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Laplace Equations and the Weak Lefschetz
Property

Emilia Mezzetti, Rosa M. Miró-Roig, and Giorgio Ottaviani

Abstract. We prove that r independent homogeneous polynomials of the same degree d become de-
pendent when restricted to any hyperplane if and only if their inverse system parameterizes a variety
whose (d − 1)-osculating spaces have dimension smaller than expected. This gives an equivalence
between an algebraic notion (called the Weak Lefschetz Property) and a differential geometric notion,
concerning varieties that satisfy certain Laplace equations. In the toric case, some relevant examples
are classified, and as a byproduct we provide counterexamples to Ilardi’s conjecture.

1 Introduction

The goal of this note is to establish a close relationship between two a priori unrelated
problems: the existence of homogeneous artinian ideals I ⊂ k[x0, . . . , xn] that fail the
Weak Lefschetz Property and the existence of (smooth) projective varieties X ⊂ PN

satisfying at least one Laplace equation of order s ≥ 2. These are two longstanding
problems that, as we will see, lie at the crossroads between Commutative Algebra,
Algebraic Geometry, Differential Geometry, and Combinatorics.

An n-dimensional projective variety X ⊂ PN is said to satisfy δ independent
Laplace equations of order s if its s-osculating space at a general point p ∈ X has di-
mension

(n+s
s

)
− 1− δ. A homogeneous artinian ideal I ⊂ k[x0, x1, . . . , xn] is said to

have the Weak Lefschetz Property (WLP) if there is a linear form L ∈ k[x0, x1, . . . , xn]
such that, for all integers j, the multiplication map

×L :
(

k[x0, x1, . . . , xn]/I
)

j
−→

(
k[x0, x1, . . . , xn]/I

)
j+1

has maximal rank, i.e., is injective or surjective. One would naively expect this prop-
erty to hold, and so it is interesting to find classes of artinian ideals failing WLP, and
to understand what it is from a geometric point of view that prevents this property
from holding.

The starting point of this paper was [1, Example 3.1] and the classical articles
of Togliatti [19, 20]. In [1], Brenner and Kaid show that, over an algebraically closed

Received by the editors December 13, 2011; revised July 2, 2012.
Published electronically September 21, 2012.
The first author was supported by MIUR funds, PRIN project “Geometria delle varietà algebriche e
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field of characteristic zero, any ideal of the form (x3, y3, z3, f (x, y, z)) with deg f = 3,
fails to have the WLP if and only if f ∈ (x3, y3, z3, xyz). Moreover, they prove that
the latter ideal is the only such monomial ideal that fails to have the WLP. A fa-
mous result of Togliatti (see [20]; or [5]) proves that there is only one nontrivial
(in the sense to be defined in Section 4) example of a surface X ⊂ P5 obtained by
projecting the Veronese surface V (2, 3) ⊂ P9 and satisfying a single Laplace equa-
tion of order 2; X is projectively equivalent to the image of P2 via the linear system
〈x2 y, xy2, x2z, xz2, y2z, yz2〉 ⊂ |OP2 (3)|. Note that the linear system of cubics given
by Brenner and Kaid’s example 〈x3, y3, z3, xyz〉 is apolar to the linear system of cubics
given in Togliatti’s example. A careful analysis of this example suggested us that there
is relationship between artinian ideals I ⊂ k[x0, . . . , xn] generated by r homogeneous
forms of degree d that fail Weak Lefschetz Property and projections of the Veronese

variety V (n, d) ⊂ P(n+d
d )−1 to X ⊂ P(n+d

d )−r−1 satisfying at least a Laplace equation of
order d − 1. Our goal will be to exhibit such relationship with the hope of shedding
more light on these fascinating and perhaps intractable problems of classifying the
artinian ideals that fail the Weak Lefschetz Property and of classifying n-dimensional
projective varieties satisfying at least one Laplace equation of order s. Our main the-
orem, Theorem 3.2, says that an ideal I generated by homogeneous forms of degree
d, satisfying some reasonable assumptions, fails the WLP in degree d − 1 if and only
if its apolar linear system, corresponding to the homogeneous component of degree
d of I−1, parameterizes a variety that satisfies a Laplace equation of degree d− 1.

We then give two examples of applications of Theorem 3.2, to linear systems of
cubics in four variables and to ideals of polynomials in three variables respectively.

Next we outline the structure of this note. In Section 2 we fix the notation and
collect the basic results on Laplace equations and the Weak Lefschetz Property needed
in the sequel. Section 3 is the heart of the paper. In this section, we state and prove our
main result (Theorem 3.2). In Section 4, we restrict our attention to the monomial
case and give a complete classification in the case of smooth and quasi-smooth cubic
linear systems on Pn for n ≤ 3. In Section 5 we concentrate on the case n = 2
and specifically on ideals with 4 generators. We end the paper in Section 6 with
some natural problems coming up from our work and a family of counterexamples
to Ilardi’s conjecture that work for any n ≥ 3.

2 Definitions and Preliminary Results

In this section we recall some standard terminology and notation from commutative
algebra and algebraic geometry, as well as some results needed in the sequel.

Set R = k[x0, x1, . . . , xn], where k is an algebraically closed field of characteristic
zero and let m = (x0, x1, . . . , xn) be its maximal homogeneous ideal. We consider a
homogeneous ideal I of R. The Hilbert function hR/I of R/I is defined by hR/I(t) :=
dimk(R/I)t . Note that the Hilbert function of an artinian k-algebra R/I has finite
support and is captured in its h-vector h = (h0, h1, . . . , he), where h0 = 1, hi =
hR/I(i) > 0, and e is the last index with this property.

In the case of three variables, we will often use x, y, z instead of x0, x1, x2.
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2.1 The Weak Lefschetz Property

Definition 2.1 Let I ⊂ R be a homogeneous artinian ideal. We will say that the
standard graded artinian algebra R/I has the Weak Lefschetz Property (WLP) if there
is a linear form L ∈ (R/I)1 such that, for all integers j, the multiplication map

×L : (R/I) j −→ (R/I) j+1

has maximal rank, i.e., is injective or surjective. (We will often abuse notation and
say that the ideal I has the WLP.) In this case, the linear form L is called a Lefschetz
element of R/I. If for the general form L ∈ (R/I)1 and for an integer number j the
map ×L does not have maximal rank, we will say that the ideal I fails the WLP in
degree j.

The Lefschetz elements of R/I form a Zariski open, possibly empty, subset of
(R/I)1. Part of the great interest in the WLP stems from the fact that its presence
puts severe constraints on the possible Hilbert functions, which can appear in various
disguises (see, e.g., [17]). Though many algebras are expected to have the WLP, estab-
lishing this property is often rather difficult. For example, it was shown by R. Stanley
[18] and J. Watanabe [22] that a monomial artinian complete intersection ideal I ⊂ R
has the WLP. By semicontinuity, it follows that a general artinian complete intersec-
tion ideal I ⊂ R has the WLP, but it is open whether every artinian complete inter-
section of height ≥ 4 over a field of characteristic zero has the WLP. It is worthwhile
to point out that in positive characteristic there are examples of artinian complete
intersection ideals I ⊂ k[x, y, z] failing the WLP (see, e.g., [13, Remark 7.10]).

Notation If F1, . . . , Fr are polynomials, (F1, . . . , Fr) denotes the ideal they gener-
ate, while 〈F1, . . . , Fr〉 denotes the vector subspace generated by them.

Example 2.2 (1) The ideal I = (x3, y3, z3, xyz) ⊂ k[x, y, z] fails to have the WLP,
because for any linear form L = ax + by + cz the multiplication map

×L : (k[x, y, z]/I)2 −→ (k[x, y, z]/I)3

is neither injective nor surjective. Indeed, since it is a map between two k-vector
spaces of dimension 6, to show the latter assertion it is enough to exhibit a nontrivial
element in its kernel. If f = a2x2 + b2 y2 + c2z2 − abxy − acxz − bcyz, then f is not
in I and we easily check that L · f is in I.

(2) The ideal I = (x3, y3, z3, x2 y) ⊂ k[x, y, z] has the WLP. Since the h-vector
of R/I is (1,3,6,6,4,1), we only need to check that the map ×L : (R/I)i → (R/I)i+1

induced by L = x + y + z is surjective for i = 2, 3, 4. This is equivalent to checking
that (R/(I, L))i = 0 for i = 3, 4, 5. Obviously, it is enough to check the case i = 3.
We have

(R/(I, L))3
∼= (k[x, y, z]/(x3, y3, z3, x2 y, x + y + z))3

∼= (k[x, y]/(x3, y3, x3 + 3x2 y + 3xy2 + y3, x2 y))3

∼= k[x, y]/(x3, y3, x2 y, xy2))3 = 0
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which proves what we want.

In this note we are mainly interested in artinian ideals I generated by homoge-
neous forms of fixed degree d. In this case we have the following easy but useful
lemma.

Lemma 2.3 Let I ⊂ R = k[x0, x1, . . . , xn] be an artinian ideal generated by r ≤(n+d−1
d

)
homogeneous forms F1, . . . , Fr of degree d. Let L be a linear form, let R̄ = R/(L)

and let Ī (resp. F̄i) be the image of I (resp. Fi) in R̄. Consider the homomorphism
φd−1 : (R/I)d−1 → (R/I)d defined by multiplication by L. Then φd−1 does not have
maximal rank if and only if F̄1, . . . , F̄r are k-linearly dependent.

Proof First note that (R/I)d−1
∼= Rd−1,

dim Rd−1 =

(
n + d− 1

d− 1

)
, dim(R/L)d =

(
n + d− 1

n− 1

)
,

dim(R/I)d =

(
n + d

d

)
− r.

Consider the exact sequence

0 −→ [I : L]

I
−→ R/I

×L
−→ (R/I)(1) −→ (R/(I, L))(1) −→ 0,

where ×L in degree d − 1 is just φd−1. This shows that the cokernel of φd−1 is just
(R/(I, L))d.

Since r ≤
(n+d−1

d

)
, we have dim(R/I)d−1 ≤ dim(R/I)d. Hence, φd−1 does not

have maximal rank if and only if φd−1 is not injective, if and only if rk(φd−1) <(n+d−1
d−1

)
, if and only if

dim(R/(I, L))d = dim(R̄)d − dim Īd =

(
n + d− 1

n− 1

)
− dim〈F̄1, . . . , F̄r〉d

	 dim(R/I)d −
(

n + d− 1

d− 1

)
=

(
n + d

d

)
−
(

n + d− 1

d− 1

)
− r

=

(
n + d− 1

n− 1

)
− r.

Therefore, φd−1 is not injective if and only if dim〈F̄1, . . . , F̄r〉 � r, if and only if
F̄1, . . . , F̄r are k-linearly dependent.

As an easy consequence we have the following useful corollary.

Corollary 2.4 Let F1, . . . , Fr ∈ R = k[x0, x1, . . . , xn] be a set of m-primary ho-
mogeneous forms of degree d. Let L be a linear form, let R̄ = R/(L), and let F̄i be
the image of Fi in R̄. If r ≤

(n−1+d
d

)
and F̄1, . . . , F̄r are k-linearly dependent, then

the ideal I = (F1, . . . , Fr) fails the WLP and the same is true for any enlarged ideal
J = (F1, . . . , Fr, Fr+1, . . . , Ft )  Rd with r ≤ t ≤

(n−1+d
d

)
.
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Closing this subsection, we reformulate the Weak Lefschetz Property in the case
n = 2 by using the theory of vector bundles on the projective space, and we refer to
[1] for more information.

With any subspace 〈F1, . . . , Fr〉 generated by r m-primary homogeneous forms of
degree d is associated a kernel vector bundle K as in the following exact sequence on
P2:

0 −→ K −→ Or
F1,...,Fr

−−−−→ O(d) −→ 0.

The fact that K is locally free follows from the fact that (F1, . . . , Fr) is m-primary. It is
well known that the bundle K splits on any line L as the sum of line bundles. On the
general line L we have a splitting K|L '

⊕r−1
i=1 OL(ai), where ai ≤ 0 for 1 ≤ i ≤ r− 1

and, moreover, we may assume that a1 ≤ · · · ≤ ar−1. The (r− 1)-ple (a1, . . . ar−1) is
called the generic splitting type of K.

Theorem 2.5 Assume n = 2. Let I = (F1, . . . , Fr) be an m-primary ideal generated
by r homogeneous forms and let (a1, . . . ar−1) be the generic splitting type of the kernel
bundle K. The following properties are equivalent:

(i) I has the WLP;
(ii) ar−1 < 0.

Proof The forms F1, . . . Fr restricted to a general line L are dependent if and only if
the restricted map

H0(Or
L)

F1,...,Fr

−−−−→ H0(OL(d))

has a nonzero kernel. The result follows because the kernel is⊕H0(OL(ai)).

In the Brenner–Kaid example quoted in the introduction, we get as kernel a rank
three vector bundle on P2 with generic splitting type (−2,−1, 0).

Notation Let V (n, d) denote the image of the projective space Pn in the d-tuple

Veronese embedding Pn → P(n+d
d )−1.

2.2 Laplace Equations

In this section we adopt the point of view of differential geometry, as in [10].
Let X ⊂ PN be a quasi-projective variety of dimension n. Let x ∈ X be a

smooth point. We can choose a system of N affine coordinates around x and a local
parametrization of X of the form φ(t1, . . . , tn), where x = φ(0, . . . , 0) and the N
components of φ are formal power series.

The tangent space to X at x is the k-vector space generated by the n vectors that
are the partial derivatives of φ at x. Since x is a smooth point of X, these n vectors are
k-linearly independent. Note that this is not the tangent space in the Zariski sense,
but in differential-geometric language.

Similarly one defines the s-th osculating (vector) space T(s)
x X to be the span of all

partial derivatives of φ of order≤ s (see, for instance, [10]). The expected dimension
of T(s)

x X is
(n+s

s

)
− 1, but in general dim T(s)

x X ≤
(n+s

s

)
− 1; if strict inequality holds

for all smooth points of X, and dim T(s)
x X =

(n+s
s

)
−1− δ for general x, then X is said
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to satisfy δ Laplace equations of order s. Indeed, in this case the partials of order s of
φ are linearly dependent, which gives δ linear partial differential equations of order s,
which are satisfied by the components of φ. We will also consider the projective s-th
osculating space T(s)

x X, embedded in PN .

Remark 2.6 It is easy to prove (see, for instance, [10, §1(d)]) that, if X is a non-
degenerate curve in PN , i.e., X is not contained in any proper linear subspace of PN ,
then dim T(s)

x X = s for a general point x. Hence X does not satisfy any Laplace equa-
tion.

Remark 2.7 It is clear that if N <
(n+s

s

)
− 1, then X satisfies at least one Laplace

equation of order s, but this case is not interesting and will not be considered in the
following.

Remark 2.8 If X is uniruled by lines, i.e., through any general point of X passes
a line contained in X, then X satisfies a Laplace equation. Roughly speaking in this
case it is possible to find a local parametrization of X in which one of the parameters
appears at most at degree one. Hence the corresponding second derivative vanishes
identically. The case of surfaces from which the general case follows immediately, is
treated in detail in [10, §2].

If X ⊂ PN is a rational variety, then there exists a birational map Pn 99K X given
by N +1 forms F0, . . . , FN of some degree d of k[x0, x1, . . . , xn]. From Euler’s formula
for homogeneous polynomials it follows that, for s ≤ d, the projective s-th osculating
space T(s)

x X, for x general, is generated by the s-th partial derivatives of F0, . . . , FN at
the point x.

Assume that X is not a linear space. In the case s = 2, n = 2, the dimension of
T(2)

x X varies between 3 and 5. Moreover, dim T(2)
x X = 3 for general x ∈ X if and

only if X is either a hypersurface or a ruled developable surface, i.e., a cone or the
developable tangent of a curve. The surfaces with dim T(2)

x X = 4 for general x ∈ X
are not yet well understood in spite of the literature devoted to this topic (see [16],
where they are called “superfici Φ”, [10, p. 377], [5] [11], [19], [20], [21], [12]). As
for surfaces in PN , N ≥ 5 satisfying Laplace equations, only Del Pezzo surfaces, i.e.,
projections of V (2, 3), have been systematically studied. Besides the ruled surfaces,
there are only a few smooth examples; in particular, the Togliatti surface introduced
above (see the Introduction), a special complete intersection of quadrics in P5 that is
a desingularization of the Kummer surface (see [3] and [4]), and some toric surfaces
(see the examples given by Perkinson in [15], where the classification is given of toric
surfaces and threefolds whose osculating spaces up to order d − 1 all have maximal
dimension and all have dimension less than maximal for order d).

3 The Main Theorem

The goal of this section is to highlight the existence of a surprising relationship be-
tween a pure algebraic problem, the existence of artinian ideals I ⊂ R generated by
homogeneous forms of degree d and failing the WLP, and a pure geometric problem,
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the existence of projections of the Veronese variety V (n, d) ⊂ P(n+d
d )−1 to X ⊂ PN

satisfying at least one Laplace equation of order d− 1. Moreover, we will also discuss
the geometry of some surfaces “apolar” to those satisfying the Laplace equation.

We start this section recalling the basic facts on Macaulay–Matlis duality that
will allow us to relate the above mentioned problems. Let V be an (n + 1)-
dimensional k-vector space and set R =

⊕
i≥0 Symi V ∗ and D =

⊕
i≥0 Symi V .

Let {x0, x1, . . . , xn}, {y0, y1, . . . , yn} be dual bases of V ∗ and V respectively. So, we
have the identifications R = k[x0, x1, . . . , xn] and D = k[y0, y1, . . . , yn]. There are
products (see [7, p. 476])

Sym j V ∗ ⊗ Symi V −→ Symi− j V

F ⊗ D 7−→ F · D

making D into a graded R-module. We can see this action as partial differentiation.
If F(x0, x1, . . . , xn) ∈ R and D(y0, y1, . . . , yn) ∈ D, then

F · D = F(∂/∂y0, ∂/∂y1, . . . , ∂/∂yn)D.

If I ⊂ R is a homogeneous ideal, we define the Macaulay’s inverse system I−1 for I as

I−1 := {D ∈ D, F · D = 0 for all F ∈ I}.

Then I−1 is an R-submodule of D that inherits a grading of D. Conversely, if M ⊂ D

is a graded R-submodule, then Ann(M) := {F ∈ R, F · D = 0 for all D ∈ M} is a
homogeneous ideal in R. In classical terminology, if F ·D = 0 and deg(F) = deg(D),
then F and D are said to be apolar to each other. In fact, the pairing

Ri ×Di −→ k (F,D) 7→ F · D

is exact; it is called the apolarity or Macaulay–Matlis duality action of R on D.
For any integer i, we have hR/I(i) = dimk(R/I)i = dimk(I−1)i . The following

theorem is fundamental.

Theorem 3.1 We have a bijective correspondence

{Homogeneous ideals I ⊂ R} 
 {Graded R− submodules of D}
I → I−1

Ann(M) ← M
.

Moreover, I−1 is a finitely generated R-module if and only if R/I is an artinian ring.

When considering only monomial ideals, we can simplify by regarding the inverse
system in the same polynomial ring R, and in any degree, d, the inverse system I−1

d is
spanned by the monomials in Rd not in Id. Using the language of inverse systems, we
will still call the elements obtained by the action derivatives.
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Let I be an artinian ideal generated by r homogeneous polynomials F1, . . . , Fr ∈
R = k[x0, x1, . . . , xn] of degree d. Let I−1 ⊂ D be its Macaulay inverse system.
Associated with (I−1)d there is a rational map

ϕ(I−1)d
: Pn 99K P(n+d

d )−r−1.

The closure of its image Im(ϕ(I−1)d
) ⊂ P(n+d

d )−r−1 is the projection of the n-dimen-
sional Veronese variety V (n, d) from the linear system 〈F1, . . . , Fr〉 ⊂ |OPn (d)|. Let
us call it Xn,(I−1)d

. Analogously, associated with Id there is a morphism

ϕId : Pn −→ Pr−1.

Note that ϕId is regular (i.e., defined everywhere), because I is artinian. Its image
Im(ϕId ) ⊂ Pr−1 is closed and is the projection of the n-dimensional Veronese variety
V (n, d) from the linear system 〈(I−1)d〉 ⊂ |OPn (d)|. Let us call it Xn,Id . The varieties
Xn,Id and Xn,(I−1)d

are usually called apolar.
We are now ready to state the main result of this section.

Theorem 3.2 (The Tea Theorem1) Let I ⊂ R be an artinian ideal generated by r
homogeneous polynomials F1, . . . , Fr of degree d. If r ≤

(n+d−1
n−1

)
, then the following

conditions are equivalent:

(i) the ideal I fails the WLP in degree d− 1;
(ii) the homogeneous forms F1, . . . , Fr become k-linearly dependent on a general hy-

perplane H of Pn;
(iii) the n-dimensional variety Xn,(I−1)d

satisfies at least one Laplace equation of order
d− 1.

Remark 3.3 Note that, in view of Remark 2.7, the assumption r ≤
(n+d−1

n−1

)
ensures

that the Laplace equations obtained in (iii) are not obvious in the sense of Remark 2.7.
In the particular case n = 2, this assumption gives r ≤ d + 1.

Proof The equivalence between (i) and (ii) follows immediately from Lemma 2.3.
Let us see that (i) is equivalent to (iii). Since (R/I)d−1 = Rd−1 and

dim Rd−1 =
(n+d−1

n

)
=
(n+d

n

)
−
(n+d−1

n−1

)
≤
(n+d

n

)
− r = dim(R/I)d,

we have that the ideal I fails the WLP in degree d − 1 if and only if for a linear form
L ∈ R1 the multiplication map

×L : (R/I)d−1 → (R/I)d

is not injective. Via the Macaulay–Matlis duality, the latter is equivalent to saying that
the rank of the dual map (I−1)d −→ (I−1)d−1 is ≤

(d+n−1
n

)
− 1; which is equivalent

to saying that the (d − 1)-th osculating space T(d−1)
x Xn,(I−1)d

spanned by all partial
derivatives of order ≤ d − 1 of the given parametrization of Xn,(I−1)d

has dimension

≤
(n+d−1

n

)
− 2; i.e., Xn,(I−1)d

satisfies a Laplace equation of order d− 1.

1Since the first guess about the statement of the theorem emerged during a Tea discussion in Berkeley,
we have always labeled the result in our discussions as the “Tea Theorem”.
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Remark 3.4 Note that for n = 2, d = 3, and I = (x3
0, x

3
1, x

3
2, x0x1x2) ⊂ k[x0, x1, x2],

we recover Togliatti’s example (see [19], [20], and [5]).

Definition 3.5 With notation as above, we will say that I−1 (or I) defines a Togliatti
system if it satisfies the three equivalent conditions in Theorem 3.2.

Example 3.6 ([21]) Let d = 2k + 1 be an odd number and n = 2. Let l1, . . . , ld be
general linear forms in 3 variables. Then the ideal (ld1, . . . , l

d
d, l1l2 . . . ld) is generated

by d + 1 polynomials of degree d, and it fails the WLP in degree d − 1, because by
[21, Théorème 3.1], ld1, . . . , l

d
d, l1l2 · · · ld become dependent on a general line L ⊂ P2.

For d = 3 we recover Togliatti’s example once more; for d > 3 we get nontoric exam-
ples. It is interesting to observe that a similar construction in even degree produces
ideals that do satisfy the WLP.

Example 3.7 Let n ≥ 3 and d ≥ 3. Let I = (LF1, . . . , LFt ,G1, . . . ,Gn), where L is a
linear form, F1, . . . , Ft are general forms of degree d − 1, and G1, . . . ,Gn are general
forms of degree d. If

(n+d−2
n−1

)
+ 1 ≤ t ≤

(n+d−1
n−1

)
− n, then I is artinian and fails the

WLP in degree d − 1. Indeed the number of conditions imposed on the forms of
degree d−1 to contain a linear form is equal to

(n+d−2
n−1

)
. With the assumptions made

on t , the number of generators r = t + n is in the range of Theorem 3.2.

We will end this section by studying the geometry of some rational surfaces sat-
isfying at least one Laplace equation of order 2 and the geometry of their apolar
surfaces.

Example 3.8 In the case of the Togliatti surface the morphism ϕI3 : P2 → P3 with
I3 = (x3

0, x
3
1, x

3
2, x0x1x2) is not birational. In fact, it is a triple cover of the cubic surface

of equation xyz = t3, which is singular at the three fundamental points of the plane
t = 0.

Similarly in the case n = 2, d = 4, and I4 = (x4
0, x

4
1, x

4
2, x

2
0x2

1, x0x1x2
2), the surface

X2,(I−1)4
⊂ P9 has second osculating space of dimension 8 at a general point. Also

the morphism ϕI4 : P2 → P4 is not birational; it is a degree 4 cover of a singular Del
Pezzo quartic, the complete intersection of two quadrics in P4.

Similar considerations can be made in the following example, where n = 2,
d = 5, and I5 = (x5

0, x
5
1, x

5
2, x

3
0x2

1, x
2
0x3

1, x
2
1x3

2), but in this case we get a birational
map ϕI5 : P2 → P5.

4 The Toric Case

In this section, we will restrict our attention to the monomial case. First of all, we
want to point out that for monomial ideals (i.e., the ideals invariants for the natural
toric action of (k∗)n) on k[x0, . . . , xn]) to test the WLP there is no need to consider a
general linear form. In fact, we have

Proposition 4.1 Let I ⊂ R := k[x0, x1, . . . , xn] be an artinian monomial ideal. Then
R/I has the WLP if and only if x0 + x1 + · · · + xn is a Lefschetz element for R/I.

Proof See [13, Proposition 2.2].
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Fix Pn = Proj(k[x0, x1, . . . , xn]). Denote by Ln,d := |OPn (d)| the complete linear

system of hypersurfaces of degree d in Pn and set nd := dim(Ln,d) =
(n+d

n

)
− 1 its

projective dimension. As usual denote by V (n, d) ⊂ Pnd the Veronese variety.

Definition 4.2 A linear subspace L ⊂ Ln,d is called a monomial linear subspace if it
can be generated by monomials.

The example of the truncated simplex Consider the linear system of cubics

L = |{x2
i x j}0≤i 6= j≤n| ⊂ Ln,3.

Note that dimL = n(n + 1) − 1. Let ϕL : Pn 99K Pn(n+1)−1 be the rational map
associated with L. It has n + 1 fundamental points (where it is not defined). The
closure of its image X := Im(ϕL) ⊂ Pn(n+1)−1 is (projectively equivalent to) the
projection of the Veronese variety V (n, 3) from the linear subspace

L ′ :=
∣∣〈x3

0, x
3
1, . . . , x

3
n, {xix jxk}0≤i< j<k≤n

〉∣∣
of P(n+3

3 )−1. Let us check that X satisfies a Laplace equation of order 2 and that it is
smooth.

Since L and L ′ are apolar, we can apply Theorem 3.2 and we get that X satisfies a
Laplace equation of order 2 if and only if the ideal

I =
(

x3
0, x

3
1, . . . , x

3
n, {xix jxk}0≤i< j<k≤n

)
⊂ R = k[x0, x1, . . . , xn]

fails the WLP in degree 2; i.e., for a general linear form L ∈ R1 the map×L : (R/I)2 →
(R/I)3 does not have maximal rank. By Lemma 2.3, it is enough to see that the restric-
tion of the cubics x3

0, x
3
1, . . . , x

3
n, {xix jxk}0≤i< j<k≤n to a general hyperplane become

k-linearly dependent and, by Proposition 4.1, it is enough to check that they become
k-linearly dependent when we restrict to the hyperplane x0 + x1 + · · · + xn = 0,
which follows after a straightforward computation. An alternative argument, due
to [15, Proposition 1.1], is that all the vertex points in Zn+1, corresponding to the
monomial basis of L, are contained in the quadric with equation

2

( n∑
i=0

x2
i

)
− 5

( ∑
0≤i< j≤n

xix j

)
= 0.

Then X is a projection of the blow-up of Pn at the n + 1 fundamental points,
embedded via the linear system of cubics passing through the blown-up points. Using
the language of [8], it is the projective toric variety XA, associated with the set A of
vertices of the lattice polytope Pn defined as follows: let ∆n be the standard simplex
in Rn, consider 3∆n, then Pn is obtained by removing all vertices so that the new
edges have all length one: Pn is a “truncated simplex”. By the smoothness criterium
[8, Corollary 3.2, Ch. 5] (see also [15]), it follows that X is smooth. For instance, in
the case n = 2, P2 is the punctured hexagon of Figure 2.
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In [11, p. 12], G. Ilardi formulated a conjecture, stating that the above example is
the only smooth (meaning that the variety X is smooth) monomial Togliatti system
of cubics of dimension n(n + 1) − 1. We will show that conjecture is incorrect, but
we underline that it was useful to us because it pointed in the right direction.

We start by producing a class of examples of monomial Togliatti systems of cubics,
holding for any n ≥ 3. We will then give the classification of smooth and quasi-
smooth monomial Togliatti systems for n = 3 in Theorem 4.11. As a consequence,
the conjecture in [11, p. 12] cannot hold, in the sense that the list in [11] is too short
and we have to enlarge it. Correspondingly, in Remark 6.2, we propose a larger list
for any n, which reduces to the list of the Theorem 4.11 for n = 3.

A second example Consider the linear system of cubics

M =
∣∣{x2

i x j} 0≤i 6= j≤n,
{i, j}6={0,1}

∪ {x0x1xi}2≤i≤n

∣∣ ⊂ Ln,3.

Note that dimM = n2 + 2n− 4. Let

ϕM : Pn 99K Pn2+2n−4

be the rational map associated with M. The closure of its image X := Im(ϕM) ⊂
Pn2+2n−4 is (projectively equivalent to) the projection of the Veronese variety V (n, 3)
from the linear subspace

M ′ :=
∣∣∣〈x3

0, x
3
1, . . . , x

3
n, x

2
0x1, x0x2

1, {xix jxk}0≤i< j<k≤n,(i, j)6=(0,1)

〉∣∣∣
of Mn,3 = P(n+3

3 )−1. Arguing as in the previous example, we can check that X satisfies
a Laplace equation of order 2 and that it is smooth. The quadric containing all the
vertex points in Zn+1 has equation

2

( n∑
i=0

x2
i

)
− 5

( ∑
0≤i< j≤n

xix j

)
+ 9x0x1 = 0.

Notice that n2 + 2n − 4 = n2 + n − 1 if and only if n = 3. Hence for n = 3
we have a counterexample to Ilardi’s conjecture. Nevertheless X cannot be further
projected without acquiring singularities; hence, for n > 3 this example does not
give a counterexample to Ilardi’s conjecture. See Section 6 for counterexamples to
Ilardi’s conjecture for any n ≥ 3.

Now X is a projection of the blow-up of Pn at n − 1 fundamental points plus the
line through the remaining two fundamental points, embedded via a linear system
of cubics. Also in this case, as in the previous one, X is a projective toric variety of
the form XA. Now there is a lattice polytope P obtained from 3∆n, removing n − 1
vertices and the opposite edge, and A is the set of the vertices of P together with
the n − 1 central points of the 2-faces adjacent to the removed edge. By the above
smoothness criterium, X cannot be further projected without acquiring singularities.
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4.1 Geometric Point of View and Trivial Linear Systems

With notation as in Section 3, we now consider a monomial artinian ideal I, gener-
ated by a subspace Id ⊂ Symd V ∗ (where V ' Cn+1). Since we are in the monomial
case, we will also assume I−1

d ⊂ Symd V ∗.

Remark 4.3 Note that the assumption that I is artinian is equivalent to
I−1 ∩V (n, d) = ∅. Indeed, if I is not artinian, then there exists a point z ∈ Pn

that is a common zero of all polynomials in I. Then its Veronese image vd(z) belongs
to V (n, d) ∩ I−1. Here vd(z) must be interpreted as

∑
zα∂α, where α denotes a mul-

tiindex of degree d. Conversely, if vd(z) ∈ I−1, then (
∑

zα∂α)(F) = 0 for all F ∈ Id;
therefore, being I generated by Id, z is a common zero of the polynomials of I.

Let X be the closure of the image of ϕI−1
d

, it can be seen geometrically as the pro-

jection of V (n, d) from Id. The exceptional locus of this projection is I ∩V (n, d) and
corresponds via vd to the base locus of the linear system 〈I−1

d 〉. Also, X can be inter-
preted as (a projection of) the blow up of V (n, d) along I∩V (n, d). Since I is artinian,
in the toric case ϕI−1

d
is never regular, because I has to contain the d-th powers of the

variables. On the contrary, the map ϕId is regular.
In this situation we assume that all 2-osculating spaces of X have dimension

strictly less than
(n+2

2

)
; i.e., X satisfies a Laplace equation of order 2. Since the 2-

osculating spaces of V (n, d) have the expected dimension, this means that I meets
the 2-osculating space T(2)

x V (n, d) for all x ∈ V (n, d).
Let d = 3. V (n, 3) ⊂ P(Sym3(V ∗)) represents the homogeneous polynomials of

degree 3 that are cubes of a linear form. Let σ2V (n, 3) denote its secant variety; its
general element can be interpreted both as a sum of two cubes of linear forms and as
a product of three linearly dependent linear forms. Let πI3 : V (n, 3) 99K X denote the
projection with center I3. We connect the singularities of X to the reciprocal position
of I3 and σ2V (n, 3).

Proposition 4.4 If I ∩ σ2V (n, 3) strictly contains σ2(I ∩V (n, 3)), then X is singular.

Proof The points of I ∩ σ2V (n, 3) give rise to nodes of X, except those of
σ2(I ∩V (n, 3)), because I ∩ V (n, 3) is the indeterminacy locus of πI3 . Note that
σ2(I ∩V (n, 3)) ⊂ I, because I is an ideal.

Among Togliatti systems, not necessarily monomial, we detect two types that we
call trivial.

Definition 4.5 A Togliatti system of forms of degree d is trivial of type A if there
exists a form Q of degree d−1 such that, for every L ∈ V ∗, QL ∈ I; that is, Q belongs
to the saturation of I.

Note that the ideal generated by a quadratic form Q defines a trivial Togliatti
system of cubics of type A that is not artinian, but adding s ≥ n suitable forms
F1, . . . , Fs ∈ Sym3 V ∗ we get a linear system Q〈x0, . . . , xn〉+ 〈F1, . . . , Fs〉, which is an
artinian trivial Togliatti system of type A.
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In the toric case, if Q is a quadratic monomial, then Q has rank ≤ 2; therefore,
I = (Q) + (F1, . . . , Fs) meets σ2V (n, 3) in infinitely many points outside I. In par-
ticular, by Proposition 4.4, a toric trivial Togliatti system of cubics of type A cannot
parameterize a smooth variety.

Example 4.6 Consider the 12-dimensional linear system of cubics

L =

〈x2
0x1, x

2
0x2, x

2
0x3, x

2
1x0, x

2
1x2, x

2
1x3, x

2
2x0, x

2
2x1, x

2
2x3, x0x1x3, x0x2x3, x1x2x3〉 ⊂ L3,3.

Let ϕL : P3 → P11 be the rational map associated with L. The closure of its image
X := Im(ϕL) ⊂ P11 is (projectively equivalent to) the projection from the linear
subspace

L ′ := 〈x3
0, x

3
1, x

3
2, x

3
3, x0x1x2, x0x2

3, x1x2
3, x2x2

3〉

of the Veronese variety V (3, 3) ⊂ P(L3,3) = P19. We easily check that X is not
smooth. In fact Sing(X) = {(0, 0, 0, 1)}. Finally, let us check that X satisfies a Laplace
equation of order 2. Since x3

0, x
3
1, x

3
2, (x0 + x1 + x2)3, x0x1x2, x0(x0 + x1 + x2)2, x1(x0 +

x1 + x2)2, x2(x0 + x1 + x2)2 are k-linearly dependent, applying Lemma 2.3 and Propo-
sition 4.1 we get that the ideal

I = (x3
0, x

3
1, x

3
2, x

3
3, x0x1x2, x0x2

3, x1x2
3, x2x2

3) ⊂ R = k[xo, x1, x2, x3]

fails the WLP in degree 2. Therefore, using that L and L ′ are apolar and Theorem
3.2, we conclude that X satisfies a Laplace equation of order 2. Alternatively, we could
observe that X is ruled, because the variable x3 appears in the polynomials of the
linear system L only up to degree 1, or, alternatively, the polynomials of L ′ contain
all monomials of degree≥ 2 in x3.

Definition 4.7 A Togliatti system of forms of degree d is trivial of type B if there is
a point p ∈ V (n, d) such that the intersection of I with the (d − 1)-osculating space
at p meets all the other (d− 1)-osculating spaces.

A trivial Togliatti system of type B is given in Example 3.7. To explain this, let
us recall that, if p ∈ V (n, d) is identified with Ld, where L ∈ V ∗, then T(1)

p V (n, d)

is formed by the multiples of Ld−1, T(2)
p V (n, d) by the multiples of Ld−2, and so on.

From this description it follows that a sufficient condition to have a Togliatti system
of cubics of type B is

dimk(I ∩ T(2)
p ) >

(
n + 2

2

)
− n− 1 =

(
n + 1

2

)
,

because this number is the codimension of the intersection of two osculating spaces
inside one of them. We found several cases when this happens even if dim I ∩ T(2)

p =(n+2
2

)
− n− 1.
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Remark 4.8 G. Ilardi has a different notion of trivial Laplace equations in [11, Re-
mark 1.2], which corresponds to varieties embedded in a space of dimension smaller
than the expected dimension of the osculating spaces; see Remark 2.7. Still another
definition can be found in [5].

Proposition 4.9 Let I be a monomial artinian ideal I, generated in degree 3. Assume
that I is trivial of type B of the form I = (LF1, . . . , LFt ,G1, . . . ,Gn), where L, Fi ,G j are
monomials of degrees 1, 2, 3 respectively, and t >

(n+1
2

)
. Then the variety X is singular.

Proof Since I is monomial, we can assume that L = x0 and Gi = x3
i , for all i ≥ 1.

We want to prove that I meets the tangent space at p = L3 outside I ∩ V (n, 3),
giving a singularity of X. We are done if among the polynomials F1, . . . , Ft there
is a multiple of x0 different from x2

0. In view of the assumption on t , the unique
case to check separately is when t =

(n+1
2

)
+ 1 and {F1, . . . , Ft} contains x2

0 and all
monomials of degree 2 in x1, . . . , xn. But in this case, looking at the corresponding
polytope P, we see that the vertex x2

0x1 has edges in P connecting to the 2n−2 vertices
x2

0x2, . . . x2
0xn, x2

1x2, . . . , x2
1xn, so that for n ≥ 3 we get 2n−2 > n, hence the polytope

P is not simple and the variety X is not smooth by [8, Proposition 4.12, Chap. 5].

Remark 4.10 According to [8, Chap. 5], a toric variety is called quasi-smooth if
every cone of the fan F(X) associated with X is simplicial and the normalization
morphism X̃ → X is bijective. We note that the variety X of Proposition 4.9 is even
not quasi-smooth.

Note that a monomial artinian ideal I generated in degree three contains the
monomials x3

i for i = 0, . . . , n.
We are now ready to give a complete classification of monomial Togliatti systems

of cubics in the cases n = 2 and 3.
In the case n = 2, let k[a, b, c] be the base ring; we recall that the only nontrivial

monomial Togliatti system is a3, b3, c3, abc (see [5, 21]). In view of the next classi-
fication theorem for n = 3, we recall also that all toric surfaces are quasi-smooth
according to [8] chap. 5, §2.

Theorem 4.11 Let I ⊂ k[a, b, c, d] be a monomial artinian ideal of degree 3. Let
X be the closure of the image of its apolar linear system. Assume that X is a smooth
threefold and does satisfy a Laplace equation of degree 2. Then, up to a permutation of
the coordinates, I−1 is one of the following three examples:

(i) (a2b, a2c, a2d, ab2, ac2, ad2, b2c, b2d, bc2, bd2, c2d, cd2), X is of degree 23, in P11,
it is isomorphic to P3 blown up in the 4 coordinate points;

(ii) (abc, abd, a2c, a2d, ac2, ad2, b2c, b2d, bc2, bd2, c2d, cd2), X is of degree 18, in P11,
it is isomorphic to P3 blown up in the line {c = d = 0} and in the two points
(0, 0, 1, 0) and (0, 0, 0, 1);

(iii) (abc, abd, acd, bcd, a2c, ac2, a2d, ad2, b2c, bc2, b2d, bd2), X is of degree 13, in P11,
it is isomorphic to P3 blown up in the two lines {a = b = 0} and {c = d = 0}.

Moreover, if we substitute “smooth” with “quasi-smooth” (see Remark 4.10) we have the
further cases:
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Figure 1: full triangle

(iv) (acd, bcd, a2c, a2d, ac2, ad2, b2c, b2d, bc2, bd2, c2d, cd2), this example is trivial of
type A (indeed the apolar ideal contains ab ∗ (a, b, c, d)); X is of degree 18, in P11

and its normalization is isomorphic to P3 blown up in the line {c = d = 0} and
in the two points (0, 0, 1, 0) and (0, 0, 0, 1);

(iv ′) a projection of case (ii) removing one or both of the monomials abc, abd, or a
projection of case (iii) removing a subset of the monomials (abc, abd, acd, bcd), or
a projection of case (iv) removing one or both of the monomials (acd, bcd).

Proof Consider the apolar ideal I. Since it is monomial and artinian, I contains
(a3, b3, c3, d3) and j generators more, with 1 ≤ j ≤ 6.

Due to [15, Proposition 1.1], in order to check that the four cases satisfy a Laplace
equation of degree 2, it is enough to check that the vertex points in Z4 are contained
in a quadric. This is Q := 2(a2 + b2 + c2 + d2)− 5(ab + ac + ad + bc + bd + cd) in case
(i) (it corresponds to a sphere with the same center of the tetrahedron); it is Q + 9ab
(a quadric of rank three) in case (ii); it is

Q + 9ab + 9cd = (−2a− 2b + c + d)(−a− b + 2c + 2d)

in case (iii), and it is ab in case (iv). An alternative approach for proving that the
four cases satisfy a Laplace equation of degree 2 would be to apply Theorem 3.2(ii)
directly.

Every case corresponds to a convex polytope contained in the full tetrahedron with
vertices the powers a3, b3, c3, d3. This tetrahedron has four faces, as in Figure 1.

The convex polytope corresponding to case (i) is the truncated tetrahedron al-
ready described. It is instructive to describe its faces, which are four “punctured”
hexagons as in Figure 2 and four smaller regular triangles. It is [15, Theorem 3.5(4)].
It has degree 33 − 4 = 23 in P11. Note that the projection of this example is not
quasi-smooth, because, when we remove a vertex, the resulting polytope has four
faces meeting in a vertex (see [8, chap. 5, Proposition 4.12]).

The case (ii) corresponds to [15, Theorem 3.5(5)]. It has degree 18 in P11 The
degree computation follows from the fact that the equivalence of a line in the (excess)
intersection of three cubics in P3 counts seven, according to the [6, Example 9.1.4(a)].
So 33 − 7− 2 = 18.

The convex hull has the following faces: one rectangle, two full trapezoids, two
punctured hexagons, and two triangles.
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Figure 2: punctured hexagon

Figure 3: full trapezoid

The picture of the full trapezoid is like Figure 3, and it is important to remark that
all three vertices of the longer side are included.

The projection of this case is never smooth, but when removing the mid vertices
of the long sides of the trapezoids, we get a quasi smooth variety, appearing in (iv ′) of
our statement. To understand why these cases are not smooth, note that [8, Corollary
3.2(a), Chap. 5] is not satisfied when Γ is one of the vertices of the long side of the
trapezoid.

Case (iii) can be seen both as [15, Theorem 3.5(2) or (3)]. Our variety X is P3

blown up on two skew lines L1 and L2. To see it as a particular case of case (2) of
[15], consider that there are two natural maps from X to P1, with fiber given by the
Hirzebruch surface isomorphic to P2 blown up in one point.

Fix a line Li . The map takes a point p to the plane spanned by Li and p. These
planes through Li make the target P1.

To see it as a particular case of case (3) of [15], consider that through a general
point p there is a unique line meeting L1 in p1 and L2 in p2. The map from X to the
quadric surface P1 × P1 takes p to the pair (p1, p2).

The convex polyhedron has six faces, four full trapezoids and two full (long) rect-
angles. The argument regarding the projection is analogous to the previous case and
we omit it.

Case (iv) does not appear in [15, Theorem 3.5], because it is not smooth.
The convex hull has the following faces: one rectangle, two punctured trapezoids,
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Figure 4: nonquasi smooth cases with 13 vertices

two full hexagons and two triangles. The presence of the punctured trapezoids is
crucial for the nonsmoothness, exactly as we saw in the projection of case (ii).

A computer check shows that this list is complete; in all the remaining cases the
convex polytope has at least four faces meeting in some vertex.

Let us just underline that there are exactly four monomial Togliatti (cubic) systems
with 13 generators, their apolar ideals are obtained by adding to (a3, b3, c3, d3) the
monomials a2 ∗ (b, c, d) and their cyclic permutations. They are trivial of type A.

The faces are three full trapezoids, one full hexagon. The convex hull is topologi-
cally equivalent to the Figure 4, where the four meeting faces are evident, so it is not
quasi smooth.

Remark 4.12 The computations have been performed using Macaulay2 [9].

5 Bounds on the Number of Generators

In this section we concentrate on the case n = 2. We will see how, using Theorem 3.2,
it is possible to translate into geometric terms a result expressed in purely algebraic
terms involving WLP.

Let L be a linear system of curves of degree d and (projective) dimension N ≤(d+1
2

)
− 1, defining a map φL : P2 → PN having as image a surface X which satisfies

exactly one Laplace equation of order d− 1.
With notations as in Theorem 3.2, let I−1 be the ideal generated by the equations

of the curves in L and I its apolar system, generated by r polynomials.
Note that if L is a Togliatti system with r = 3 , then L is trivial of type A and I is

not artinian. The Togliatti example described in Remark 3.4 is a nontrivial example
with r = 4 and I artinian. It is a classical result that this is the only nontrivial example
with d = 3 (see [20] and [5]).

We consider now the case r = 4 with d ≥ 4.

Theorem 5.1 Let I ⊂ R := k[x, y, z] be an artinian ideal generated by 4 homogeneous
polynomials of degree d ≥ 4. Then

(i) I satisfies the WLP in degree d− 1;
(ii) if d is not multiple of 3, then I satisfies the WLP everywhere;
(iii) if d is multiple of 3 but not of 6, then there exists I that fails the WLP.
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Proof Let I = (F1, . . . , F4) and denote by E the syzygy bundle of F1, . . . , F4; i.e., E is
the rank three bundle on P2 with c1(E) = −4d, which enters in the exact sequence

0→ E→ OP2 (−d)4 → OP2 → 0.

From [1, Theorem 3.3], if E is not semistable, then I has the WLP. So we assume
that E is semistable and consider the normalized bundle Enorm = E(k) with k =
[4d/3]. We distinguish three cases, according to the congruence class of d modulo
3. If d ≡ 1 mod 3, then c1(Enorm) = −1, hence by the Theorem of Grauert-Mülich
[14] it follows that the restriction of Enorm to a general line L is Enorm |L' O2

L ⊕
OL(−1). Then by [1, Theorem 2.2] I has the WLP. Similarly, if d ≡ 2 mod 3, then
c1(Enorm) = −2, and on a general line Enorm |L' OL⊕OL(−1)2. Finally, assume that
d = 3λ, λ ≥ 2. There are two possibilities for Enorm |L: it is isomorphic either to O3

L,
and we conclude as in the two previous cases, or to OL(−1) ⊕ OL ⊕ OL(1). Hence
E ' Enorm(−4λ) and E |L' OL(−1 − 4λ) ⊕ OL(−4λ) ⊕ OL(1 − 4λ). Consider the
exact sequence

(5.1) 0→ E→ E(1)→ E |L (1)→ 0

and its twists. The only critical situation is obtained twisting by 4λ − 2; it is then
isomorphic to

0→ E(4λ− 2)→ E(4λ− 1)→ OL(−2)⊕ OL(−1)⊕ OL → 0,

where the second arrow is the multiplication by L. By the semistability of E we get
H0(E(4λ−2)) = H0(E(4λ−1)) = (0). Also H2(E(4λ−2)) = (0): indeed, by Serre’s
duality, H2(E(4λ − 2)) ' H0(E∗(−4λ − 1)), and this is zero by the semistability of
E∗, because c1(E∗(−4λ − 1) = −3. Therefore the cohomology exact sequence of
(5.1) becomes

0→ k→ H1
(
E(4λ− 2)

)
→ H1

(
E(4λ− 1)

)
→ k→ 0,

where k is the base field. But H1(E(4λ − 2)) ' (R/I)4λ−2 and H1(E(4λ − 1)) '
(R/I)4λ−1, so I fails the WLP in degree 4λ − 2 = d + (λ − 2). With similar argu-
ments we get that this is the only degree in which I fails the WLP, so in particular
WLP always holds in degree d − 1. Finally, [13, Corollary 7.4] shows that the ideal
(xd, yd, zd, xλyλzλ), with d = 3λ odd, fails the WLP.

Remark 5.2 (1) Theorem 5.1(ii) was stated for the monomial case in [13, The-
orem 6.1]. An analogous proof holds for homogeneous polynomials that are not
necessarily monomials, and we include it here for the sake of completeness.

(2) U. Nagel has pointed out to us that if d is a multiple of 6 and I is a monomial
ideal then I does have the WLP. This follows from [2, Theorem 6.3].

(3) Theorem 5.1 is optimal, i.e., for all d ≥ 4 and 5 ≤ r ≤ d+1 there exist examples
of ideals I generated by r polynomials of degree d that fail the WLP in degree d− 1.

Let I = (xF, yF, zF,G1, . . . ,Gr−3), where F is a homogeneous polynomial with
deg F = d − 1 and G1, . . . ,Gr−3 are general forms of degree d. I is an artinian ideal
because r ≥ 5, and I−1 defines a surface satisfying a Laplace equation of order d− 1.
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Putting everything together we get the following corollary.

Corollary 5.3 Let I ⊂ k[x, y, z] be an artinian ideal generated by r forms F1, . . . , Fr

of degree d ≥ 4 and let S ⊂ P(d+2
2 )−r−1 be the projection of the Veronese surface V (2, d)

from the linear system 〈F1, . . . , Fr〉. The following hold:

(i) if r = 4, then all the (d−1)-th osculating spaces of S ⊂ P(d+2
2 )−5 have the expected

dimension;
(ii) for all 5 ≤ r ≤ d + 1, there exists a surface S ⊂ P(d+2

2 )−r−1 with a (d − 1)-th
osculating space of dimension less than the expected one.

Proof (i) It follows from Theorems 3.2 and 5.1.
(ii) It follows from Theorem 3.2 and Remark 5.2(3). We observe that it is possible

to find for all d ≥ 4 and 5 ≤ r ≤ d + 1 examples of smooth surfaces S ⊂ P(d+2
2 )−r−1

with a (d − 1)-osculating space of dimension smaller than the expected one. For
instance, take r = 5, F = xd−1 + yd−1 + zd−1 and G1 = xd, G2 = yd, G3 = zd and
apply Remark 5.2(3).

6 Final Comments

A further interesting project is the classification of all Togliatti linear systems of cubics
on Pn, in the monomial case, accomplished here for n ≤ 3 (see Theorem 4.11). It
is possible to generalize the three examples in Theorem 4.11 constructing suitable
projections of blow ups of Pn along unions of linear spaces of codimension ≥ 2
corresponding to partitions of the n + 1 fundamental points.

Among the three examples in Theorem 4.11, the third one is a ruled threefold,
while the first two are not. How can we distinguish the ruled examples from the
nonruled ones? Since all ruled varieties satisfy Laplace equations of all orders (see
Remark 2.8), the nonruled ones are much more interesting to find.

The second case of Theorem 4.11 generalizes to n ≥ 4 and gives for any n ≥ 3
a counterexample to Ilardi’s conjecture in [11, p. 12]. In fact, we have the following
example.

Example 6.1 We consider the monomial artinian ideal

I = (x0, x1, . . . , xn−2)3 + (x3
n−1, x

3
n, x0xn−1xn, x1xn−1xn, . . . , xn−2xn−1xn)

⊂ k[x0, . . . , xn].

Since dim I3 =
(n+1

3

)
+ n + 1, we get that dim(I−1

3 ) = n(n + 1). Let X be the closure
of the image of ϕI−1

3
, which can be seen as the projection of V (n, 3) from I3. X is a

smooth n-fold in Pn(n+1)−1 isomorphic to Pn blown up at the linear space xn−1 =
xn = 0 and in the two points (0, . . . , 0, 1, 0) and (0, . . . , 0, 1). Moreover, it easily
follows from Theorem 3.2 that X satisfies a Laplace equation of degree 2. A quadric
in Zn+1 containing the vertices of the corresponding polytope, analogous to the one
in the proof of Theorem 4.11(ii), has equation:

2(x2
0 + · · · + x2

n)− 5

( n∑
i, j=0,i< j

xix j

)
+ 9

( n−2∑
i, j=0,i< j

xix j

)
= 0.
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Remark 6.2 The examples of Theorem 4.11 and Example 6.1 can be seen as special
cases of a class of smooth monomial Togliatti systems of cubics. Let E0, . . . , En be the
fundamental points in Pn, and let Π be a partition of the set {E0, . . . , En} such that
each part contains at most n− 1 points. Let us consider the blow up of Pn along the
linear subspaces generated by the parts of Π and its embedding with the cubics. Since
we are performing a blow up along a torus invariant subscheme, we get a toric variety,
which corresponds to a polytope P. It is the n-dimensional simplex truncated along
the faces associated with the blown up spaces. Finally let us consider the projection
from the points corresponding to the centers of the full hexagons in P. The toric
variety X obtained in this way is smooth. We conjecture that all smooth monomial
Togliatti systems of cubics are obtained in this way.
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