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Abstract
An analysis is made of the motion of a simple undamped pendulum which

performs small oscillations in one plane while its string is raised or lowered
through the point of support at a constant rate. The behaviour of the system
and the variation of its angular and linear amplitudes are expressible in terms
of Bessel functions of orders 0, 1 and 2.

1. Introduction
The free length of the string of a simple undamped pendulum is changed

uniformly by raising or lowering the string at a constant velocity V through a
fixed point O. The motion begins at time t = 0 when the free string length
is /, so that its free length at / ^ 0 is

r = Vt+l. (1)

The pendulum is supposed initially to be executing vibrations of small angular
amplitude in one plane, and its subsequent behaviour is sought both for the
case of a lengthening string (for which F > 0 in (1)) and for that of a shortening
string (K<0).

The position of the pendulum bob at time / will be specified by its plane
polar co-ordinates r, 6 with respect to the point O, where 0 is the angle between
the pendulum string and the vertical through O. While 6 is small the equations
of motion of the pendulum bob in polar form are, to the first order in 0,

r6 + 2fd = -g6, (2)

r-r62=g-T, (3)

where T is the string tension per unit mass of the pendulum bob and g is
gravitational acceleration. Conditions under which these first order approxi-
mations remain valid will be established in the sequel.

2. Solution of equation (2)
The transformational) enables (2) to be written as

f
dr
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If the independent variable be changed again from r to x, where
x = 2(grflV, (K>0), (4a)

or x = -2(grfjV, (K<0), (4b)

so that x is always positive and

r = V2x2l4g, (V^O), (5)

the above differential equation becomes

x9" + W + x6 = 0,

where dashes denote differentiations with respect to x.
Under the substitution

y = xO
the last equation transforms to

x2y" + xy' + (x2-\)y - 0,

which is Bessel's equation of order one. This has the general solution

y = clJi{x) + c2Y1(x),

where Ji(x) and Y^x) are Bessel functions of order one of the first and second
kinds respectively and cl, c2 are arbitrary constants.

The angular displacement of the pendulum string is therefore

0(x) = x-1 [ciJ1(x)+c2 yx(x)], (6a)

or, as a function of the string length r by way of (4a, b),

8(r) = r^CJ, [2(grflV] + C2 Y, [2(gr)*/V]}, (6b)

where Clt C2 are arbitrary constants.
Since the Bessel functions of both kinds execute damped oscillations as

their arguments increase continuously, it is clear from (6a, b) that the angular
displacement of a lengthening pendulum undergoes damped oscillations in
/ ^ 0 and that the condition of small angular amplitude continues to hold
for / ^ r < oo. The range of validity of (6a) is seen from (Ad) to be

20?/)*/ V ^ x < oo, (V> 0). (7a)

For a shortening pendulum (6a, b) show that the condition of small angular
amplitude will, in general, be violated before the free string length becomes
zero, in which case the validity of (6a, b) will not extend over the whole of
the range

-2(glflV ^ x ^ 0, (V<0). (7b)
This point will be considered in § 6. Results deduced in §§ 3, 4 and 5 apply
only within the range for which (6a, b) are valid.

The linear displacement s of the pendulum bob from its mean position is

s(r) = r6(r) (8a)

to the first order in 6; or, as a function of x by way of (5),

s(x) = V2x26(x)/4g. (8b)
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3. The mean and extreme positions of the pendulum
An initial condition will be prescribed in the form

t = 0, 6 = 0, x = Xl = ±2{glfiV, (V $ 0), (9)

where jq is a zero of J^x). This condition can always be achieved, for any
given value of V, by allotting a suitable value to /; it is chosen because it
assigns the value zero to the constants c2 and C2 in (6a) and (6b), thus reducing
the solution to the less clumsy forms

Q(x) = CjX-ViO:) (10)

and 0to=C1r-*/1[2for)W
The modifications required in the sequel for more general initial conditions
will be discussed briefly in § 6.

Since (10) shows that 8(x) vanishes at the zeros of J^x), it follows at once
with the aid of (5) that:

Under the initial condition (9), the lengths of the pendulum at its mean positions
0 = Oare

rk=V2x2
k/4g, (k = 1, 2, 3, ...), (11)

where xk are the successive zeros ofJt(x) in the range x 2: xlf (V>0), or x ^ xit

It is clear that the condition revealing the extreme positions of swing of
the pendulum is dQjdx = 0. From (10) it is seen that

f =c1[X-1J'1(x)-x-2J1(x)l
dx

and taking n = 1 in the recurrence relation (1)

xJ'n{x) = nJn(x)-xJn+1(x)

shows that an alternative form is

— = -clx~1J2(x).
dx

The extremum condition is therefore J2(x) = 0, so that the extreme positions
of the pendulum occur at the zeros of J2(x). It is therefore clear from (5)
that:

Under the initial condition (9), the lengths of the pendulum at its extreme
positions are

Rk=V2X2
k/4g, (* = 1,2,3,...),

where Xk are the successive zeros of 32{x) in the range x>xlt (K>0), or x<xY,

4. The angular and linear amplitudes
Substitution in (10) of the extremum condition x = Xk reveals the angular
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amplitudes 6k of successive swings of the pendulum to be

The recurrence relation (1)

(2n/x)Jn(x) = Jn

for the case n = 1, yields the alternative form

ek = i\ cM^)\, (12)
since the Xk are zeros of J2(x).

The corresponding linear amplitudes sk are now shown by (Sb) to be

sk=V2Xl\ctJQ{Xk)\l%g.

The above results may be summarised in ratio form as follows:
Under the initial condition (9), the ratio of the angular amplitude of the kth

extremum to that of the first is
oje, = | uxk)iux,% (k = l, 2,3,...), (13)

and the ratio of the corresponding linear amplitudes is

sjst = (XJXtf | / o CWo(*i ) | , (* = I- 2, 3, ...), (14)

where Xk are the successive zeros of J2(x) in the range x>xt, (V>0), or x<xx,

From (12) and (13) it is easy to verify, either numerically or analytically,
that the angular amplitude decreases and the linear amplitude increases in the
case of a lengthening pendulum, and that the opposite effects occur for a
shortening pendulum.

As an illustration of the numerical magnitudes involved in the above
results, consider the particular case in which V = 10 cm./sec. and xx = 25-9037
(which is the eighth zero of Jt(x) in x>0). It is easily verified that the initial
condition (9) is satisfied by choosing an initial string length / = 17-1 cm. (with
g taken as 981 cm./sec.2). With the help of tables (2, 3) it is easily found
from (13) and (14) that

^o/fliWO-39, *!„/*!« 1-40,
92O/0l a 0-19, sto/s! as 1-76.

5. Asymptotic forms of the amplitudes as i—»oo and r->0

Case (i): r->-oo. From (10) and the asymptotic result (1) that

/„(*)- [2/0w)J* cos (*-iim-ijr)

as x—•co, it follows that for large x,

9(x)~(2/n)icix~i cos (x-$n).

The angular amplitude 6k therefore satisfies
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to a close approximation. In virtue of (4a) this result may be written as

When used in (8a) this shows that the linear amplitude sk satisfies

**~iK|K*jrV*'-*> ('-co)-
These results show that as the free string length r becomes large, the angular
amplitude of oscillation decreases as r~* and the linear amplitude increases
as r*.

Case (ii): r->0. Since x = 0 is a zero ofJ2(x), and J0(x) takes its maximum
value of unity at x = 0, it follows from (12) that

0 * £ * | « i | (15)
throughout the whole of the range (7b) if and only if $ \ ct | is a first order
small quantity. Assuming this condition to be satisfied, (10) shows that

6(r)~-}cu r^O,

since the series form of Jt(x) shows that J^x)~\x as x-*0. From (8a) it
follows that

s(r)~\cxr, ' - 0 .

6. Concluding remarks
The tension in the string may be found from (3), and it is easily verified

that T = g at the extreme positions of each swing and that in the mean positions

where xk are the zeros of Ji(x) in the relevant range of x.
The time for a half-swing of the pendulum between two successive mean

positions is easily found from (1) and (11) to be

where xk, xk+1 are the successive zeros of Ji(x) which correspond to the two
mean positions.

The effects of changing the initial condition (9) are easy to see. If xl in
(9) is chosen as a zero of Y^x) instead of J^x), the constants c,, Ct , in (6a, b)
vanish while c2, C2 do not. The analysis of §§ 3 and 4 continues to hold with
c2, Yn(x) replacing Cj, Jn(x), since Yn(x) satisfies the same recurrence relations
as Jn(x). In § 5, the results of case (i) hold with c2 replacing c t ; those of case
(ii) do not because Yn(x) is unbounded as x—>0, and this causes the condition
of small angular displacement to be violated before the string length becomes
zero. Initial conditions which are more general than (9) will retain both
constants in (6a, b), and all of the previous results will be replaced by forms
involving linear combinations of Bessel functions of both kinds; the dynamical
implications will remain unchanged.

It is easy to augment (9) by a second condition which will ensure (theoretic-
ally) that the angular displacement remains small as r-*0. For example, the

E.M.S.—E
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angular amplitude 9t at the first extremum may be prescribed; (12) shows
that

\ \ c , \ = 01|/o(*i)|~1,

and it should therefore always be possible to make \ \ c1 | a first order small
quantity by choosing 0j small enough, thus ensuring that (15) is satisfied.
This can never be achieved in a practical experiment because the condition
(9) cannot be realised exactly, and this permits the survival in (6a, b) of the
Bessel function of the second kind which is unbounded as its argument
approaches zero.
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