A new proof for the invariance of the homology groups of a complex, Bull. Soc. Math. Grèce 22 (1943), 1-154.
 - 5. M. Petrich, *Inverse semigroups*, (Wiley, 1984).

DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE DO PORTO
4000 PORTO
PORTUGAL

DEPARTMENT OF MATHEMATICS UNIVERSITY GARDENS GLASGOW G12 8QW