
The 13th European Nutrition Conference (FENS 2019) was held at the Convention Centre Dublin, Ireland on 15–18 October 2019

Conference on ‘Malnutrition in an obese world: European perspectives’
Symposium 3B: Omega-3 fatty acids: from lab to clinic

PUFA and their derivatives in neurotransmission and synapses: a new
hallmark of synaptopathies

Mathieu Di Miceli , Clémentine Bosch-Bouju and Sophie Layé*
INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France

PUFA of the n-3 and n-6 families are present in high concentration in the brain where they
are major components of cell membranes. The main forms found in the brain are DHA
(22 :6, n-3) and arachidonic acid (20:4, n-6). In the past century, several studies pinpointed
that modifications of n-3 and n-6 PUFA levels in the brain through dietary supply or genetic
means are linked to the alterations of synaptic function. Yet, synaptopathies emerge as a
common characteristic of neurodevelopmental disorders, neuropsychiatric diseases and
some neurodegenerative diseases. Understanding the mechanisms of action underlying the
activity of PUFA at the level of synapses is thus of high interest. In this frame, dietary sup-
plementation in PUFA aiming at restoring or promoting the optimal function of synapses
appears as a promising strategy to treat synaptopathies. This paper reviews the link between
dietary PUFA, synapse formation and the role of PUFA and their metabolites in synaptic
functions.

Synaptic plasticity: DHA: EPA: Endocannabinoids: Oxylipins

The brain is largely composed of fat(1), and it is now clear
that membrane lipids play essential roles in the brain, as
structural elements, but also as signalling molecules.
Recent data pinpoint the crucial role of lipids in the func-
tioning of the synapse, the basic structural and oper-
ational unit for information processing and storage in
the brain. The lipid composition of the synapse is distinct
from the rest of the cell membranes. Indeed, synaptic
membrane lipids are crucial to neurotransmitter recep-
tors stabilisation and activity, neurotransmitter vesicle
release and synapses formation and development
(recently reviewed in(2)). Among lipids with critical
roles at the synapse, PUFA are the major actors for
synaptogenesis, synapse maintenance and synapse func-
tion. These specific fatty acids, especially the long chain
(LC) PUFA (Fig. 1), are particularly concentrated in
the brain(3). Arachidonic acid (ARA; 20:4, n-6) and

DHA (22:6, n-3), which belong to distinct PUFA species
(n-6 and n-3 PUFA, respectively), are the major LC
PUFA found in the brain(4–6). ARA and DHA reach
the brain through passive diffusion or active transporters.
They are then esterified into distinct phospholipids
(recently reviewed in(7)). Importantly, PUFA are essen-
tial fatty acids, meaning that they cannot be synthesised
in the body, while needed for conservation of health, and
therefore require dietary supply. Linoleic acid (LA; 18:2,
n-6), the precursor of ARA, and α-linolenic acid (18:3,
n-3), the precursor of EPA and DHA, are found in dis-
tinct plant and oils and, once ingested, are desaturated
and elongated in the body to form the respective LC
n-6 and n-3 PUFA. Preformed ARA, EPA and DHA
are also provided through the diet from distinct terres-
trial and marine animal sources. Overall, the consump-
tion of n-3 PUFA is lower than the actual dietary
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recommendation for α-linolenic acid, EPA and DHA(8)

with an omega-3 index (% of EPA+DHA in erythro-
cytes, which reflects the dietary intake) below the
defined adequate amount (>8 %), which constitutes a
risk factor for CVD and brain diseases(9). Dietary recom-
mendations for LC n-3 PUFA as well as total n-3 PUFA
have been reviewed in a previous study(10). Of note, LA is
one of the most consumed n-6 PUFA, as recently
revealed by westernised countries diet composition(11).

Accumulating data in human subjects linked brain
pathologies presenting synaptic or deficits with dietary
habits in PUFA(12). The role of ARA and DHA at the
synapse in physiological and pathological contexts has
recently generated a growing interest. Indeed, disruption
in PUFA metabolism emerges as an important factor for
some neurodevelopmental and neuropsychiatric disor-
ders and neurodegenerative diseases(4,13–15). Following
these observations, clinical trials have been conducted
to improve or delay some of these pathologies using
LC n-3 PUFA, which produced mixed results, depending
on the type and dose of LC n-3 PUFA, length of treat-
ment, as well as the targeted pathologies(13,16–18). This
pinpoints the need for a better understanding of the
basic mechanisms linking PUFA and synapse function,
in order to identify efficient therapeutic approaches.

This review aims at highlighting direct and indirect
roles of ARA and DHA at the synapse. We describe
how ARA and DHA are involved in synaptogenesis
and how they control synaptic transmission as well as
synaptic plasticity. The possible underlying mechanisms
are presented, even though research in this recent field
is still largely ongoing.

The concept of synaptopathies

Adequate development and maintenance of synapses are
essential for normal functioning of the nervous system.
In the past few years, the concept that brain disorders
should not be dichotomised into early-onset neurodeve-
lopmental and late-onset neurodegenerative disorders
has emerged. Indeed, it should be rather considered
that pathologies share common features, such as perturb-
ation of neuronal activity, particularly at the synaptic
level. In fact, several brain diseases with pathophysio-
logical processes, even if distinct, ultimately lead to syn-
aptic impairments that are referred to as
synaptopathies(19) (Fig. 2). This is the case for neurodeve-
lopmental disorders such as autism spectrum disorders
and schizophrenia, for neuropsychiatric disorders such

Fig. 1. (Colour online) Structure and nomenclature of PUFA. PUFA are composed of a hydrocarbon
chain (CH2) with a methyl group (CH3, α terminal) at one extremity and a carboxyl group (COOH, ω
terminal) at the other. Unsaturations are found along the hydrocarbon chain (represented by double
bonds). Chemical formulas of PUFA are commonly presented in a simplified way, X:Y, n-6 or n-3,
where X indicates the number of carbon atoms and Y corresponds to the number of double bonds.
n-6 and n-3 indicate the number of the carbon atom of the first double bond (6 or 3), with n
indicating that the double bonds are counted from the CH3 terminal. α-Linolenic acid (18:3, n-3) and
linoleic acid (18:2, n-6) are drawn as two representative examples of n-3 and n-6 PUFA, respectively
with the nomenclature detailed in the colour-coded inset.
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as depression, and for neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, multiple scler-
osis and Huntington’s disease. Indeed, all of these neuro-
logical disorders are characterised by synaptic
dysfunctions(20–23). These observations lead to the idea
that synaptic damage should be considered as a target
for neurological and neuropsychiatric disease-modifying
treatments(19,24,25). Synapses are highly dynamic and
plastic. This is illustrated by the dynamics of synaptic
networks over time during learning processes with elec-
trophysiological synaptic plasticity, old synapses replaced
by new ones and differences in the number of spines in sti-
mulated neuronal networks(26). Interestingly, these synap-
tic properties support the idea that aberrant synapses can
be replaced by new and functional synapses, as seen dur-
ing synaptic plasticity or rehabilitative processes(27).
Therefore, the understanding of overlapping mechanisms
in synapse dysfunctions is of high interest. In this frame,
investigating the role of PUFA in synapse function and
dysfunction is necessary in order to design new pharma-
ceutical tools to protect, improve or optimise synaptic
functions.

The role of PUFA in synapse formation

In the brain, ARA and DHA accumulate predominantly
during development, into brain cells including neurons
and glial cells such as astrocytes and microglia(28).
ARA and DHA provided by the mother to the fetus
and newborn are directly associated with maternal diet-
ary intake and body stores. As a result, pregnant and lac-
tating women store LC PUFA to ensure an adequate
flow of ARA and DHA to the fetus and newborn(29,30).
Importantly, PUFA are transported from the mother to
the newborn through the placenta and the milk, respect-
ively. Human breast milk contains both DHA and ARA,
the levels of which depend on the mother’s diet(31). The
presence of endocannabinoids (eCB) and oxylipins has
also been found in maternal milk, suggesting that not
only PUFA are transferred to the newborns, but also
their derivatives(32). This early-life accumulation raises
the importance of adequate ARA and DHA dietary sup-
plies during perinatal periods, as previously reviewed(33).

In addition, most children do not meet dietary guidelines
for LC n-3 PUFA, reflected by a poor omega-3 index, a
risk factor for altered brain maturation and possibly
synaptopathies of neurodevelopmental origin(34).
However, increased oily fish consumption in children
and dietary supplementation of pregnant women with
LC n-3 PUFA are encouraging strategies(35,36).

During brain development, ARA and DHA influence
neurogenesis, synaptogenesis, neuronal migration and
neuronal differentiation(37). In rodents, perinatal dietary
n-3 PUFA deficiency decreases brain DHA and con-
comitantly reduces neurogenesis, synaptic plasticity and
connectivity(38–42). Perinatal dietary n-3 PUFA deficiency
impairs synaptic pruning, the selective phagocytosis of
spines by microglia during brain development(43), in the
visual system and the hippocampus(44,45). The mechan-
isms underlying the crucial role of DHA in brain devel-
opment and neuronal network formation is still poorly
understood. In vitro, DHA promotes neurite outgrowth,
synaptic functions and maintenance(46). Diets rich in
DHA promote dendritic spine density and protect from
dendritic deficits(47). Moreover, DHA strongly influences
the dynamics of membrane phosphatidylserine, which
promotes membrane formation and is a necessary step
for additional synapses formation(48). Recent data iden-
tified that N-docosahexaenoylethanolamide (DHEA), a
DHA-derived eCB, could be the bioactive pro-
synaptogenesis molecular intermediate through its activ-
ity on an orphan receptor, GPR110(49,50). DHEA activity
on GPR110 has also been reported to counteract neuro-
inflammation(51). Interestingly, DHEA seems to be more
active in the enhancement of synaptogenesis than DHA.

The observation that altered n-3 PUFA bioavailability
and activity in the developing brain participate to an
altered brain development and impaired neuronal network
and synaptic function suggests an aetiological role of these
fatty acids in neurodevelopmental synaptopathies. Low
levels of DHA and/or EPA have been reported in children
with autism spectrum disorders, attention deficit and
hyperactivity disorder or schizophrenia(15,52). Recently,
several clinical trials have been performed to supplement
patients with neurodevelopmental disorders with DHA
and/or EPA, with some beneficial effects when adminis-
tered alone or in combination with other nutrients/

Fig. 2. (Colour online) Transition from physiological to pathological brain functions by synaptopathies.
Under healthy physiological conditions, neuronal communication and synaptic functions are normally
functional. However, under pathological conditions, following one or more insults, altered communication
is paralleled with abnormal synapse functions, referred to as synaptopathies.
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micronutrients(53). The positive effect of an EPA mono-
therapy was greater in attention deficit and hyperactivity
disorder patients with low endogenous EPA at the start
of the supplementation(54), similarly to what has been
described in patients diagnosed with major depression(55).
This reinforces the importance of investigating PUFA
levels in children diagnosed with neurodevelopmental dis-
orders to develop more personalised PUFA supplementa-
tion strategies.

Modulation of neurotransmission by n-3 and n-6 PUFA

Neurotransmission is the process by which neurons trans-
mit electric signals (Fig. 3A). Brain cellular membranes
are a reservoir of LC PUFA from the n-6 and n-3 fam-
ilies, which are released by specific phospholipases
((PL)A2) (Fig. 3B). Importantly, these PLA2 are stimu-
lated by neurotransmission and several neurotransmit-
ters, leading to a release of free LC PUFA that are
bioactive messengers, which, in turn, could regulate
neurotransmission(56). Indeed, many studies focused on
the effects of ARA, DHA or EPA and some of their deri-
vatives on neurotransmission. To study the effect of bio-
active PUFA/derivatives on neurotransmission, several
approaches have been used: (i) application of free LC
PUFA on neurons (in vitro or on ex vivo brain slices)
belonging to several neurotransmitter systems such as
excitatory glutamate, inhibitory γ aminobutyric acid
(GABA), or neuromodulatory dopamine; (ii) dietary
manipulation of amount of PUFA in brain cell mem-
brane to change the amount of neuronal membrane
PUFA and/or bioavailability of endogenous free PUFA
during neurotransmission. These studies are summarised
later. ARA, EPA and DHA are also known to regulate
some brain processes through oxylipins, the oxidised
metabolites produced or synthesised via lipoxygenase,
cyclooxygenase (COX), cytochrome P450 or soluble
epoxide hydrolase enzymes following their
PLA2-mediated release from brain membrane phospholi-
pids(57–60) (Fig. 3B). Of note, recent data pinpointed that
oxidised LA derivatives, triggered by ischaemia, are
potent modulators of neurotransmission(61).

In vitro effect of arachidonic acid, EPA and DHA on
neuronal transmission

A few studies investigated the impact of free LC PUFA
application on cultured cells and effects differ from one
study to the other. In human embryonic kidney cells
expressing glutamate transporter-1, applications of DHA
at 100 and 200 μM were able to increase and decrease glu-
tamate transport, respectively, an effect that depended
upon intracellular calcium(62). Besides, another study has
shown that DHA (3–60 μM) reduced glutamate uptake in
rat astrocytes, while ARA had no effect(63). In mouse
embryonic hippocampal neurons, 1 μM DHA increased
spontaneous glutamatergic activity(38). In acutely disso-
ciated rat pyramidal neurons, DHA dose-dependently
(15–30 μM) potentiated N-methyl-D-aspartate-induced

currents, together with ARA, while oleic acid, an
MUFA, had no effect(64). In Sf-9 cells, both DHA and
ARA induced GABAA receptor desensitisation, while
oleic acid had no effect(65). Moreover, in dissociated rat
substantia nigra neurons, both 5 μM DHA and 15 μM
ARA reduced GABAergic currents(66). One study investi-
gated the effects of n-3/n-6 PUFA on cholinergic neuro-
transmission. In Xenopus oocytes expressing
acetylcholine receptors, both LA and α-linolenic acid
reduced acetylcholine-induced currents when perfused at
10 μM, while these effects were opposed (increased cur-
rents) as both compounds washed out(67). Another study
on Xenopus oocytes observed increased TRPV1 (vanilloid
receptor 1) currents following bath applications of both
EPA and DHA (50 μM), an effect due to enhanced
voltage-dependent activation of the channel itself(68). In
cultured SH-SY5Y cells, application of free DHA (70
μM), but not ARA (70 μM), during 3 days resulted in
increased basal noradrenaline release(69). The lack of con-
sistency between these studies could be explained by sev-
eral factors: (i) cultured cells are poorly representing the
physiology of in vivo neuronal activities, (ii) free PUFA
application is not a usual delivery route for PUFA,
since they are vastly esterified to phospholipids in brain
cell membrane and (iii) delivered PUFA are metabolised
into derivatives (oxylipins or eCB) that are active, or
not, on synaptic plasticity. As a result, several groups
demonstrated the role of PGE2 synthesised from ARA
by COX-2 as a retrograde messenger in hippocampal glu-
tamatergic synaptic signalling which facilitates long-term
potentiation (LTP) (Fig. 3C) in the hippocampus(70–72).

Ex vivo effect of arachidonic acid, EPA and DHA on
neurotransmission

Brain slices are integrated neuronal models to study ex
vivo administration of molecules on neuronal transmis-
sion. Studies using brain slices have also investigated
the role of PUFA through the delivery of free LC
PUFA or some of their derivatives. Bath applications
of free DHA (50 μM) blocked the induction of long-term
depression (LTD) (Fig. 3C) in hippocampal slices(65).
Conversely, application of 30 μM DHA resulted in
specific alteration of synaptic plasticity in cortico-striatal
slices, with facilitation of LTP, but without affecting
LTD(73). However, another study showed that perfusion
of low concentration ARA (10 μM) activates LTP,
while DHA and EPA deactivate LTP in the hippocam-
pus(74), suggesting that the synaptic effects of LC
PUFA is dose dependent, or that DHA has a bidirec-
tional activity in the hippocampus(75). Both ARA and
DHA (30 μM) prevented bromoenol lactone (an inhibitor
of DHA release)-induced impairment of LTP in rat
hippocampi, while 30 μM LA was ineffective(76). ARA
effect on neuroplasticity could be mediated by its deriva-
tives. As a result, epoxyeicosatrienoic acid, a non-classic
eicosanoid derived from ARA, reduced glutamate release
in hippocampal slices by opening G protein-coupled
inwardly-rectifying potassium channels(77). Similarly,
N-palmitoylethanolamine, an endogenous compound
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from the eCB family that derives from hexadecanoic
acid, increased spontaneous GABAergic inhibitory post-
synaptic current frequencies when applied at 10 μM, an
effect that was prevented in the presence of a GPR55
receptor antagonist(78). Again, the variety of the experi-
mental paradigms leads to a large spectrum of results.

In vivo effect of PUFA manipulation on
neurotransmission

In vivo, most studies investigated the impact of dietary
PUFA changes, even though a study showed that free
DHA, administered at 25 nM intracerebroventricularly,

Fig. 3. (Colour online) Neurotransmission and its modulation by PUFA. (A) Neurotransmission is the process by which neurons transmit
electric signals in an organised network. (B) The chemical synapse consists of a presynaptic element (axon terminal) in close vicinity to
a postsynaptic element (dendritic bouton), separated by the synaptic cleft. Propagation of an action potential (1) leading to the opening
of voltage-dependant channels, promoting vesicular fusion. Released neurotransmitters in the synaptic cleft (2) will bind to
postsynaptic receptors, inducing neurotransmission (3) through a cascade of events. In turn, the activation of neurotransmission will
induce the release of membrane-bound PUFA into cytosolic free PUFA by phospholipase A2 (PLA2) (4). Free PUFA (5) will be
converted into either oxylipins, therefore modulating neurotransmission (6) or into endocannabinoids (eCB) that will bind to
endocannabinoid (eCBR) receptors (7), thus also modulating neurotransmission (8). (C) Following event(s), synaptic strength can be
positively (LTP, long-term potentiation) or negatively modulated (LTD, long-term depression) over different time scales. LOX,
lipoxygenase; COX, cyclooxygenase; NAPE-PLD, N-acylphosphatidylethanolamine phospholipase D; DAGL, diacylglycerol lipase-α;
PLC, phospholipase C; NMDA, N-methyl D aspartate.
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decreased the slope of field excitatory post-synaptic
potentials (EPSC) within the CA1 region of the hippo-
campus, while having opposite effects in the dentate
gyrus(75). Some studies also pinpointed that endogenous
free DHA or ARA, experimentally modulated by the
use of inhibitors of PLA, can regulate LTP(73,76). The
modulation of endogenous levels of ARA and DHA by
dietary means also allowed to determine whether the
endogenous level of PUFA influences neurotransmission
and synaptic plasticity. Indeed, dietary supplementations
in LC n-3 PUFA (EPA and DHA) resulted in an
increased amount of DHA in the brain and, depending
on the brain structure, decreased the levels of ARA(79).
Conversely, dietary n-3 PUFA deficiency decreases the
brain DHA level and, dependent upon brain structures,
the age of the animal model used or the starting date
of the diet, increases ARA(39,40,80–83). In any case, the
decreased level of brain DHA triggered by a n-3
PUFA-deficient diet is paralleled by an increase of doco-
sapentaenoic acid (22:5, n-6)(84). To our knowledge, only
one study reported that n-6 docosapentaenoic acid had
no effect on neurotransmission in the mouse
hippocampus(85).

Developmental n-3 PUFA deprivation also resulted in
impaired LTP in the hippocampus of young (P18-24)
mice(38,40). Moreover, lifelong dietary n-3 PUFA defic-
iency in mice (starting at gestation) impaired LTD in
both prefrontal cortex and nucleus accumbens synapses
at adulthood, an effect explained by the dissociation of
the Gi/o protein to cannabinoid receptor 1 (CB1R)(39).
In Caenorhabditis elegans lacking Δ-6-desaturase, the
enzyme responsible for LC PUFA synthesis, reduced
evoked excitatory post-synaptic current amplitudes
were observed, explained by partially depleted vesi-
cles(86). Dietary n-3 PUFA deficiency not only disturbs
neurotransmission but also sensitises to exogenous stim-
uli or ageing. As a result, mice fed for 2 months with a
n-3 PUFA-deficient diet starting at weaning, displayed
impaired LTD following acute inflammation, an effect
not observed in mice fed with a control diet(80).
Age-related glutamatergic dysfunction is worsen by diet-
ary n-3 PUFA deficiency(87). Furthermore, in the hippo-
campus, n-3 PUFA dietary supplementation with DHA
rescued the alteration of both LTD and LTP induced
by prenatal ethanol consumption(88). Moreover, both
n-3 and n-6 PUFA dietary supplementation induced
stronger LTP in aged rats, compared to a control
diet(89). DHA effect on glutamatergic neurotransmission
could be indirect, through the regulation of glutamate
transport in astrocytes(63).

Research examining the impact of dietary PUFA
manipulation on neurotransmission has largely focused
on the dopaminergic system. In rats, strong evidence
now suggests that dopaminergic transmission can be
modulated by dietary n-6/n-3 PUFA. In fact, dietary
n-3 PUFA deficiency (during gestation until adulthood)
decreased dopamine release in cortical structures,
together with increased dopamine metabolites(90–93).
Moreover, electron microscopy revealed fewer dopamine
vesicles and reduced vesicle pool(91,94). In the hippocam-
pus, depletion of vesicles was also observed, together

with decreased staining of tyrosine hydroxylase (the lim-
iting enzyme for dopamine synthesis), decreased vesicu-
lar transporter of monoamines (vesicular monoamine
transporter 2), combined with an increased expression
of both dopamine D1 and D2 receptors as a result of
decreased dopamine availability(95,96). In fact, a lower
number of tyrosine hydroxylase-positive cells were also
found in the two midbrain dopaminergic nuclei, the sub-
stantia nigra pars compacta and the ventral tegmental
area(97).

Besides dopaminergic systems, other neuromodulatory
systems are also sensitive to dietary PUFA manipulation.
Indeed, a study observed that n-6 PUFA-rich diets
reduced serotonin transporters in the hippocampus(98),
while others showed that dietary supplementation with
LC PUFA (ARA and DHA) can restore the decreased
dopamine and serotonin levels in frontal regions induced
by a developmental deficiency in PUFA precursors
(α-linolenic acid and LA)(99). Muscarinic acetylcholine
receptors can also be downregulated following dietary
n-3 PUFA deficiency(100) and diets high in n-6
PUFA(101). These observations are paralleled with a
study showing that DHA supplementation could restore
age-related decline of acetylcholine levels(102). In 8-week
old adult mice, downregulation of several genes involved
in GABAergic neurotransmission were found following
n-3 PUFA deprivation, starting at gestation until
weaning(103).

Opposite to n-3 PUFA deficiency, LC n-3 PUFA diet-
ary supplementation has also been investigated. In rats,
dietary supplementation from gestation until adulthood
with fish oil (rich in EPA and DHA) reduced monoamine
oxidase B activity in cortical regions, which led to
increased dopamine levels and higher dopamine D2
receptor binding(104). In stressed rats, n-3 PUFA supple-
mentation with DHA and EPA was able to restore
inhibitory post-synaptic currents in the hippocampus,
together with the restoration of GABA release, which
was correlated with improved spatial memory(105).
Following a 10-month dietary supplementation with
DHA in mice, entorhinal cortex neurons presented sign-
ificantly increased spontaneous excitatory post-synaptic
current frequencies, associated with increased conduct-
ance and capacitance(106). Finally, n-3 PUFA supple-
mentation with DHA in Long-Evans rats, starting at
adulthood and lasting for 3 months, increased serotonin
and norepinephrine levels in both the prefrontal cortex
and the nucleus accumbens(107). Altogether, these in
vivo manipulations of LC PUFA show that n-3 PUFA
are critical for proper synapse homoeostasis and can res-
cue synapse function under some pathological
conditions.

Possible mechanisms by which PUFA can modulate
synaptic transmission

Several mechanisms can explain how PUFA influence
synaptic function. First, as structural elements of plasmic
membranes, PUFA can modulate membrane dynamics
and thus the function and traffic of transmembrane
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proteins, as well as membrane-associated proteins. These
proteins are legion at both pre- and post-synaptic ele-
ments (receptors, transporters, ion channels, etc.),
because of their essential functions in the synapse.
Secondly, as previously mentioned, free PUFA are con-
verted to bioactive mediators, oxylipins, which act in
the modulation of neuroinflammation has been docu-
mented(57) and are potential modulators of neurotrans-
mission(70). This mode of action of PUFA is complex
and remains poorly understood, therefore being an
intense research field. Thirdly, PUFA are precursors of
eCB, which are lipid mediators with essential functions
in neurotransmission and synaptic plasticity. These
three aspects are developed hereafter.

Membrane effects

When associated to phospholipids, PUFA play an
important role in the structure of membranes, by deter-
mining the curvature and flexibility of the bilayer
(Fig. 4). After being considered as homogeneous and
inert media, it is now clear that membranes organise in
both highly structured and dynamic micro-domains,
which greatly influence the functions of transmembrane
proteins. Membrane fluidity is highly determined by its
fatty acid composition(108–110). In the brain, membranes
are rich in PUFA, usually DHA and ARA, compared
to other tissues(4). For instance, while phospholipids usu-
ally contain none or one PUFA, most phospholipids in
the brain contain two PUFA(111,112). In the brain,
DHA is mostly found in ethanolamine plasmalogen,
phosphatidylserine and phosphatidylethanolamine,
these two phospholipids being densely found in the
inner leaflet of the phospholipidic bilayer, while ARA
is mainly esterified in phosphatidylcholine(113).

DHA has more flexibility than ARA, suggesting that
the beneficial effects of DHA in brain functions are
partly due to its action on membrane biophysical proper-
ties(113). Attention has been recently focused on lipid
rafts, which contain both sphingolipid- and cholesterol-
rich domains(114). It has been hypothesised that synapses
are especially enriched in lipid rafts and that these micro-
domains are necessary for protein trafficking, signalling
pathways and synapse maintenance(115). However,
DHA-rich domains are functionally and organisationally
the opposite of lipid rafts, because of their ‘leaky’,
dynamic, thin and flexible domains(113). High-density
lipid rafts and low-density DHA domains are perman-
ently competing. It is suggested that lipid rafts are ini-
tially small nano-domains that organise together to
subsequently form greater domains, of the microscale
(Fig. 4). In this configuration, the organisation of lipid
rafts would be controlled by DHA, which aggregates
nano-domains together or conversely disrupt large lipid
rafts(113,116,117). These dynamic changes of membrane
biophysics induce a modification in the lipid environment
of transmembrane proteins, which ultimately controls
their function and trafficking. The functional significance
of those effects is that receptors, transporters and ion
channels could be modulated by different levels of
DHA present at the synaptic membrane. This way,

DHA would be a potent modulator of synapse function.
This is illustrated in the context of treatments for depres-
sive disorders. Some clinical studies suggested that DHA
and/or EPA supplementation can improve the efficacy of
classical antidepressant treatments, targeting serotoner-
gic receptors(118,119). Evidence suggests that n-3 PUFA
could disrupt lipid rafts, which would improve the signal-
ling pathway of G protein-coupled receptors (GPCR),
including serotonergic receptors, explaining the higher
efficacy of antidepressants(120). More generally, deter-
mining which synaptic proteins need lipid rafts or
DHA-domains as optimal lipid environments would be
a first step to understand the role of DHA in synaptic
membrane dynamics.

Action of free PUFA on ion channels and ionotropic
receptors in the brain

As excitable cells, neurons express voltage-gated ion
channels that are responsible for action potential initi-
ation/propagation, neurotransmitter release and post-
synaptic depolarisation/hyperpolarisation. Modulation
of voltage-gated ion channels is therefore crucial to main-
tain homoeostasis of neurotransmission(121), on both pre-
and post-synaptic poles. It is now well established that
PUFA such as DHA or ARA modulate these
channels(122,123).

The impact of PUFA on ion channels has been initially
investigated in another type of excitable cell, cardio-
myocytes (in the heart), since both DHA and EPA have
the potential to prevent and stop arrhythmias(124–126).
Application of free DHA on isolated cardiomyocytes
decreases their excitability by decreasing currents from
sodium and calcium voltage-gated channels(124). In the
majority of cases, PUFA are decreasing the activity of
voltage-gated ion channels by shifting leftwards the
threshold of their inactivation door, making these chan-
nels inactivated quicker and at lower hyperpolarised vol-
tages. DHA, EPA and ARA are the most studied
PUFA for this purpose and they generally work in the
same direction, but DHA tend to have a stronger impact
on channel activity(123,124). However, since these studies
applied free PUFA, which is not representative of physio-
logical PUFA levels, one must remain cautious about
their interpretations.

In the brain, similar effects of PUFA on ion channels
have been observed. Application of either DHA or EPA
is able to decrease the excitability of neurons by shifting
the inactivation current of both sodium and calcium
channels(127,128). PUFA also modulate ionotropic
GABA and glutamate receptors. Direct application of
free DHA has been shown to increase currents from
GABAA receptors(65,85,129), increase opening probability
of N-methyl-D-aspartate channels(64) and decrease cur-
rents from α-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid receptors(130,131). As a consequence,
modulatory effects of PUFA on neuronal excitability
can lead to decreased excitatory sharp waves occurring
in epilepsy episodes, as demonstrated with 100 μM free
DHA application on hippocampal slices(85).

M. Di Miceli et al.394

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665120000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665120000129


Several hypotheses exist in the literature to explain the
different effects of PUFA on ion channels. It was initially
proposed that PUFA directly bind to channels, inducing
conformational changes, thus modifying channel proper-
ties(66,123,127). It has also been proposed that PUFA could
act on the extracellular side of the membrane, based on
results showing that pre-treatment of cardiomyocytes
with bath application of delipidated serum albumin
counteracted PUFA-induced antiarrhythmic effects(124).
However, PUFA can easily reach the inner leaflet of
the plasma membrane by ‘flip-flop’ mechanisms(132,133),
disabling therefore the drawing of any clear conclusion.
Some studies have hypothesised that PUFA could modu-
late ion channels at the synapse by modifying membrane
fluidity. This has been observed by showing that effects
of DHA on GABAA currents can be mimicked using
agents that change membrane fluidity(129). This rein-
forces the fact that ion channels are sensitive to their
lipid surroundings(134).

Besides, several studies suggested that PUFA modu-
late the function of ion channels via lipoelectric mechan-
isms(122,135–139). Indeed, the negative charges of PUFA
act as stabilisers of the positive charge of the voltage sen-
sor from voltage-gated ion channels. Here, both the
flexibility of the double bonds and the length of the
PUFA carbon chain allow the ion channel to adapt its
conformational shape. These characteristics could
explain why DHA is the PUFA showing the best modu-
latory activity, as compared to other PUFA.

Importantly, in all of these studies, application of free
PUFA in the medium induced effects on very short-term
timescales, within seconds or minutes(85,127,128,140).
Moreover, trials with non-metabolisable analogues
(such as eicosatetraynoic acid for ARA) did not repro-
duce the effects of free PUFA(141), but potently blocked
fast-inactivating potassium currents(142). Moreover, the
inhibition of PUFA metabolites did not prevent the
effect of free PUFA application(64). This suggests that
ion channels might be modulated by PUFA themselves,
whilst being free or when inserted at the membrane.

However, it remains unclear whether free PUFA are
released under physiological conditions to modulate ion
channels at the synapse. As a clue, it has been demon-
strated that synaptic transmission can trigger the release
of PUFA. In particular, a few receptors, such as
N-methyl-D-aspartate receptors(143,144) and 5 hydroxy-
tryptaminereceptors 2A(145), are able to activate phos-
pholipases, which may then release ARA or DHA.
This hypothesis was reviewed in 2009(146). Upon release,
the majority of PUFA are metabolised into PUFA deri-
vatives (see later), but free ARA can also be involved, by
itself, in the modulation of ion channels and synapse
activities, especially during short-term potentiation and
LTP(147–151).

Effects of PUFA on G protein-coupled receptor

GPCR signalling pathways are highly involved in the
function of the synapse. The role of PUFA on GPCR
has been extensively studied in the retina, since DHA
can represent up to 60% of total fatty acids within the
photoreceptor membranes, which contain the GPCR
rhodopsin(152). Early studies have shown that
DHA-rich photoreceptor membranes can influence pho-
ton capture by changing the spatial conformation of
rhodopsin in response to light absorption(153). As a mat-
ter of fact, the activation kinetic of rhodopsin was pro-
portional to the number of double bonds found within
membrane phospholipids(153). A recent study in
Drosophila, reared under PUFA-deficient diets (devoid
of all PUFA), has shown that photoreceptors are two
to three times slower to respond to light stimuli than
flies reared under standard diets(154). In parallel, extracel-
lular PUFA application potentiated light-activated cur-
rents(155,156) in ommatidia (compound unit in
invertebrates) and in dissociated rhabdomeres (rodlike
structure within ommatidia). A review has detailed all
evidence regarding n-3 PUFA and retinal physiology(157).
Since rhodopsin receptors belong to a vast GPCR super-
family(158), these studies are useful to understand the

Fig. 4. (Colour online) Influence of PUFA on membrane organisation. The fluid membrane is composed of several
PUFA. Lipid rafts are subdomains rich in cholesterol while DHA-rich domains allows for membrane flexibility, due to
their leakiness. Microdomains can dynamically reorganise into macrodomains.
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effect of PUFA on brain GPCR. In the brain, dopamine,
serotonin and eCB receptors are GPCR of the same
super family, that are modulated by PUFA, as previously
mentioned. The precise mechanism of action of PUFA
on these receptors is still not clear, but current knowledge
is driven by PUFA–rhodopsin interactions. Interestingly,
it has been observed that GPR40 and GPR120 are acti-
vated by free PUFA binding, especially medium to LC
PUFA(120,159).

Potential of PUFA derivatives on neurotransmission

Finally, it is important to consider the role of PUFA
derivatives (oxylipins and eCB) on neurotransmission
(Fig. 3B). COX-1 and 2 are two key enzymes that con-
vert ARA into prostaglandins. A study has shown that
COX-2, but not COX-1 inhibitors, greatly reduced post-
synaptic membrane excitability and LTP induction in
hippocampal neurons(160). These effects were rescued by
bath applications of PGE2 at 2 μM(160).
Platelet-activating factor (PAF) derives from ARA and
is synthesised from phosphatidylcholine by PLA2(161).
In cultured neurons, application of non-hydrolysable
PAF increased the frequency of miniature excitatory
post-synaptic currents as well as the excitatory synaptic
transmission mediated by glutamate(162). These findings
were later confirmed when antagonism of PAF receptors
prevented the induction of LTP in the CA1 region(163),
while PAF itself induced LTP(164). Moreover, in
PAF-deficient mice, LTP induced by high frequency
stimulation (eight trains, each of eight pulses at 200 Hz)
is attenuated compared to control mice(165). These results
suggest a potential role of PAF as a retrograde messen-
ger, which appeared crucial in the maintenance of LTP
in the hippocampus, but further studies are needed to
understand the underlying mechanism.

Other important PUFA derivatives involved in neuro-
transmission are eCB, which bind to CB1R and CB2R
GPCR. CB1R is abundant and widely distributed in the
brain, while the expression of CB2R is more restricted to
the immune system. eCB are lipid mediators that act retro-
gradely or anterogradely at the synapse. Anandamide
(AEA) and 2-arachidonoylglycerol are the two main eCB,
derived from the n-6 PUFA ARA(166,167). AEA biosyn-
thesis occurs at the pre- and post-synapse by the action of
N-acylphosphatidylethanolamine phospholipase D. AEA
is degraded post-synaptically by fatty acid amide hydrolase.
As a result, AEA acts as an anterograde signal acting at
postsynaptic targets, or as an intracellular mediator. 2-ara-
chidonoylglycerol acts as a retrograde signal. It is therefore
biosynthesised post-synaptically by diacylglycerol lipase-α
while degraded pre-synaptically by monoacylglycerol lip-
ase.DHA is also converted intoDHEA, known to promote
neurite outgrowth and synaptogenesis as previously
described(168). However, its role in the regulation of neuro-
transmission and synaptic plasticity has been poorly
described. AEA, DHEA and 2-arachidonoylglycerol are
parts of larger families of lipids, N-acylethanolamines and
2-acylglycerols, respectively(60,169).

At the cellular level, synaptic plasticity is the main
functional outcome of the eCB system in the brain.

Indeed, eCB reduce synaptic efficacy, over very short,
medium or long time scales, depending on the signalling
pathways that are triggered by eCB production(170–172).
eCB are produced on-demand and released to activate
receptors, leading to a decrease of synaptic transmission
efficiency(170). eCB are rapidly degraded and released
PUFA are re-esterified at the membrane, to precisely
regulate duration of eCB action(171).

Importantly, endogenous levels of eCB mediators can
be modulated by changes in dietary n-6:n-3 PUFA
ratio(172–174). Our laboratory precisely investigated the
impact of dietary PUFA on the eCB-dependent synaptic
plasticity. We demonstrated that developmental dietary
n-3 PUFA deficiency abolishes the eCB-dependent syn-
aptic plasticity in both the prefrontal cortex and the
nucleus accumbens, combined with the uncoupling of
CB1R from their effectors Gi/o proteins(39). To our
knowledge, this is the first evidence that a change in diet-
ary precursors can have a strong impact on the eCB sys-
tem. The consequences of developmental dietary n-3
PUFA deficiency on eCB-dependent synaptic plasticity
has also been shown in the hippocampus. We demon-
strated that n-3 PUFA deficiency strongly impaired the
eCB-dependent plasticity at GABAergic synapses,
which prevents the induction of plasticity at glutamater-
gic synapses(39,40,83).

In parallel, one study reported that DHA supplemen-
tation increased levels of CB1R and TRPV1, in terms of
mRNA expression and protein levels(175), while DHEA
enhanced glutamatergic neurotransmission more
potently than DHA(176). Our results on CB1R desensi-
tisation(39,177) have been reinforced by a study showing
that a krill oil-based diet (rich in both EPA and DHA),
given for 6 weeks to adult mice, enhanced the activity
of CB1R(178). It is now known that CB1R can be easily
desensitised and internalised following ligand bind-
ing(179). This has been particularly studied in the context
of chronic cannabinoid consumption. The mechanisms
of desensitisation and downregulation are not completely
elucidated, but they likely involve the phosphorylation of
these receptors and transcription of immediate early
genes(180,181). Studies on the role of dietary PUFA on
CB1R demonstrate that dietary PUFA can constitute
another powerful mechanism for the regulation of the
functionality of CB1R.

Conclusion and future directions: PUFA as important
modulators of synapse homoeostasis, implications for

synaptopathies?

Investigations have demonstrated so far that LC PUFA
can efficiently modulate synaptic transmission by acting
on membrane fluidity and organisation, on voltage-gated
ion channels/receptors as well as through derivatives such
as oxylipins or eCB (Fig. 5). These synaptic targets of LC
PUFA are in close interaction with each other since
membrane fluidity strongly impacts the activity of
voltage-gated ion channels and all transmembrane pro-
teins(134), while eCB can modulate ion channels via
receptor-independent mechanisms(182). These intertwined

M. Di Miceli et al.396

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665120000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665120000129


mechanisms partly explain the high variety of results
found in the literature and the lack, so far, of a clear pic-
ture. However, the common feature of these overlapping
mechanisms is that PUFA appear as major actors of
metaplasticity, which encompasses all events that can
modify the ability of a neuron or a network to induce
plasticity(183–186). Dietary PUFA can induce long-term
modifications of neuronal excitability and network hom-
oeostasis. In addition, eCB are major actors of metaplas-
ticity since they can prime LTP of excitatory synapses by
silencing inhibitory ones(187,188). New emerging modula-
tors of neurotransmission are bioactive oxylipins, formed
from different PUFA, whose functions in physiology is
still intensely studied(189). In this context, PUFA are
thus good candidates to participate to metaplasticity,
revealing that diet, as much as life experiences, can influ-
ence synapse homoeostasis and thus brain states.

In parallel to experimental studies, clinical trials are
investigating the potential of LC PUFA, in particular n-3
PUFA supplementation, in the treatment of brain disor-
ders. Due to their wide impacts on synapse function, poten-
tial pharmacological applications of PUFA to treat
synaptopathies in the clinic could include neurodevelop-
mental and neurodegenerative diseases, neuropsychiatric
disorders as well as brain traumas, such as strokes and epi-
lepsy. In this perspective, understanding themechanisms by
which PUFA exert their synaptic effects appears essential.
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