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EXTREME AND EXPOSED POINTS IN ORLICZ SPACES 

R. GRZASLEWICZ, H. HUDZIK AND W. KURC 

ABSTRACT. Extreme points of the unit sphere in any Orlicz space over a measure 
space that contains no atoms of infinite measure are characterized. In the case of a 
finite-valued Orlicz function and a nonatomic measure space, exposed points of the 
unit sphere in these spaces are characterized too. Some corollaries and examples are 
also given. 

In most cases in the paper (T, Z, /i) is a nonatomic positive measure space. R denotes 
the reals, R+ denotes the positive reals and N denotes the set of natural numbers. By an 
Orlicz function we understand a nonzero mapping O: R —> [0, +oo] that is convex, even, 
vanishing and continuous at zero and left-continuous on the whole R+. By 0'_ and <D+ 
we denote the left-hand side and right-hand side derivatives of O in R+, respectively. We 
denote by F([i) the space of all (equivalence classes of) ^-measurable functions x from 
T into R. Given an Orlicz function O, we define on F(/x) a convex functional I<$> by 

/oW = jT<S>{x(t))dv, 

and an Orlicz space L°(/x) by L^(fi) = {xG F{ji) : IQ>(\X) < +oo for some À > 0} . 
This space equipped with the Luxemburg norm 

||jc||0 = inf{A > 0 : / O ( J C / A ) < 1} 

is a Banach space (see [9], [11] and [12]). We shall also consider a subspace F^(fi) of 
L°(//) that is defined to be the set of all x in F(fi) such that I<&(\x) < +oo for any 
À > 0. This subspace is equipped with the norm || • Ho induced from L®(ii). Obviously 
E®([i) ^ {0} if and only if O has finite values. By Ext(O), we define the set of all 
u G R such that there are no numbers w, v G R, w ^ v, satisfying u — (w + v)j 2 
and 0((w + v)/2) = | (0(w) + O(v)). For any Z-measurable function JC, we denote 
supp(x) = {t G T : x(t) ^ 0} . 

We say an Orlicz function O satisfies the A2 -condition for all u G R (at infinity) 
if there are positive numbers K and a such that 0 < O(A) < +00 and the inequality 
0(2w) < K<b{u) holds for all u G R (resp. for all u G R satisfying \u\ > a). 

The statement "the suitable A2-condition" for an Orlicz function O means the À2-
condition for all u G R when ji is nonatomic and infinite and the A2-condition at infinity 
when fi is nonatomic and finite. 

For a Banach space X, we denote by Sx the unit sphere of X. A point x G Sx is called 
an extreme point if for every y, z G Sx the equality x = \{y + z) implies y = z. We say a 
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point x G Sx is an exposed point if there is x* G Sx*—the unit sphere of the dual X* of 
X—such that x*(x) — 1 and for every y G Sx, y ïh x, we have x*(y) < 1. We say then 
that x* exposes the point x. 

It is easy to see that exposed points are extreme and the converse is true e.g. for strictly 
convex (rotund) Banach spaces. In Corollary 5 it will be seen that for Orlicz spaces, not 
strictly convex, there may exist extreme points which are not exposed. 

To characterize exposed points of SLo> or S^ we shall need a general (integral) form 
of linear order continuous functional on L°(/i) or £^(/i) (see [1], [13], [14]), especially 
those which attain their norms at some element of the unit sphere (see [4], [7], [8], [9] 
and [10] for characterizations of such functional over £^(/x) and partially over L°(/x)). 

Exposed points of the unit sphere in the Lebesgue-Bochner space LP(X), 1 < p < oo, 
were characterized in [2]. In [17] and [18] some characterizations of extreme points of 
the unit sphere in Musielak-Orlicz spaces over nonatomic and purely atomic (counting) 
measure spaces, respectively, are given. The first paper is written in Chinese. Since the 
authors of this paper have obtained a characterization of such points independently and 
do not know any characterization of these points in English, they decided to give the 
respective proof. 

RESULTS. We start with the following: 

THEOREM 1. (i) Assume that <I> is continuous and (T, X, (j,) does not contain atoms 
of infinite measure. Then x is an extreme point ofSL<t> if and only ifl<&(x) = 1 and either 

(a) x(t) are in Ext(O) for /i- a.e. t G T, or 
(b) there exists an atom A such that x(t) are in Ext(0)/or /x- a.e. t G T\A and 

X\A — wo, where O(wo) ^ 0. 
(ii) lfQ> is discontinuous and I<$>{x) = 1, x is an extreme point of SL*> if and only if 

either (a) or (b) written above holds. 
(Hi) If<& is discontinuous and Iq>{x) < 1, x is an extreme point ofSL*> if and only if 

\x(t)\ = a(Q>)for p- a.e. t G T. 

PROOF. We restrict ourselves only to a nonatomic measure. 

SUFFICIENCY. Assume first that /oW = 1 and x(t) G Ext(O) for /i- a.e. t G supp(jc). 
Take an arbitrary y and z in SL* such that x = (y + z)/ 2. We shall prove that y = z. 
Assume for a contrary that this is not true. Then, in virtue of our assumption, we get 

1 - /«,(*) - l^(y + z)) < l-(h(y) + h(z)) < 1, 

i.e. a contradiction. 
Now, assume that a(<3>) < +oo and / i ({ / G T : \x(t)\ — a(O)}) = p(T). Assume 

that x G SL* and x = \(y + z), where y, z G S/o. We need to prove that y = z- We have 
ADOO < ! and /d>(z) < 1, whence it follows that \y(t)\ < a(<&) and \z(t)\ < a(O) for \i-
a.e. t G T. Note that it must be \y(f)\ = tf(O) for /x- a.e. t G T. In fact, in the opposite 
case it would be |y(01 < «(O) for r G A, where/i (A) > 0. Then it must be \z(t)\ > a(<$>) 
for t G A, which yields /d>(z) = +co, a contradiction. In the same way we can prove that 
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\z(t)\ = a(Q>) for //- a.e. t £ T. Therefore, by the equality x = j(y + z) it follows that 

y(t) = z(0for/x-a.e. f G 7. 

NECESSITY. Assume first that ||JC||O = 1, h(x) < 1 and / i ({r G T : 

|JC(0| = a(O)}) < /i(7). We shall prove that x is not an extreme point. We have 

\x(t)\ < tf(O) for r G A, where /i(A) > 0. By the assumption it must be \x(t)\ < «(O) 

for ji- a.e. r G Tand 

(1) VA e ( 0 , l ) : 7 o ( j t / A ) = +OO. 

Indeed, in the opposite case it would be I®(x/ A ) < +oo for some A G (0,1). Choosing 

n0 e M such that 1 + \/n0 < A - 1 , we get (1 + \/n)\x(t)\ < X~l\x{t)\ for every t G T 

and n > no. In virtue of the Lebesgue dominated convergence theorem, it follows that 

lim 7o((l + \l n)x) = 7<J>(JC). 

Hence, 70((1 + 1/*)*) < 1 for some k G N, which yields ||JC||0 < (1 + l / * ) - 1 , a 

contradiction. Therefore condition (1) is proved. 

Let m G N be such that the set 

Am = {t GT : \/m< \x(t)\ < min{(l - l / /w)«(0) ,m} } 

has positive measure. Obviously, this minimum is equal to m, when tf(O) is infinite. Let 

A C Am be a set of positive and finite measure and a > 1 be such that <a( 1 — 1 / m) < 1. 

Then 

(2) I*{(x/\)\A) < +<x) 

for every A G (£, 1]. Conditions (1) and (2) and the orthogonal additivity of the func­

tional 7$ yield 

(3) VA G (0,1) : I*((x/\)XI\A) = +°o. 

Let e > 0 be such that I<&{x) + 2e < 1 and define 

ft, = {* G A : o ( x ( 0 + - sgn(x(r))) < O(cx(0) ) 

where c G ( l , a ) . We have Bn j and (j£Li ^ = A. By the Lebesgue dominated conver­

gence theorem we get 

lim 7o ( (x + - sgn(x)) x#n ) = lim 7a, ( (x sgn(x)) \Bn ) 

= lim IO(XXB„) = IQ>(XXA)' 
n—>OQ 

Therefore, by the orthogonal additivity of 7a>, we have 

(5) lim I<t>(xxi\B„) = I<S>(XXT\A)-
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Let k G N be such that /o((* + \ sgn(x))xfl*) < AD(*XA) + £ and I®(xxT\Bk) < 
7a>(̂ Xr\A) + £- Denote B — Bk and define 

y = *XT\B + (* + 7 sgnWJXfi' 

z = *XT\B
 +{x~ J. sgn(x)jxfi. 

We have 7<D(V) < /o(x;) + 2e < 1 and I<&(z) < /o(x) + 2e < 1. Moreover, in virtue 
of property (3), we have I$>(y/ A) = /<D(Z/ A) = +oo for every A G (0,1). Therefore, 
IMIo = ||z||o = 1. Since y ^ z and jt = (y + z)/2, it means that x is not an extreme 
point. 

Assume now that || JC||O = 1 and there exists a set C G S, //(C) > 0, such that x(t) 0 
Ext(O) (equivalently |jc(f)| & Ext(O)) for every t G C. Obviously, the equality |jc(r)| = 
a(O) for n n a set of positive measure is possible only in the case when 0(a(0)) < +oo. 
Since a(O) G Ext(O) when a(O) < +oo and <ï>(a(0)) < +oo, we have |JC(0| < tf(O) 
for ? in a set of positive measure whenever a(Q>) < +oo. According to the previous part 
of the proof, x is not extreme if /<&(JC) < 1. Therefore, we can assume that I®(x) = 1. It 
follows that there are Z-measurable functions w and v, with values different from zero 
on C, such that 0(w(/)) < +oo and O(v(0) < +oo, and 

(6) 0 < w(t) < x(t) < v(f), 

x(t)= i(w(r) + v(0), 

d>(40) = ^(o(w(0)+o(v(0)) 

for every t G C. Let D C C, D G I , be such that 

0 < / O(w(0) d/i < +oo and 0 < f O(v(0) d/z < +oo. 

Condition (6) implies 

(7) f O(JC(0) d/x ~ / O(w(0) djx = /" *(v(0) d[i - [ &(x(tj) d[i. 

Define a ^-measurable function/ by/(0 = O(v(0) — 0(w(f))- This function generates 
a nonatomic measure on D n Z by the formula 

vf(A) = JAf(t)dii. 

So, there is a (measurable) subset £ in D H I such that 

Hence in view of equality (7) we get 
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Define 

y(t) = x(t)xT\D(t) + w{t)XE(t) + V ( 0 X D \ £ ( 0 , 

Z(t) = x(t)XT\D(t) + v{t)XE{t) + w(t)XD\E(t\ 

We have x = (y + z)/2 and /o(0> + z)/2) = IQ(X) = I<p(y) = h(z) = 1. Thus, 

IHIo = ll-Hk — llCy + ^) /2 | |<D = 1. Since .y / z, JC is not extreme. The proof of the 

theorem is finished. 

Since for every x G E®(p), where O is a finite-valued Orlicz function, we have 

||JC||O = 1 if and only if I®(x) = 1, in view of Theorem 1, we obtain the following: 

THEOREM 2. Let O be a finite-valued Orlicz function and p, be a positive nonatomic 

measure. A point x G S^O is extreme if and only if for p- a.e. t G T there holds x(t) G 

Ext(O). 

COROLLARY 1. In the case of a nonatomic measure p, every extreme point of 

S(L](n) H L°°(/x)), for the space Ll(fi) n L°°(/i) equipped with the norm||jt|| = 

max{ \\x\\L\, \\X\\LOO}, is of the form: x{t) = X(7)XA(0> where A G Z, /i(A) = 

min{ l , / x ( r )} , and x(t) is a IL-measurable function such that |x(f)| = 1 for p- a.e. 

t eA. 

This follows by Theorem 1 and by the fact that this space is exactly the Orlicz space 

L®(fi) for OO) = |w|, if \u\ < 1, and O(w) = +oo, if \u\ > 1, and by the equality 

||*||o = max{ \\x\\Li, \\x\\Loo} for* G Z*(/x). 

COROLLARY 2. 7fe Orlicz space L®(p) = L1 (/x)+L°°(/i) w generated by the Orlicz 

function O defined by 
0, /o r |w | < 1, 

I |w| — 1, / o r |u| > 1. 

It follows by Theorem I that the unit sphere of this space equipped with the norm || • Ho 

contains no extreme point whenever /i is nonatomic. 

COROLLARY 3. In the case of a nonatomic measure \i the only extreme points ofS^™ 

are functions x such that \x(t)\ = 1 for fi- a.e. t G T. 

This follows by the facts that L®(p) is isometrically isomorphic to the Orlicz space 

L^(fi) generated by the Orlicz function O such that O(w) = 0 if | u\ < 1 and O(w) = +oo 

if \u\ > l ,andExt(0>)= { ± 1 } . 

In order to characterize exposed points of SLt>, some additional notation must be in­

troduced. For a given Orlicz function O define the following (countable) sets. 

F\ denotes a set of all points u > 0 such that O is affine in some right-hand side 

neighbourhood of u and in no left-hand side neighbourhood of u. 

F2 denotes a set of all points u > 0 such that O is affine in some left-hand side 

neighbourhood of u and in no right-hand side neighbourhood of u. 

Ax={ueF,: O » = 4/_(ii)}, Bx = F, \ Au 

A2 = {ueF2: O » = <D'_(")}, B2 = F2\ A2. 
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From the definition of the subdifferential of O at u it follows that 

° ^ w \[&+(u),&_(u)]9 if w < 0 

for every finite-valued Orlicz function O. Moreover uv = <D(w) + 0*(v) if and only if 

v G 30(w) or u G 3<3>*(v), for every M,VG R, where O* denotes the Young's conjugate 

to the function O. 

THEOREM 3. Let O /?£ a finite-valued Orlicz function vanishing only at zero and \i 

be a positive nonatomic measure. A point XQ G SLo is exposed if and only if: 

(i) /<p(xo) = 1, 

(ii) \x0(t)\ G Ex t (0 ) /o r / i - a.e. t G T, 

(iii) there is a (measurable) function r\\T —• R such that 77(f) G d<t>(\xo(t)\) for / i-

a.e. t G T and JT \xo(t)\ r](t)d(ji < +oo (equivalently rj G L ^ j , 

f/v) ^ ( I x o l - 1 ^ ! ) ) /xf l jcol" 1 ^)) = 0, where \xo\~\Ai) = {teT: \x0(t)\ G A,}. 

PROOF. SUFFICIENCY. Assume that conditions (i)-(iv) are satisfied. Condition (iii) 

is equivalent to the fact that there exists a regular (order continuous) support functional 

at XQ. Every function r\ satisfying condition (iii) generates a regular support functional 

£g at XQ by the formula 

(8) £g(x) = jTx(t)g{t)diL (VxGL°( M ) ) , 

where 

7j(f)sgn(xo(f)) 
(9) g(t) = 

STri(t)\xo(t)\dii 

and T](t) G 30( |xo(0 | ) M' a-e- I n fact ^ *s evident that £g(xo) = 1- Moreover, for every 
x G L°(/x) with ||JC||O < 1, we have 

| j rrKOsgn(xo(0)*(O^H 
IsgWl — 

< 

JT r](t)\x0(t)\d^ 

\jTr](t)sgn{xo(t))x(t)diJJ\ 

I<t>*(r]) + I<t>(xo) 

STT](t)\x(t)\dfi 

V ( T / ) + l 

< V(ry)+/ 0 ( jc) < 

- V ( T / ) + l " 

Therefore for the dual norm || • || we have | |£g | | = 1, which means that £g is a support 

functional atx0 . 

Note, that in view of our assumptions we can find a function 77 satisfying condition (iii) 

and such that 

(10) 7 K 0 G l n t ( a o ( | x 0 ( 0 | ) ) 
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for every t € T such that xo(t) £ Smooth(O). Therefore in the remaining part of the proof 
of the sufficiency, we assume that rj satisfies condition (10). 

Let y G L°(/i), y ^ xo, be such that £g(y) = 1. In order to prove that xo is exposed it 
suffices to show that ||,y||o > 1, Le. I<&(y) > 1. Define h — y — XQ. We have y — XQ + h, 
where £g(h) = 0. Since 77(f) belongs to the subdifferential of O at \xo(t)\, we have 

(11) O(X0) = &(xo(tj) +f](t)sgn(xo(t))h(t) + u;(h(t)), 

where UJ (/J(0) > 0 by convexity of <D. Since £g(h) — 0, we have 

(12) ^ i7 (0sgn(^ (0 )A(0^ = 0. 

Integrating both sides of equality (11) and taking into account the last equality, we get 

(13) I*(y) = I*(xo) + JTu>(h{tj)dii = \+jTu{h{t))dn. 

Therefore, it suffices to prove that JT UJ (h{f)) dji > 0. Since T](t)>0,r]^0 and h ^ 0, 
condition (12) yields that both sets 

A+ = {teT:sgn(x0(t))h(t)>0}, 

A_ = {teT: sgn(x0(t))h(t) < 0} 

have positive measure. It follows by assumption (iii) that either /X(|JCO| _ 1 ( ^ I ) ) = 0 o r 

/x(|x0|~
1(A2)) = 0. Moreover, we have 

(14) u(h(t)) > Ofor/x- a.a. t G A+ whenever/x(|jt0|
_1041)) = 0, 

(15) w(h(tj) > 0 for/i-a.a. t G A_ whenever fi{\xo\~l(A2)) = 0. 

Since u(h(tj) > 0 for /1- a.e. t G T inequalities (14) and (15) yield jTu{h{t)) d\i > 0. 
In virtue of (13), we get I&(y) > 1 which implies the desired inequality ||^||«D > 1, and 
the proof of sufficiency is finished. 

NECESSITY. Conditions (i) and (ii) are necessary by Theorem 1. Now, we shall prove 
the necessity of condition (iii). If condition (iii) is not satisfied then there exists no reg­
ular support functional at xo (see [4], Lemma 3). Now, we shall prove that in this case 
every support functional at xo must be singular. Every functional x* G (L<&)* is uniquely 
represented in the following form (see [1], [7], [8] and [13]) 

** = £, + £', 

where g G L<D*(M) and 

and £s denotes a singular functional, i.e. ^s(x) = 0 for all x G £°(/i). Assume that 
\\x*\\ = 1 andx*(jt0) = 1 - ||JC0||O. Since additionally ||JC*|| = | |£J + Us\\ (see [1]), 
we get 

1 =**(xo) = ig(x) + ç°(x) < Il U INI + 11̂ 11 IMI - Hg\\ +11 ell = 11**11 = 1, 
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whence 

£«(*>) = n u 11*011* = H y and^vo) = u°\\ IMI* = urn. 
Therefore it must be 

(16) g(t) = ry(r)x(0 / X ^ ) f e r y d/x, 

where 7](0 G 3o( | j to(0 | ) f ° r M~ a-e- ' ^ ^ a n d x ( 0 *s anY ^-measurable function satis­

fying | x ( 0 | = 1 for \i- a.e. t £T,x(t) = sgn(jc0(0) for /1- a.e. t G supp(x0) H supp(r/) 

(see [4], [71, [8], [9] and [10]). Note that for O smooth at zero supp(jc0) 3 supp(ry). Since 

g G Lq>*(n), it follows from (16) that 77 G L<p*(|x), and hence J r | JCO(0 |^ (O^M < +00. 

Therefore, in the case when condition (iii) does not hold, every support functional at XQ 

must be singular. Moreover it must be 

(17) /O(AJC0) = +00 (VA > 1), 

because in the opposite case every support functional at XQ must be regular (see [4], 

Lemma 2 and [8], Theorem 3.2); that means in virtue of the Hahn-Banach theorem that 

condition (iii) holds. 

Define the sets 

An = {t G supp(xo) : |*o(0| < «} • 

WehaveAn ] and/i(u«v4n) = y(T). Therefore, there exists m G N such that fi(Am) > 0. 

Define y = xoXT\Am- Obviously XQ = y + JtoXAm, and | | j | |o = 1, because I$>(\y) = +00 

for every À > 1. Take an arbitrary support functional x* at JCO. Since, by the previous 

considerations, x* is singular and XOXA„, G £ ^ ( M ) , wehavex*(y) = X*(XQ)— X*(JCOXO = 

X*(XQ) = 1. This means thatxo is not exposed. 

To finish the proof it suffices to show that XQ is not exposed whenever condition (iv) 

is not satisfied. There are a\ £ A\ and a2 G A2 such that J U ( | X 0 | - 1 ( ^ I ) ) > 0 and 

/i(Jxo|-1(tf2)) > 0. Let #1 and B2 be subsets of |xo \~ \a \ ) ar*d I^o| - 1 (^2), respectively, 

of the same positive and finite measure. There are positive numbers e and 6 such that 

a\ + e and a2 — 6 are in the same interval of the affinity of O as the points a\ and a2, 

respectively, and 0 (« i ) + 0(<22) = ^(«1 + £) + 0>(a2 —6). Define 

y(0 = x0(t)XT\(B]uB2)(t) + (fli + e) sgn(x0(0)xfl,(0 + («2 ~ S ) sgn(xo(0)x*2 (0-

We have 

/*O0 = W^X7\(B,ufl2)) + ° ^ i + £ ) M ( # I ) + ^(«2 -S)n(B2) 

= /OCXOXTVA.U^)) + (^(«1 + e) + ^(«2 -è))fi(B{) 

— I<&(x0Xl\(B]UB2)) + (<D(ai) + <D(a 2 ) ) / i («i ) 

= /*(-«oXA(B,ufi2)) + <t>(ai)M(Bi) + 0(a2) / i(B2) = /*(xo) = 1. 
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*(«) = 

Therefore \\y\\9 = 1. Since &+(\y(t)\) = &_(\y(t)\) = <D'+(|x0W|) = < # - ( M 0 | ) for 

f € Bi U B2 and sgn(;y(0) = sgn(xo(f)) for every / G supp(xo), in view of the equality 

in Young's inequality, we get 

tg(y)= -(/n(t)sgn(xo(t))y(t)dn) = - / i]{t)\y(t)\dfi 
(18) y T 1 e n 

= -(/*•(»?)+ /*(?)) = -(/*•(>?) + 1), 

where c = JV»/(0|-*o(0|/||£g|| ^P ( s e e (16)), and 

(19) ^(xo) = - fri(.t)\xo(t)\ dit = -(W(n) + h(xo)) = -(/«.(I?) + l ) , 

/.e. ^(JCO) = £gO0- Since y — xo G E®(p), we also have £5(JCO) = £5O0- Therefore 

JC*(V) = x*(xo) = 1. Since y ^ Jto, this means that JCO is not exposed, and the proof of 

Theorem 3 is finished. 

NOTE. If xo is an exposed point of 5L4>, the points (xo(t), O(jco(f))) n e e d n o t be ex­

posed point of the epigraf of O for \i- a.e. t ET. 

Indeed, let (R+,X,/x) be the Lebesgue measure space and <D be an Orlicz function 

defined by 
\u\, if \u\ < 1, 
w 2 / 2 + l / 2 , if 1 < |u| < 2 , 
2|«| - 3 / 2 , if 2 < \u\ < 3 , 
w 2 /3 + 3 / 2 , if |M | > 3. 

Let A, # G Z be disjoint sets such that /i(A) = 1/ 2, /i(5) = 1/ 9. Define JCO = XA + 3x#-

Then ADC^O) = 1, whence ||xo||o = 1. In virtue of Theorem 3 it follows that xo is an 

exposed point of SL*. However, it is evident that (JCO(0> ^ ( ^ O ( 0 ) ) 1S n o t exposed point of 

the epigraph of O for any t G supp(jto). 

It is well known that if O satisfies the suitable À2-condition then O is finite-valued, 

£°( / i ) = L0(fi) and we have ||x||o = 1 if and only if /*(*) = 1 (see [5] and [16]). 

For a finite-valued Orlicz function every functional x* G £(£*)* which attains its norm 

at xo G SL® is of the form (8), where g is given by formula (9) with 77 being a Im­

measurable function with values rj(t) in the interval [0'_ ( |XQ(t)| ) , 0+ ( | x$(t)| ) ] for \i - a.e. 

t G supp(jco) H supp(r/). Therefore condition (iii) in Theorem 2 is then satisfied and we 

can formulate the following characterization of an exposed point in the spaces JB°(/i). 

THEOREM 4. Let p be nonatomic and O be a finite-valued Orliczfunction vanishing 

only at zero. A point XQ G S^ is exposed if and only if: 

(i) \x0(t)\ G Ext(0) for p- a.a. t G T, and 

(ii) p(\xo\-\Al))ii(\xo\-l(A2)) = 0. 

THEOREM 5. Let p be a non-atomic positive and a-finite measure. O be an Orlicz 

function vanishing only at zero and with a(O) < +00 and xo be a function in SLi> with 

\xo(t)\ = a(^)forp- a.a. t G T. Then XQ is an exposed point. 
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PROOF. Let g be a positive function on the whole T such that JT g(t) d^i = 1. Such a 
function g exists by the a-finiteness of /i. Let us define f(t) = g(t) sgn(jto(f))/ a(®) a nd 

if(x) = jTf{t)x(t)d» (VxGL°(/x)). 

Obviously, C/ e (L°(/i))* and C/(̂ o) = 1 = || xo||cp. Moreover, for any x G L°(/i) with 
||JC||O < 1, we have Iq>(x) < 1 and so \x(t)\ < a(O) for p- a.e. ? G T, whence 

1 I r I 
k / W | = ^7|y7.^(OxWsgn(xo(/))JM| 

which yields ||£/|| = 1. To finish the proof it suffices to show that if y G SL<t> and 
y ^ xo, then £/(y) < 1. It follows by the assumptions that I®(y) < 1 and so \y(t)\ < 
fl(O) = |JCO(0|

 a nd sgn(jc0(0)y(0 < |JCO(0|
 o n a s e t of positive measure. Therefore 

£f(y) < €f(xo) — 1> which finishes the proof. 

COROLLARY 4. For p as m Theorem 5 every extreme point ofS^**^ is an exposed 
point. 

This follows immediately by Corollary 3 and Theorem 5. 

Now we shall give an example of Orlicz space L°(/i ) such that SL<& contains an extreme 
point that is not exposed. 

COROLLARY 5. Using Theorems 1 and 4, it is now easy to construct Orlicz spaces 
whose unit sphere contains extreme points that are not exposed. For example, if [i is 
nonatomic with ii{T) > 2 and if we define 

[2w2/3, ifO< \u\ < 1/2, 
<D(M)= I 2\u\/3- 1/6, if l/2< \u\ < 3 / 2 , 

[ 2 w 2 / 9 + l / 3 , if\u\ > 3/2. 

the function x = J\A + \XB, where A and B are disjoint sets of measure 1, is an extreme 
point ofSL® that is not exposed. 

NOTE. Convex sets in R 2 that are unit balls of some Orlicz spaces were character­
ized in [3]. 

REMARK. Applying analogous methods to the ones used in this paper we can extend 
our results to Musielak-Orlicz spaces over nonatomic measure space (7, X, /i). 
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