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Abstract

We describe the parameter spaces of some families of quadrilaterals, such as parallelograms, rectangles,
rhombuses, cyclic quadrilaterals and trapezoids. For this purpose, we prove that the closed n-disc Dn is
the unique topological n-manifold (with boundary) whose boundary and interior are homeomorphic to
Sn−1 and Rn, respectively. Roughly speaking, our main result states that the natural compactifications of
the parameter spaces of cyclic quadrilaterals and of trapezoids, modulo similarity, are both homeomorphic
to D3.

2010 Mathematics subject classification: primary 57N25; secondary 51M99, 52A10.
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1. Introduction

Let pq ⊂ C be the segment between p, q ∈ C. Associate the point (z1, z2, z3, z4) ∈ C4 to
the set z1z2 ∪ z2z3 ∪ z3z4 ∪ z4z1. Thus, the set of quadrilaterals contained in the plane
inherits a natural topology from C4.

Let AC := { f (z) = az + b | a ∈ C∗, b ∈ C} be the complex affine group (where as
usual C∗ = C r {0}). Consider theAC-action in C4 given by

( f , (z1, z2, z3, z4)) 7→ (az1 + b, az2 + b, az3 + b, az4 + b).

The quotient
P(4) := (C4 r {(z, z, z, z) | z ∈ C})/AC (1.1)

will be called the space of shapes of quadrilaterals, which can be interpreted as the set
of quadrilaterals with consecutively labelled vertices up to oriented similarity.

Notice that P(4) is biholomorphic to the complex projective plane CP2 (since
Z,W ∈ V := {(0, z2, z3, z4) ∈ C4} belong to the same AC-orbit if and only if Z = aW
with a ∈ C∗, so P(4) is the complex projectivisation of V).

Let S,K ⊂ P(4) be the subsets corresponding respectively to simple and convex
positively oriented quadrilaterals. These subsets were described in [3] and the
following properties of K were proved:
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(1) the interior K◦ ⊂ P(4) is homeomorphic to the Euclidean space R4;
(2) the boundary ∂K ⊂ P(4) is homeomorphic to the 3-sphere S3;
(3) consequently the closure K ⊂ P(4) is homeomorphic to the closed disc D4 (by a

result of Freedman from the topology of 4-manifolds).

This paper is devoted to understanding the subsets of P(4) corresponding to
parallelograms, rectangles, rhombuses, cyclic quadrilaterals and trapezoids. The result
of Freedman used in [3] is now replaced with arguments covered in Appendix A. In
particular, we use classical results to prove that the closed n-disc Dn is the unique
topological manifold (with boundary) M satisfying M◦ = Rn and ∂M = Sn−1. We
exploit this fact to show that the closures in P(4) of the sets corresponding to positively
oriented cyclic quadrilaterals and trapezoids are both homeomorphic to D3.

2. Preliminaries

We recall basic concepts from [3] to provide a self-contained exposition.
Think of Z = (z1, z2, z3, z4) ∈ C4 as a quadrilateral whose consecutive vertices are

z1, z2, z3, z4 ∈ C and whose edges are the segments z1z2, z2z3, z3z4, z4z1. Let c(Z) denote
the closed curve z1z2 ∪ z2z3 ∪ z3z4 ∪ z4z1.

Definition 2.1. Let Z = (z1, z2, z3, z4) be a quadrilateral.

(1) We say that Z is simple if its vertices are distinct and c(Z) is a Jordan curve. Let
S̃ ⊂ C4 denote the subset of simple quadrilaterals.

(2) A simple quadrilateral Z is convex if its diagonals z1z3, z2z4 are contained in
c(Z) ∪ (intZ), where intZ is the bounded component of C r c(Z). Let K̃ ⊂ C4

denote the subset of convex quadrilaterals.
(3) A simple quadrilateral Z is positively or negatively oriented if the

increasing order on its vertices determines the counter-clockwise or clockwise
(respectively) direction along c(Z).

(4) The quadrilaterals whose vertices are collinear will be called 4-segments.

It is easily seen that S̃ is the union of two open connected components
(see [3]). These components correspond in fact to positively and negatively
oriented quadrilaterals, and we can use (z1, z2, z3, z4) 7→ (z1, z4, z3, z2) to define a
homeomorphism between them. Clearly, K̃ is contained in S̃ and also has two
homeomorphic components.

Let η : C4 r {(z, z, z, z) | z ∈ C} → P(4) be the quotient map arising from (1.1). The
notions of simple, convex and positively or negatively oriented are preserved by the
action of AC in C4. Thus, η(K̃) ⊂ P(4) is also the union of two homeomorphic
connected components. Let K ⊂ η(K̃) be the component corresponding to positively
oriented convex quadrilaterals.

Let [z1, z2, z3, z4] = η (z1, z2, z3, z4). The elements of P(4) will be called shapes.
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Figure 1. Shapes [0, 1, z] with z in the dashed (respectively dotted) lines or circles represent isosceles
(respectively right) triangles.

Remark 2.2 (A choice of local coordinates). Let φ : U → C2 be the local coordinates
of P(4) given by

[z1, z2, z3, z4] 7→
(z3 − z1

z2 − z1
,

z4 − z1

z2 − z1

)
, whereU = {[z1, z2, z3, z4] | z1 , z2}.

Clearly, S ⊂ U and φ restricts to an embedding of S into C2. The expression
of φ is simplest for representatives [0, 1, z3, z4] ∈ U because φ[0, 1, z3, z4] = (z3, z4).
Henceforth, we mostly use these local coordinates and these representatives in U.
However, we must be careful about limit points of A ⊂ U which satisfy z1 = z2, that
is, A 1 U. For example, [0, 0, 1, 1] = [1, 1, 0, 0] < U is the limit of a sequence of
rectangles {[0, 1, 1 + ik, ik]}k∈N ⊂ U.

Let<(p) and =(p) denote respectively the real and imaginary parts of p ∈ C.

Example 2.3 (Shapes of triangles). The same arguments allow us to explore the
space of shapes of triangles P(3) := (C3 r {(z, z, z) | z ∈ C})/AC. In fact, P(3) is
biholomorphic to CP1, which is homeomorphic to the sphere S2. For example, P(3)
can be seen as {[0, 1, z] | z ∈ C ∪ {∞}} = {[0, 1, z] | z ∈ C} ∪ {[0, 0, 1]}. There are three
possibilities:

• =(z) > 0 corresponds to positively oriented triangles;
• =(z) < 0 corresponds to negatively oriented triangles;
• =(z) = 0 corresponds to degenerate triangles with collinear vertices.

Thus, the space of shapes of triangles S2 is divided by a circle of degenerated shapes
(the equator of S2) into two open discs (the hemispheres of S2) corresponding to the
two orientations of triangles. Two sets of special triangles are shown in Figure 1.
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3. Parallelograms, rectangles and rhombuses

LetH2 = {z ∈ C | =(z) > 0}. The shapes of quadrilaterals whose vertices are collinear
will be called 4-segments.

The space of shapes of positively oriented parallelograms is given by

P = {[0, 1, z, z − 1] ∈ K | z ∈ H2}.

Thus, ∂P = {[0, 1, t, t − 1] | t ∈ R ∪ {∞}} is a circle consisting of 4-segments, where
t = ∞ determines the shape [0, 0, 1, 1]. It follows that P ⊂ P(4) is homeomorphic to
D2.

The spaces of shapes of positively oriented rectangles and rhombuses are
respectively

Re = {[0, 1, 1 + it, it] | t > 0} and Rh = {[0, 1, 1 + eiθ, eiθ] | θ ∈ (0, π)}.

Then we have ∂Re = {[0, 1, 1, 0], [0, 0, 1, 1]}, ∂Rh = {[0, 1, 2, 1], [0, 1, 0,−1]} and also
Re ∩ Rh = {[0, 1, 1 + i, i]}.

4. Cyclic quadrilaterals

Let Hn = {(x1, . . . , xn) ∈ Rn | xn > 0} and Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0} for n ≥ 1.
A simple quadrilateral is cyclic if its vertices lie on a circle. Let C ⊂ P(4) denote

the set of shapes of positively oriented cyclic quadrilaterals.

Theorem 4.1. C ⊂ P(4) is homeomorphic to D3.

Proof. Every cyclic quadrilateral has a shape of the form [1, eiα, eiβ, eiγ], where
0 < α < β < γ < 2π, so we view C as {(α, β, γ) ∈ R3 | 0 < α < β < γ < 2π}, which clearly
is homeomorphic to R3.

There are two types of shapes in ∂C:

(i) positively oriented quadrilaterals with two coinciding consecutive vertices;
(ii) 4-segments which are limits of cyclic quadrilaterals.

There are four possibilities for shapes of Type (i). One possibility is that the third
and fourth vertices coincide, and these are represented by the set {[0, 1, z, z] | z ∈ H2},
whose closure is {[0, 1, z, z] | z ∈ H2 ∪ {∞}} (where z = ∞ determines [0, 0, 1, 1]),
which is homeomorphic to D2. This disc can be thought of as the 2-simplex with
vertices [0, 1, 0, 0], [0, 1, 1, 1] and [0, 0, 1, 1], and therefore edges {[0, 1, t, t] | t < 0},
{[0, 1, t, t] | 0 < t < 1} and {[0, 1, t, t] | t > 0}. The other three possibilities for shapes
of Type (i) are similar. In this way we obtain four 2-simplices in ∂C such that the
intersection of each pair is exactly one vertex (see Figure 2).

The shapes of Type (ii) can be obtained from cyclic quadrilaterals by making
the radius of the circumscribed circle tend to infinity. For example, the 4-segment
[0, 1, 3

4 ,
1
4 ] is the limit of the sequence of cyclic quadrilaterals{

Zn =
[
0, 1, 3

4 + i
(√

n2 + 3
16 − n

)
, 1

4 + i
(√

n2 + 3
16 − n

)]}∞
n=1
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Figure 2. ∂C is a 2-complex with octahedral structure. Shapes of Types (i) and (ii) belong to shaded and
white triangles, respectively.

(Zn is inscribed in the circle with centre at an = 1
2 − in and radius |an|). Also, it is easily

seen that

{[0, 1, t, s] | 0 ≤ s ≤ t ≤ 1} ⊂ ∂C, {[1, t, s, 0] | 0 ≤ s ≤ t ≤ 1} ⊂ ∂C,
{[t, s, 0, 1] | 0 ≤ s ≤ t ≤ 1} ⊂ ∂C, {[s, 0, 1, t] | 0 ≤ s ≤ t ≤ 1} ⊂ ∂C.

Again, the shapes of Type (ii) determine four 2-simplices in ∂C such that the
intersection of each pair of triangles is exactly one vertex (see Figure 2).

Identifying the edges of these eight 2-simplices by equivalent shapes, we obtain the
octahedron shown in Figure 2. We conclude that ∂C is homeomorphic to S2.

Now we proceed to prove that shapes in ∂C have neighbourhoods in C which are
homeomorphic to H3. We will give the argument, without loss of generality, for a
single shaded triangle, a single white triangle, a single edge and a single vertex of the
octahedron. LetDz ⊂ H2 denote:

• the interval [0, z] if 0 < z < 1; or
• the interval [z,∞) if 1 < z; or
• the arc between 0 and z along the circumscribed circle of the triangle (0, 1, z) if

z ∈ H2.

Case 1: [0, 1, p, p] with =(p) > 0. Suppose that B = {z ∈ C | |z − p| < =(p)/2} and
U = {[0, 1, z,w] | z,w ∈ B}. Then U ∩ C consists of quadrilaterals such that z ∈ B
and w ∈ Dz ∩ B (Figure 3(a)). It follows that U ∩ C is of the form B × H1, which
is homeomorphic to H3. This case corresponds to a shaded triangle.

Case 2: [0,1, s, s] with 0 < s < 1. Let r = min{s,1 − s}. If B = {z ∈ C | |z − s| < r/2} and
U = {[0, 1, z,w] | z,w ∈ B}, then U ∩ C consists of quadrilaterals such that z ∈ B ∩ H2
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Figure 3. Neighbourhoods U of shapes in ∂C using the coordinates from Remark 2.2. The intersections
U ∩ C are described by z in shaded regions and w in the part ofDz represented by continuous lines.

Figure 4. The dotted arc is tangent to B2 andDz ∩ B2 = ∅ when z ∈ B1 does not lie in the shaded region.

and w ∈ Dz ∩ B (Figure 3(b)). It follows that U ∩ C is of the form H2 × H1, which is
homeomorphic to H3. This case corresponds to an edge.

Case 3: [0, 1, 1, 1]. If B = {z ∈ C | |z − 1| < 1/2} and U = {[0, 1, z,w] | z,w ∈ B}, then
U ∩ C consists of quadrilaterals such that z ∈ B ∩ H2 and w ∈ Dz ∩ B. It follows that
U ∩ C is of the form H2 × H1, which is homeomorphic to H3. This case corresponds
to a vertex.

Case 4: [0,1, s, t] with 0 < t < s < 1. Let r = min{t, s − t,1 − s}. We introduce the discs
B1 = {z ∈ C | |z − s| < r/2} and B2 = {w ∈ C | |w − t| < r/2} and, in addition, we set
U = {[0, 1, z,w] | z ∈ B1,w ∈ B2}. Then U ∩ C consists of quadrilaterals such that
z ∈ B1 ∩ H2 and w ∈ Dz ∩ B2 (Figure 3(c)). It follows that U ∩ C is of the form
H2 × H1, which is homeomorphic to H3. A peculiar circumstance arises when
z ∈ B1 ∩ H2 and Dz ∩ B2 = ∅ (Figure 4), but the shaded region shown in Figure 4
will serve instead of B1 ∩ H2. This case corresponds to a white triangle.

Since C satisfies the hypothesis of Theorem A.1, C is homeomorphic to D3. �
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Figure 5. A similarity T is helpful to prove that the differential of θ is not the zero function. We find that
the derivative of θ is negative when perturbing ζ in the direction of ζ ∈ TζC.

Recall that K◦ ⊂ P(4) is the interior of the set of shapes of positively oriented
convex quadrilaterals.

Theorem 4.2. K◦ r C is the union of two connected components which are
homeomorphic to R4.

Proof. We will work in the local coordinates φ(U) = C2 of Remark 2.2. There exists a
smooth embedding i : R4 ↪→ φ(U) whose image is φ(K◦) (see [3, Theorem 3.1]). We
also have a smooth embedding h : C ↪→ i(R4) of the form

[1, eiα, eiβ, eiγ] 7→
( eiβ − 1
eiα − 1

,
eiγ − 1
eiα − 1

)
.

Let θ0 and θ1 be the angles of the quadrilateral at the vertices 0 and z (see Figure 5).
Then h(C) is the level set θ0 + θ1 = π of the smooth function θ0 + θ1 : i(R4)→ R. We
would like to prove that the gradient vector field of θ0 + θ1 has no singularities. To
do this, we show that a certain deformation of the vertex z (chosen so as to leave θ0

unchanged) does not make the derivative of θ1 vanish. Consider an element of T ∈ AC
such that T (w) = −1 and T (1) = 1 (see Figure 5). A calculation shows that the angle
arccos<(µν)/|µ| |ν| between µ(τ), ν(τ) : (−1, 1)→ C satisfies

d
dτ

arccos
<(µν)
|µ| |ν|

=
1

|=(µν)|

(
<(µν)<(ν′ν)

|ν|2
+
<(µν)<(µ′µ)

|µ|2
−<(µν′) −<(νµ′)

)
.

Taking µ = −1 − ζ − τζ and ν = 1 − ζ − τζ,

d
dτ

∣∣∣∣∣
τ=0

θ(τ) =
−|ζ |4 − 2=(ζ)2

=(ζ) |1 − ζ |2 |1 + ζ |2
< 0.

The conclusion is that the gradient vector field of θ0 + θ1 has no singularities.
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Claim. Let U be an open subset of Rn diffeomorphic to Rn. Let f : U → R be a
smooth function without critical points such that the level set f −1(c) is homeomorphic
to Rn−1 for some c ∈ R. Then f −1(−∞, c) and f −1(c,∞) are both diffeomorphic to Rn.
This is an easy exercise in the use of the smooth flow of a smooth vector field. The
hypothesis that there are no critical points implies that the flow of the gradient vector
field ∇ f is injective and carries f −1(c) diffeomorphically onto the other level sets. Both
f −1(−∞, c) and f −1(c,∞) are smooth products of level sets and flow lines.

Applying the claim concludes the proof of the theorem. �

Remark 4.3. The above proof shows that we can replace ‘homeomorphic’ by
‘diffeomorphic’ in Theorem 4.2.

5. Trapezoids

A trapezoid is a simple quadrilateral with a pair of parallel edges. Let T ⊂ P(4)
denote the set of shapes of positively oriented trapezoids.

Remark 5.1. Notice that T = T1 ∪ T2, where T1 is the set of trapezoids with z1z2

parallel to z3z4, and T2 is the set of trapezoids with z2z3 parallel to z4z1. Clearly,
[z1, z2, z3, z4] 7→ [z2, z3, z4, z1] is a homeomorphism from T1 to T2 and P = T1 ∩ T2.

Theorem 5.2. T1,T2 ⊂ P(4) are both homeomorphic to D3.

Proof. By Remark 5.1, it is enough to prove the result for T1. We will proceed in the
same way as for Theorem 4.1.

Every shape in T1 has a representative of the form [0, 1, z, z − s] with z ∈ H2 and
s > 0. Thus, T1 = H2 × H1, which is homeomorphic to R3.

There are two types of shapes in ∂T1.

(i) Positively oriented quadrilaterals [z1, z2, z3, z4] with z1 = z2 or z3 = z4. Shapes of
this type determine two 2-simplices (see the proof of Theorem 4.1).

(ii) 4-segments which are the limit of trapezoids. There are a number of possibilities
for the 4-segments [0, 1, t, t − s] of this type, each of which determines a 2-
simplex:

• {1 ≤ t, 0 ≤ s ≤ t − 1};
• {1 ≤ t, t − 1 ≤ s ≤ t};
• {1 ≤ t, t ≤ s};
• {0 ≤ t ≤ 1, 0 ≤ s ≤ t};
• {0 ≤ t ≤ 1, t ≤ s};
• {t ≤ 0 ≤ s}.

Identifying the edges of these eight 2-simplices by equivalent shapes, we conclude that
∂T1 is homeomorphic to S2 (see Figure 6).

Now we proceed to prove that shapes in ∂T1 have neighbourhoods in T1 which
are homeomorphic to H3. We will give the argument, without loss of generality, for
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Figure 6. The eight 2-simplices in ∂T1. Inside each 2-simplex we illustrate an example of the shapes
occurring in it. The diagram shows some identifications between the 2-simplices, but it remains to glue
edges with equivalent vertices to obtain S2. The shading indicates 2-simplices belonging also to ∂T2. The

dotted segments form the circle ∂P.

a single triangle of Type (i), a single triangle of Type (ii), a single edge and a single
vertex in ∂T1. Let Ip = {z ∈ C : <(z) ≤ <(p),=(z) = =(p)} for p ∈ C.

Case 1: [0, 1, p, p] with p ∈ H2. Suppose that B = {z ∈ C | |z − p| < =(p)/2} and
U = {[0, 1, z,w] | z,w ∈ B}. Then U ∩ T 1 consists of quadrilaterals such that z ∈ B
and w ∈ Iz ∩ B. It follows that U ∩ T 1 is of the form B × H1, which is homeomorphic
to H3. This case corresponds to a triangle of Type (i).

Case 2: [0, 1, t, t] with 0 < t < 1. Let r = min{t, 1 − t}. If B = {z ∈ C | |z − t| < r/2} and
U = {[0, 1, z,w] | z,w ∈ B}, then U ∩ T 1 consists of quadrilaterals such that z ∈ B ∩H2

and w ∈ Iz ∩ B. It follows that U ∩ T 1 is of the form H2 ×H1, which is homeomorphic
to H3. This case corresponds to an edge.

Case 3: [0, 1, 1, 1]. If B = {z ∈ C | |z − 1| < 1/2} and U = {[0, 1, z,w] | z,w ∈ B}, then
U ∩ T 1 consists of quadrilaterals such that z ∈ B ∩ H2 and w ∈ Iz ∩ B. It follows that
U ∩ T 1 is of the form H2 × H1, which is homeomorphic to H3. This case corresponds
to a vertex.

Case 4: [0, 1, t, t − s] with 0 < t − s < t < 1. Let r = min{t − s, s, 1 − t}. Suppose
that Bt = {z ∈ C | |z − t| < r/2} and Bs = {w ∈ C | |w + s − t| < r/2} and, in addition,
set U = {[0, 1, z,w] | z ∈ Bt,w ∈ Bs}. Then U ∩ T 1 consists of quadrilaterals such that
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z ∈ Bt ∩ H2 and w ∈ Iz ∩ Bs. It follows that U ∩ T 1 is of the form H2 × H1, which is
homeomorphic to H3. This case corresponds to a triangle of Type (ii).

Since T1 satisfies the hypothesis of Theorem A.1, T1 is homeomorphic to D3. �

Corollary 5.3. T is homeomorphic to {(x1, x2, x3, 0) ∈ R4} ∪ {(x1, x2, 0, x4) ∈ R4} and
K◦ r T is the union of four connected components which are homeomorphic to R4.

Proof. The first assertion is immediate because T = T1 ∪ T2, each T j is
homeomorphic to R3 by the proof of Theorem 5.2 and T1 ∩ T2 = P, which is
homeomorphic to R2 by Section 3.

The second assertion can be proved as in Theorem 4.2. Let θ0, θ1 and θ2 be the
angles of the quadrilateral at vertices 0, z and w (see Figure 5). Notice that T1,T2 ⊂ K

◦

are defined respectively by θ0 + θ2 = π and θ0 + θ1 = π. First apply the Claim in the
proof of Theorem 4.2 to the function θ0 + θ2 to see that K◦ r T1 is the union of two
connected components U1 and U2 which are copies of R4. Next apply the Claim again
to remove the level set θ1 + θ2 = π from each U j and conclude the proof. �

Remark 5.4. The proof shows that we can replace ‘homeomorphic’ by ‘diffeomorphic’
in the second assertion of Corollary 5.3.

Remark 5.5. Observe that T = T1 ∪ T2 is mysteriously embedded into K◦. We have
proved that T1 and T2 are two copies of the unit disc D3 embedded into K , which is
the unit disc D4. However, the obvious embeddings D3

1 = {(x1, x2, x3, 0)} ⊂ D4 and
D3

2 = {(x1, x2, 0, x4)} ⊂ D4 suggested by Corollary 5.3 are wrong. The restrictions
(D3

1)◦ ↪→ (D4)◦ and (D3
2)◦ ↪→ (D4)◦ of these embeddings satisfy the conclusions of the

corollary and give ∂D3
1 ∩ ∂D

3
2 = S1 (which would make sense because ∂(T1 ∩ T2) =

∂P = S1), but ∂T1 ∩ ∂T2 is the shaded set shown in Figure 6.

Proposition 5.6. C ∩ T ⊂ P(4) is homeomorphic to

{(x, y, 0) ∈ R3 | x2 + y2 ≤ 1} ∪ {(x, 0, z) ∈ R3 | x2 + z2 ≤ 1}.

Remark 5.7. C ∩ T is known to be the set of isosceles trapezoids.

Proof. The proof is a matter of checking properties of C ∩ T1 and C ∩ T2 because
C ∩ T = C ∩ T1 ∪ C ∩ T2. Observe that

C ∩ T1 = {[0, 1, z, z + 1 − 2<(z)] | z ∈ H2,<(z) ≥ 1/2} ∪ {[0, 0, 1, 1]},

C ∩ T2 = {[z + 1 − 2<(z), 0, 1, z] | z ∈ H2,<(z) ≥ 1/2} ∪ {[1, 0, 0, 1]},

which are clearly homeomorphic to D2, and C ∩ T1 ∩ C ∩ T2 = C ∩ P = Re. �
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6. The trivialisation of the bundle η

Now a word about the principal bundle

It is not trivial since π1(C4 r {(z, z, z, z)}) = 1 and π1(P(4) ×AC) = π1(CP2 × C × C∗) =

Z (recall from (1.1) that AC is the complex affine group, which is homeomorphic to
C × C∗).

Corollary 6.1. η−1(J) is homeomorphic to J × C × C∗ for J = P, C and T .

Proof. Since J is contractible, the bundle is trivial. �

7. Negatively oriented quadrilaterals

Let P−,C−,T − ⊂ P(4) be the spaces of negatively oriented parallelograms, cyclic
quadrilaterals and trapezoids, respectively. The function [z1, z2, z3, z4] 7→ [z1, z4, z3, z2]
defines homeomorphisms between P, C, T and P−, C−, T −, respectively. It is clear
that P ∩ P−, C ∩ C− and T ∩ T − are exactly the subsets of 4-segments contained in
their respective boundaries. For example, P ∪ P− is obtained by pasting two closed
discs through their boundaries (see Section 3) and therefore it is homeomorphic to S2.
Similarly, the spaces of rectangles Re ∪ R

−
e and rhombuses Rh ∪ R

−
h are copies of S1.

Let v1 = (1, 0, 0), v2 = (−1/2,
√

3/2, 0), v3 = (−1/2,−
√

3/2, 0), v4 = (0, 0,
√

2) and
Bi be the open ball B√3/2(vi).

Proposition 7.1. C ∪ C− is homeomorphic to R3 ∪ {∞} r (B1 ∪ B2 ∪ B3 ∪ B4).

Proof. By Theorem 4.1, C ∪ C− is an identification of the boundaries of two copies
of D3 along the white triangles in Figure 2. The boundary ∂(C ∪ C−) consists of four
copies of S2 obtained as an identification of the boundaries of the shaded triangles in
Figure 2. These spheres are tangent by pairs. Then C ∪ C− is S3 (formed by gluing
boundaries of two copies of D3) drilled along four open balls whose boundaries are
tangent by pairs. We conclude the proof by using S3 = R3 ∪ {∞} and removing the
balls B1, B2, B3 and B4 from R3. �

Proposition 7.2. T1 ∪ T
−
1 and T2 ∪ T

−
2 are homeomorphic to R3 ∪ {∞} r (B1 ∪ B2).

Proof. The argument is similar to Proposition 7.1 using Theorem 5.2 instead of
Theorem 4.1. �

We are not able to describe T ∪ T − as a known space (see Remark 5.5).
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Appendix A. How to recognise a closed disc

Theorem A.1. Let M be a topological manifold with boundary. If M r ∂M and ∂M
are respectively homeomorphic to Rn and Sn−1, then M is homeomorphic to Dn.

Proof. First we argue that M is compact. Let Ω ⊂ M be a collar neighbourhood of
∂M, that is, Ω is closed and there is a homeomorphism ψ : ∂M × [0, 1]→ Ω with
ψ(x, 1) = x (see [2, Theorem 2]). Then ψ(∂M × {1/2}) is a sphere Sn−1 topologically
embedded into M r ∂M, which separates M r ∂M into two components by the
Jordan separation theorem (see [4, Section 2.B]). Let K ⊂ M r ∂M be a compact ball
containing ψ(∂M × {1/2}). Since the curve ψ ({p} × (1/2, 1)) cannot lie in the bounded
component of (M r ∂M) r ψ(∂M × {1/2}) for all p ∈ ∂M, we conclude that M is a
union of two compact sets K ∪ ψ(∂M × [1/2, 1]).

Now recall a well-known fact: the uniqueness of the one-point compactification.
Given a second-countable Hausdorff space X, there is a space X∗ such that:

(1) X is a subspace of X∗;
(2) X∗ r X consists of a single point;
(3) X∗ is a compact Hausdorff space.

Moreover, if Y is another space satisfying these conditions for X∗, then there is a
homeomorphism X∗ → Y that equals the identity map on X (see [5, Theorem 29.1]).

It follows directly from the uniqueness of the one-point compactification that the
quotient space M/∂M is homeomorphic to the one-point compactification of M r ∂M.
Notice that ρ ◦ ψ : ∂M × [0, 1)→ M/∂M is an embedding, where ρ : M → M/∂M is
the quotient projection. By applying Brown’s generalised Schöenflies theorem [1,
Theorem 5], we get a homeomorphism between Dn and each connected component in
(M/∂M) r ρ ◦ ψ(∂M × {1/2}). In particular, M r ψ (∂M × (1/2, 1]) is homeomorphic
to Dn and the map M → M r ψ(∂M × (1/2, 1]) given by

x 7→
{

x if x ∈ M rΩ,
ψ−1(p, t/2) if x ∈ Ω and ψ(x) = (p, t)

is a homeomorphism. �
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