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MONOTONE CLONES, RESIDUAL SMALLNESS AND
CONGRUENCE DISTRIBUTIVITY

RaLrPH MCKENZIE

Corresponding to each ordered set there is a variety, determined up to equivalence,
generated by an algebra whose term operations are all the monotone operations on
the ordered set. We produce several characterisations of the finite bounded ordered
sets for which the corresponding variety is congruence~distributive. In particular,
we find that congruence—distributivity, congruence-modularity, and residual small-
ness are equivalent for these varieties.

0. INTRODUCTION

We say that an algebra A = (P, f;(i € I)) is monotone with respect to an ordered
set P = (P, <) if every fundamental operation f; of A preserves the order of P. An
algebra A is order—primal with respect to P if A is monotone with respect to P and
the clone M(P), consisting of all operations monotone with respect to P, is identical
with the clone of term operations of A. An algebra order-primal with respect to P
will be denoted by A(P). We say that P is bounded if it has a least and a largest
element. The variety V(A (P)) generated by an order-primal algebra for a (bounded)
ordered set P will be called a (bounded) order—primal variety.

Martynjuk [15] proved that the order-primal algebra corresponding to a finite
bounded ordered set P is pre-primal, that is, M(P) together with any operation
over P that lies outside of M({P) generates the clone of all operations on P. Of the
six classes of pre-primal algebras delineated in Rosenberg [20], those associated with
bounded ordered sets are the only ones for which answers to straightforward questions
about the algebra, its clone, and the variety it generates, are often very difficult to
answer. For general studies of the varieties generated by pre—primal algebras, consult
Denecke [7], Knoebel [13] and Lau [14].

Our motive for writing this paper was to prove that the SI conjecture holds for the
bounded order—primal varieties. The SI conjecture is the statement that a variety ¥

Received 27 April 1989.
Research supported by National Science Foundation grant DMS 83 02255.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-8729/90 $A2.00+0.00.

283

https://doi.org/10.1017/50004972700018104 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018104

284 R. McKenzie [2]

generated by a finite algebra either possesses no subdirectly irreducible algebras of more
than n —1 elements, for some integer n (that is, V is residually <n), or V possesses
a subdirectly irreducible algebra of cardinality greater than XA for every cardinal A
(that is, V is residually large). For pre-primal algebras other than the order—primal
algebras, it has been known for some time that the clone of term operations is finitely
generated, and that the variety generated by the algebra is residually bounded by some
integer (see [13]). In this paper, we prove that the SI conjecture does hold for bounded
order—primal varieties, and in fact holds for varieties generated by finite monotone
algebras belonging to more extensive classes. For these varieties, residual smallness is
equivalent to congruence—distributivity. (See Theorem 1.1, Corollary 1.2 and Theorem
2.4.) By well-known results of Jénsson [12], if V(A) is congruence-distributive then
every subdirectly irreducible algebra in this variety is a homomorphic image of some
subalgebra of A. The SI conjecture has by now been proved for some diverse and very
broad families of algebras (see [11, Chapter 10]); our expectation is that it is true for
all finite algebras.

The study of monotone operations on ordered sets offers some fascinating prob-
lems for the clone—theorist or universal algebraist. Besides our main result, this paper
contains several minor contributions to the study. We find in Section 2 some equivalent
conditions for V(A(P)) to be congruence-distributive. In Section 3 we survey briefly
some of the literature and make some comments on what appear to be the two out-
standing current open problems in this area, namely, for which P is the clone M(P)
finitely generated? and under what conditions does V(A(P)) satisfy some interesting
Maltsev condition such as congruence-distributivity, or possession of a near—unanimity
operation?

1. WHEN 1s V(A(P)) RESIDUALLY SMALL?

We prove in this section the following theorem. We are most interested in a corol-
lary which we shall state and prove immediately. Following a brief digression, we will
prove the theorem.

THEOREM 1.1. Suppose that P is a bounded ordered set and A is an algebra
monotone with respect to P that has term operations D(z,y,z) and U(z,y,z) such
that these equations are valid in A, where 0 and 1 are the least and largest elements

of P:
(1) D(0,0,z) =~ 0, D(0,z,z) = D(z,0,z) ~ D(z,z,z) ~z and
(2) v(,1,z) =1, UQl,z,z) = U(z,1,z) * U(z,z,z) = =.

Then, if V(A) is residually small, it is congruence-distributive.
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COROLLARY 1.2. If P is a finite bounded ordered set and V = V(A(P)) where
A(P) is order-primal with respect to P, then V is residually small if and only if it is

congruence—distributive.

PROOF: We can easily define monotone operations on P that satisfy (1) and (2).
For example, let D(z,y,2) = z unless ¢ = y = 0, and define D(0,0,2) = 0. Define
U(z,y,z) dually. The operations D and U are term operations of A(P). Hence
Theorem 1.1 supplies the fact that residual smallness implies congruence—distributivity.
As we remarked earlier, if V is congruence-distributive then it is residually < |A|+1. g

Corollary 1.2 will be strengthened in Theorem 2.4 where the hypotheses of bound-
edness will be weakened by a half.

Before we begin our proof of Theorem 1.1, we discuss briefly a related result that
was proved by Davey, Quackenbush and Schweigert in [3]. Their result had to do
with finite ordered sets P that may not be bounded. Note that A(P) has no proper
subalgebras and has, up to isomorphism, at most three homomorphic images. There
is a congruence 8 corresponding to the partition of P into its connected components;
we write A'(P) for A(P)/0. If P is connected or is discrete (that is, is an anti-
chain), then A(P) is a simple algebra (§ = 1p or Op respectively). Otherwise,
is the unique non-trivial congruence, A(P) is subdirectly irreducible, and A'(P) is
simple. The result of the three authors was that V(A(P)) is congruence-distributive
provided that every subdirectly irreducible algebra in this variety is isomorphic either
to A(P) or toA'(P), in other words, provided that V(A(P)) = SP{A(P),A'(P)}. To
prove it, they invoked generalised duality theory in a rather long argument to prove
that the quasi-variety SP{A(P), A'(P)} is relatively congruence-distributive. We now
digress briefly from our main goal in order to prove a slightly more general result by a
substantially different argument.

THEOREM 1.3. Let {A,;,...,A;} be a finite collection of finite order—primal
algebras, all of the same similarity type. The quasi-variety K = SP{A,,...,A;} is
relatively congruence-distributive.

PROOF: Our proof is actually an easy application of the tame congruence theory
of Hobby and McKenzie [11]. To prove that K is relatively congruence-distributive,
it suffices to prove that for finite B € K, the lattice ConxB is distributive. ConxB
consists of the congruences § € Con B such that B/8 € K, ordered by inclusion. Let C
denote the set of all congruences § of B such that B/§ = A; for some i < k. Then the
members of ConxB are precisely the congruences of B that can be expressed as the
intersection of some subset of C' (since each A; has no proper subalgebras). From this
fact, it is easy to see that the distributivity of ConxB will follow if we can show that
each 6§ € C is a meet-prime element of ConB. Assume that B is finite, § € ConB
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and B/§ = A;. We can obviously further assume that A; has at least two elements.
We remarked earlier that an order—primal algebra has at most three congruences. Thus
the algebra A; is subdirectly irreducible. We claim that its monolith 3 is a type 3 or 4
cover of 04, , and that the (04,,8)-minimal sets in A; have no tails. What this means
is just that there are two distinct S-equivalent elements ¢,d € A; and a polynomial
operation p(z) of A; such that p(4;) = {c,d} and p(p(z)) =z (p is idempotent), and
there are polynomial operations j(z,y) and m(z,y) such that, restricted to {¢c, d}, these
polynomials become the join and meet of a two-element lattice. Since the construction
of polynomials of A; amounts to finding functions that are monotone with respect
to the underlying order, our claim is easily established. Now the argument used to
prove Lemma 14.4 in [11], with very slight and obvious modifications, will prove that
whenever 7,A € ConB and YN A < §, then either v < § or A < §. This ends the
proof. 1]

Before launching into the proof of Theorem 1.1, we recall the standard Maltsev
condition for congruence—distributivity (see Jénsson [12]). A variety V is congruence—
distributive if and only if for some positive integer n there are terms do(z,y, z),.. .,
dn(z,y,2) in the language of V (called Jénsson terms for V) such that these equations
(the Jonsson equations) are valid in V

z =~ do(z,y,2) = di(z,y,2) = dp(z,y,2) (for 0 < i < n)
(3) dai(z,2,y) = dzi+1(z,2,y) (for 0 <i < (n —1)/2)
d2i—1(z,y7y) = dZi(z’ yvy) (fOl’ 1<:i< n/2)

Thus an order-primal algebra A(P) generates a congruence distributive variety if and
only if P admits some system of monotone 3-ary operations that obey Jénsson’s equa-
tions.

LEMMA 1.4. Let A be a monotone algebra with respect to an ordered set P
that has a zero element 0. Suppose that A possesses a term operation D(z,y,z)
satisfying equations (1) from Theorem 1.1. If V(A) is residually small then A possesses
term operations dg(2,y,2),... ,dn(z,y,2) satisfyingd;(z,0,z) = z (for all i < n) and
satisfying all of Jénsson’s equations (3) except di(z,y,z) = .

PRrooOF: Choose an infinite cardinal A that is larger than the cardinality of any
subdirectly irreducible algebra in ¥V = V(A). We shall construct an algebra in V that is
a likely candidate to be a subdirectly irreducible algebra of cardinality A. Then we shall
show that the failure of our construction actually to produce a subdirectly irreducible
algebra of cardinality A yields the existence of the desired term operations.

To begin, we set

X=PxPxA
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where P is the universe of A. We define functions fz, fr, ft,u, fru € PX (u € ). For
z = (a,b,v) in X we define fy(z) = a and f,(z) = b; if u # v we define fu(z) = a
and fr,(z) = b, while if u = v we put fru(z) = fru(z) = 0. We define Q to be the
subalgebra of AX generated by the set

(oo fr} U {ftms fr  u € A}

and define @ to be the congruence of Q generated by the set
{(fl,u) fr’u) cu € A}

of ordered pairs of elements of Q.

We now show that since V is residually < A, then (fy, fr) € . Suppose that
this fails. Then choose T to be any congruence of Q that is maximal in the set of
all congruences containing # that do not contain the pair (f¢, fr). Thus the algebra
S = Q/7 is certainly subdirectly irreducible. We shall see that |S| > A. If it were the
case that |S| < A, then there would exist some u,v € A, u # v, such thatf;, = f;,
(mod 7); and consequently, f,, = fr, (mod 7). Let D denote the term operation
of Q induced by the term operation D(z,y,z) of A. From equations (1) satisfied by
D(z,y,z) in A, it follows that for € € {{,7}, in Q we have

D(fz.uafz.u1fz)=f¢,u and

D(.f:,u: fz,v’ fe) = fe-
Then since f.u = f.,» (mod 7), we have f, = f. . (mod 7). Since fy,, = fr,u (mod §),
then we can infer that f, = f, (mod 7). But this contradicts our choice of 7 to not

contain the pair (fy, f,). We conclude that (f,, f;) € 6.

Using the fact just proved, we now proceed to deduce the existence of the desired
three—variable term operations. Since (fg, f») € 6, then there exists a finite sequence

go = flagh'-- ydm = fr

of elements of Q, and for each s < m a binary polynomial operation F,(z,y) of Q,
and some i, € A such that

(4) gs = Fu(ft,i.yfr,i.) and 9e+1 = Fa(fr,i.afl,i. )

Notice that for each of the generators f of Q there is a term operation B(z,y) of A
such that for all z = (a,d,u) € X we have f(z) = B(a,b) unless f = fy, or f = fr..
(We can take either B(z,y) = z or B(z,y) = y.) Consequently, for every f in Q there
is a term operation B(z,y) and a finite set L C A such that

B(a,b) = f(z) forall z =(a,b,u) € X such that u ¢ L.
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For s < m, we shall denote the operation B(z,y) corresponding in this way to g, by
B,(z,y). Thus we have By(z,y) = z and By (z,y) =y, and

(5) B'(a’ b) = Ft(ft,i. (2:), fr,i. (z)) and Ba+1(ar b) = F:+1(fr,i.(z))ft,i,(z))

for all £ = (a,b,u) € X such that u ¢ L, where L, is a certain finite subset of A.
Choose any s < m and hold it fixed for a time. Notice that the polynomial
operation F,(z,y) of (4) and (5) can be expressed as

(6) Fy(z,w) = K,(2,w, ftiy, fries Friios Friior -+ s Ftiin_ys Friu_ss fos Fr)

for some k, some 2k 4 6-ary term operation K of A, and some distinct elements
Jos-+ - yJk—1 € A that are all distinct from i,. Evaluating the equations (4), (5), (6) at
any =z € X of the form z = (a,b,u) where u ¢ L, U {i,,70,-.. ,jk—1}, we find that

(7) B,(a,b) = K,(a,b,a,b,... ,a,b) and
B,t1(a,b) = K,(b,a,qa,b,... ,a,b).

Defining L,(z,y,u,v) = K,(z,y,u,v,%,v,... ,u,v), this becomes
(8) B.(a,b) = L,(a,b,a,b), B,s1(a,b) = Lu(b,a,a,b).

Our next task is to show that the 4-ary operation L, of A obeys the equations
(9) L,(0,0,z,2) = L,(9, z,2,2) = L,(2,0,2,2) = L,(2,2,2,2) = z.

First notice that every pair of generators of 8 agree at any z € X of the form (a,q,u),
and therefore

gs(2) = go31(z) = go(z) = a, for z =(g,q,u) € X.

Then evaluating all the functions in equations (4) and (6) at z = (a,a,1,) and at
z = (a,a,u) for some u ¢ {i,,j0,... ,7k-1}, we find that

K,(0,0,0,0,a,aq,... ,q¢,¢) = a = K,(a,q,qa,q,... ,a,a).

The equations (9) clearly follow from this and from our definition of L,, since K, is
monotone.

Now we define

(10) D2,+1($,y, z) = L,(y,z,:c,z) ) Dz.+z(=,y, z) = L,(z,y, z, z)-
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Since we have been considering an arbitrary s < m, we can now regard D;(z,y,z) as
having been defined via (10) for 1 < i < 2m. It is easy to check that the equations (8)
and (10) imply
Dayt1(z, 2,2) = Dayia(z, 2, 2) for 0 < s < m, and
1

<
Dy (z,2,2) = B,(x,2) = Day41(z,2,2) forl1<s<m.

The equations (9) and (10) imply that Di(2,0,2z) = = for all 1 < { < 2m. More-
over, Dy(z,z,2) = Bo(z,z2) = ¢ and Dy,(z,2,2) = Bny(z,2) = z. Therefore, taking
Dy(z,y,z) = = and Dypmyi(z,y,2) = z, the operations Dy, D,,...,Dapyy satisfy all
the required equations. This finishes our proof of the lemma. 1]

PrOOF OF THEOREM 1.1: We assume that P and A satisfy all the hypotheses
of Theorem 1.1, and that V(A) is residually small. According to Lemma 1.4, there are
term operations Dgo(z,y,2),... ,Dn(%,¥,2) of A satisfying all of Jénsson’s equations
except D;(z,y,z) = z, and satisfying D;(z,0,z) = z. The dual of Lemma 1.4 is also
valid, and since our hypotheses are self-dual, it yields the existence of another system of
term operations Uy(z,y,2),... ,Un(z,y, 2) satisfying all of Jénsson’s equations except
Ui(z,y,z) = =, and satisfying U;(z,1,z) = z. We define

Fi-i(z’y: z) = D,'(.’B, Ui(zs Y, Z)y z)-

Notice that Uj(a,1,a) = a implies Uj(a,b,a) < a; then since Di(a,0,a) = D;(a,aqa,a)
= a and D; is monotone, we have that F; j(a,b,a) = D;(e,Uj(a,b,a),a) = a. Thus
the F; ;(x,y,z) satisfy the crucial Jénsson equation that we were unable to ensure the
Di(z,y,2) and Uj(z,y, z) would satisfy.

We also have

Fio(z,y,2) = Dy(z,2,2) =z, Frz2j(z,2,2) = Fr2j41(2,2, 2),
Fipj+1(2,2,2) = Frjia(z, 2, 2),
F2£+1,m(z’y’ z) = Dz.‘+1(2,l, z) = Dzi+2(-’0,2,z) = Fz,’+2'm(3,y,l),

and Fi0(2,9,2) = Faig1,0(2, 9, 2).
Thus the sequence

Fo....,Am=FmnFPhm_,...,Fa0=Fs,,
Fs,l,... ,Fs’m,... ,Fno

¥

after some deletions and trivial insertions, is a sequence of Jénsson operations for

V(A). 1]
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2. EQUIVALENT CONDITIONS FOR CONGRUENCE DISTRIBUTIVITY

The principal result of this section will be a characterisation of the finite up-
per bounded ordered sets whose corresponding order-primal variety is congruence-
distributive, in terms of the existence of a finite system of monotone binary operations
satisfying certain inclusion relations and equations. But first, we note that congruence
modularity and congruence—distributivity are equivalent for the order-primal varieties
corresponding to finite ordered sets. Let P be a finite ordered set and assume that
V(A(P)) is congruence-modular. In the remarks introducing Theorem 1.3 we observed
that A(P) has no proper subalgebras and has at most three congruences. It is thus
easy to verify that when a < 8 are congruences of A(P) then 8 fails to be Abelian
over a. Hence the commutator on congruences of A(P) satisfies [6,¢] = 8 N . The
algebra A(P) is hereditarily neutral, in the terminology of Hagemann and Herrmann
{10]. According to their Corollary 4.2, a finite hereditarily neutral algebra in a congru-
ence modular variety generates itself a congruence-distributive variety. (For a detailed
proof of this fact, see [9, Exercise 2, p.89 and p.199].) Hence we have the following

result.

THEOREM 2.1. If A is a finite order—primal algebra then V(A) is congruence-
modular if and only if it is congruence-distributive.

THEOREM 2.2. Let A be monotone with respect to a possibly infinite ordered
set P and suppose that A has a term operation u(z,y) such that u(z,y) is an upper
bound of z and y for all z,y € P. Then V(A) is congruence-modular if and only if it

is congruence—distributive.

PROOF: Assume that V(A) is congruence-modular, but not congruence-
distributive. Then there is an algebra B € V(A) and a congruence # on B such
that ¢ = [0,0] < 8. In fact, there is such an algebra B which is a subalgebra of
AX for some set X. We recall that there is a term p(z,y,z) (the difference term;
see [9, Theorem 5.5]) satisfying p(z,z,y) = y and such that whenever (z,y) € 6
then p(z,y,y) = z (mod [#,8]). Choose any (a,b) € 8§ — 1. Now B is ordered
as a subset of PX | and the term operations of B are monotone for this ordering.
We have b = p(u(a,b),u(a,d),b) > p(a,b,b) = u and v = a (mod ). Then
b = p(u,u,b) < p(u,b,b) < p(b,b,b) = b and so b = p(u,b,b). But since (u,bd) € 8 it
follows that p(u,b,b) = u = a (mod 3 ). This contradicts our choice of (a,b) ¢ ¥ ,and
proves the theorem.

Davey [2] proved the equivalence of congruence-modularity and congruence—
distributivity for varieties generated by P -monotone algebras under various assump-
tions not covered in our two preceding theorems; for example, under the assumption

that P is upward and downward directed.
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Suppose that P is an ordered set (not necessarily finite) with 1, and that M(P)
contains operations dy, ... ,d, satisfying all of Jénsson’s equations except d;(z,y,z) =

z, and satisfying d;(z,1,z) = z. We observe that M(P) must contain operations

bo(z,y),... ,bm(z,y) satisfying
z = bo(z,y) = bi(z,z) = bm(y,z) (for 0 < i < m)
(11) bai(z,y) < baiya(e,y) (for 0 < i < (m—1)/2)
bait1(z,y) > baita(z,y) (for 0 < i < (m—2)/2).

In fact, we can take m = 2n and

bO(zay) =z = dl(ziz,y) ’ bl(zvy) = dl(z,liy),
b2(z,y) = dl(xvy,y) = dz(z,y,y) ’ bS(ziy) = 42(3,1,3/),
b4(3’,y) = d2(zaz’y) = dS(z’z’y)

and so on. Then the inclusions and equations in (11) are obviously satisfied.

For any finite ordered set P, we shall now prove that the existence of a system of
binary monotone operations satisfying (11) is a sufficient condition for the existence of
monotone Jénsson operations. We shall observe in Theorem 2.4, that if P has 0 and
1 then the condition is equivalent to the property that any two elements z and y are
connected in the convex hull of {z,y}, holding not only in P, but in every subdirect
power of A(P) under the ordering inherited from the Cartesian product.

THEOREM 2.3. A finite ordered set P that admits a system of monotone oper-
ations satisfying (11) admits monotone Jénsson operations.

PROOF: Assume that by(z,y),...,bm(z,y) € M(P) satisfy (11). We note that
it cannot be possible to obtain Jénsson operations as compositions of the b;, for the
two-element semilattice has term operations satisfying (11), but does not have Jénsson
term operations. Our proof will be a rather complicated recursive construction of the
Joénsson operations, using many case-by-case definitions.

Our first step will be to modify the b;(z,y) to obtain a new system satisfying (11)
that possesses some nice additional properties. (This part of our argument does not
seem capable of being generalised to the case of bounded, possibly infinite, ordered sets
of finite height.) First, by iterating all operations in the first variable, we can obtain a
system satisfying (11) and also

(12) bi(bi(z,v),y) = bi(z,y) for all i.

In more detail, define bgo)(z,y) = bi(z,y) and, inductively, bsj“)(z,y) =

b; (bf-j)(z,y),y) . Choose an n such that bs-") (bg")(:,y),y) = bsn)(:c,y) for all : < m
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and all z,y € P. Then replace the b;(z,y) by bS")(a:,y). (For more details on how this
works, see Lemma 4.4 in {11}].)

Note that z > y implies by(z,y) = bi(z,y) (since z = bo(z,y) < bi(z,¥) <
bi(z,z) =z if z > y). Our next goal is find a system of monotone operations for which
(11) and (12) hold, and also

b2i(z,y) 2 y implies byi(z,y) = byit1(z,y) (for all i < (m —1)/2); and
(13)  bit1(=,y) < y implies byiy1(2,y) = bait2(z,y) (for all ¢ < (m — 2)/2).

To move toward the satisfaction of (13), replace b(z,y) by bi(bi(z,¥),y), for
1 € 1 < m. This replacement does not change b,(z,y) (in view of (12)), preserves (11),
destroys (12), and ensures that

bi(bi(z,y),y) =bi(z,y) foralli>1

Now iterate all functions in the first variable to achieve (12) again. The equations
displayed immediately above are still true. Next, replace b;(z,y) by bi(b2(z,¥),y) for
all 1+ > 2, and then iterate to regain (12), as well as

bi(bj(zvy)vy) = bi(z’y) when j € {0$172} and 7 > j
Continuing in this fashion we eventually produce by, ... ,b,, satisfying (12) and also
(14) bi(bj(z,y),y) = bi(z,y) whenever i > j.

We claim that (11) and (14) imply (13). To see it, suppose first that i < m is odd
and b;(z,y) < y. then

bi+1(zi y) = bi'-{-l(bi(za y)1 y) 2 bi-f-l(bi(z)y)sbi(z) y)) = bi(zay);

and so b;+1(z,y) = bi(z,y) since the reverse inclusion is part of (11). The other half of
(13) follows by an analogous calculation.

The operations b; are now as nice as we need them to be. What we require is that
they satisfy (11) and (13). The remainder of the proof is valid for bounded ordered sets
of finite height. We need to partition P into “levels” in two ways. Let D; be the set of
all z € P such that every chain with top element z has at most k4 1 elements. Thus

there is an integer mg such that
Dy CDyCD;C---C Dy =P

and the sets Dyp,... Dy, are distinct. Similarly, define U; to be the set of all z € P
such that every chain with z as bottom element has at most k + 1 elements. Thus
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Umy—1 < Up, = P. Nowif u < v in P, then u € U;4, implies v € U;; and v € D4y
implies u € D;.

The J6nsson operations d(z,y,z) that we are about to construct are defined by
cases in such a way that for every (a,b,c) € P*® there is an i < m with d(a,b,c) =
bi(a,c). Thus the equation d(z,y,z) = = is guaranteed to be true. It will need a bit
of cleverness, however, to ensure that the operations are monotone, and satisfy all of
Jénsson’s équations. For each i < m, we shall have b;(z,2) = d;(z,y, 2) for a certain j
and for all z,y, z. The trick will be to figure out how to connect b;i(z,z) to biy1(z,2)
by a string of monotone operations satisfying the (alternating) Jénsson equations. For
B C P we define B* to be the set of all upper bounds of B, and B, to be the set of
all lower bounds of B.

We begin by connecting bo(z,z) and b,(z,2). Let do(z,y,2) = ¢ = bo(z,z). Then
define d,(z,y, z) to be z unless it is the case that {z,y}*U{z,z}* C U, and in this case
let dy(z,y,z) = bi(z,2). It is obvious that d; is monotone (the fact that b,(z,y) > =
is used here). Also, we have that d,(z,z,y) = z = do(z,z,y) (since if {z,z}* C Uy
then z is maximal and z < by(z,y) implies =z = b,(z,y)), and dy(z,y,z) = = (for the
reason mentioned above). Next, let dy(z,y,2) = d;(z, 2, 2).

Now it gets a little more tricky. We define ds(z,y,2) = z unless either {z,z}* C U,
or else {z,y}*U{z,z}* C Uy, and put ds(z,y,2) = bi(z,z) when this condition holds.
The proof that da(a,a,c) = ds(a,a,c) goes as follows. If {a,a}* U {a,c}* C U, this
just means that a € U;; then if {a,c}* C U fails it follows, since a € U,, that c < q;
but in this case b;(a,c) = a by (13) and so ds(a,a,c) = dy(a,a,c). Next, we define
di(z,y, z) = ds(z, 2, 2).

We are now ready to define the remaining operations in the string from b, to
by. For each 2 < i < m; we define dj;y;(,y,2) to be z unless {z,z}* C U;_; or
{z,y}*U{=z,z}* C U;, in which case dzi1+1(z,y,z) = b1(z,2). We define dzi2(z,y,2) =
d2i41(z,2,2). Now we have dym, +1(,y,2) = b1(z,2) (for all arguments). The proof
that do,d;,... ,d2m, +1 satisfy the relevant Jénsson equations follows the same pattern
as the proof for dy,d,,d;,ds,d, which has already been given. Let us redenote these
operations by df-o) in recognition of the fact that they get us from by to b;.

To stretch a string of Jonsson operations from b; to by, we need to start at the
bottom and work up through the “levels” D;y; — D;, since b; 2> b,. Each of the
operations d; in our string will be a composite of b, and b, so that d;(z,y,z) equals
b2(z,z) on a certain order-ideal of P*, and equals b(z,z) on the complementary
order—filter. Of course, we define do(z,y,2) = bi(z,2). We define dy(z,y,z) to be
bi(z,z) unless{b;(z,z),z}. U {bi(z,2),51(y,2)}« € Do, and then to be by(z,z). We

define di(z,y,z) = di(z,2,2). Then for 1 € ¢ < my we define dzi41(z,y,2) to be
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b1(z,z) unless
{b:1(z,z),2}« € D;_; or

{bl(zr z)) 2}* U {bl(zv Z)J bl(y’ z)}* - Dia

in which event dy;1,(z,y,2) = by(z,2). We define dp;2(2,y,2) = d2iy1(z,2,2).

Now we have dymg41(%,y,2) = b2(z,z). The argument to show that the relevant
Jénsson equations are satisfied relies on one part of (13), namely the fact that when
bi(z,2z) < z then by(z,2) = by(z,2z). Let us redenote the operations we have just
constructed, as d&l) , 0€1<2mg + 1.

The remainder of the construction is visible in what we have already done. The
final system of Jénsson operations takes the form (where » = 2m; +1 ands = 2mo +1)

A0, a0 D, g
dgm_l)" .. adgm_l) (t € {T,-’})

in which dg'.)(z,y,z) = bi(z, z). 1]

We remark that if Q is a subalgebra of A(P)* where P is an ordered set, then
Q is naturally an ordered set, under the product ordering inherited from PX. If
{z,y} € 8§ C Q where Q is an ordered set, we say that z and y are connected in S if
and only if there exist elements zg,...,2, in S (for some n) such that zg =z < z; >
22 € -+ 2 zp = Y. Recall that §* and S, are, respectively, the set of all upper bounds
of § and the set of all lower bounds of §. By the convez hull of S, we shall mean the
set (S.)*N(5 ).

THEOREM 2.4. For any finite ordered set P with 1, conditions (a) — (d) are
equivalent. If P has 0 and 1 then all the conditions are equivalent to (e).

(a) The variety generated by A(P) is congruence-modular.

(b) The variety generated by A(P) is congruence-distributive.

(c) The variety generated by A(P) is residually small.

(d) P supports monotone operations satisfying (11).

(e) If Q is a subalgebra of (A(P))" for some positive integer n then in the
ordered set Q, any two elements z and y are connected in the convex
hull of {z,y}.

PROOF: The equivalence of (a) and (b) is contained in both Theorem 2.1 and
Theorem 2.2. That (c) implies (d) is a consequence of the dual of Lemma 1.4 and
our remarks preceeding Theorem 2.3. The implication (d) implies (b) is contained in
Theorem 2.3, and (b) implies (c) is a consequence of Jénsson’s classical work. The proof
of (d) = (e) is trivial; since b? are monotone and idempotent, the elements b?(:c,y)
must all belong to the convex hull of {z,y}.
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Now assuming that P has both 0 and 1, we prove that that (e) = (d). Let Q
be the subalgebra of (A(P))P: whose universe is the set of binary members of M(P).
Let fo(z,y) = = and fi(z,y) =y and let D = {fo, f1}+« C Q and let U = {fo, 1}".
Applying (e) to this situation, there exist elements by = fo,b1,... ,bm = f1 in @ such
that by < b; > by < bs... 2 b,,, and every element b; is bounded above by U and
below by D. Now the b; belong to M(P) and it is nearly obvious that they satisfy (11).
The only point that may be non—obvious is the claim that b; are idempotent, that is,
bi(z,z) = z. To see that they are, let a € P, and construct an element of @ as follows.
Define f(z,y) to be 1 unless z € a and y < a, and in that case put f(z,y) = a.
Clearly, f € Q and f(z,y) > z for all z and y; that is, f > fo. Likewise, f > fi;
and so f € U and consequently f > b;. Then it follows that b;(a,a) < f(a,a) =a. A
parallel argument, employing the zero element, proves that b;(a,a) > a.

REMARKS. Our results in Section 1 and Section 2 are not as strong as one would like
and, unfortunately, we have no examples demonstrating that stronger results are not
valid. So we are left with several open questions. Are Theorem 1.1 and Corollary 1.2
true without any boundedness requirement? Is Theorem 2.1 true for all (finite and
infinite) order—primal algebras? Davey [2] contains a wealth of results and examples
bearing on the second problem.

In regard to the possibility of strengthening Theorem 2.3, we remark that, if we have
monotone Jénsson operations dy(z,y,z),...,dn(2,y,2) for the ordered set P, then
bo(z,y) = z, bi(z,y) = di(z,9,9), b2(z,y) = da(z,2,9), bs(z,y) = ds(z,9,9),---,
bn(z,y) = y satisfy a weakening of (11), namely

z = by(z,y) = bi(z,2) = bp(y,z) (for 0 < i< n); and
(11 for i <, if {z,y}* # 0 then the convex hull of {z,y}
intersects {bi(z,y), bi+1(z,y)}"; and dually.

For finite P, does the existence of monotone operations satisfying (11') imply the
existence of monotone Jénsson operations?

3. EXAMPLES AND COMMENTARY

An n-ary near unanimity function, or n-nuf, on X is an operation f(z;,...,z,)
of n variables over X obeying the equations

f(y,2,...,2) = f(z,y,2,...,2) = -+ = f(z,z,... ,2,y) = z.

Jénsson operations on X can immediately be derived from an n-nuf when n > 3, by

defining dz;_1(z,¥,2) = f(2,...,2,¥,%,2,... ,z) with the unique y occuring at the
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place of z;;,, and defining dyi(z,y,z) = d2i—1(z,2,2), for 1 i <n —1. (With this
definition, d,(z,z,y) = z and dy(n_2)(2,y,2) = 2.) Thus an ordered set P that admits
a nuf (that is, a monotone n-nuf for some n > 3) admits Jénsson operations. We do
not know if the converse is true, even if we assume that P is finite. The problem of
characterising the finite ordered sets that admit a nuf has received a lot of attention in
the literature of the past five years; we shall review a few of the known results near the
end of this section.

For any finite ordered set P, it is of interest to know whether the clone M(P) is
finitely generated. It follows from classical results of Baker and Pixley [1] that M(P)
is finitely generated if it contains an n-nuf for some n > 3. The ordered set T pictured
in Figure 1 has played an interesting réle in the investigation of algebraic properties of
ordered sets; several seemingly plausible conjectures were first disproved with a deeper
study of the monotone operations on T. Tardos [22] proved that M(T) is not finitely
generated, thus also showing that T admits no nuf; while Lau [14] proved that M(P)
is finitely generated whenever P is a bounded ordered set of fewer than eight elements.
Demetrovics, Hannék and Rényai [5] proved that V(A(T)) is not congruence-modular.
This fact follows easily from our Theorem 2.4; the two elements at middle height in T
are not connected in their convex hull.

The ordered sets of Figure 1 differ greatly in the quality of idempotent monotone
operations they admit. P, has a 5-nuf but no 4-nuf (see below). As we remarked,

P, T=P, P,
Figure 1

P;3 (= T) does not admit J6nsson operations; however, it does admit monotone ternary
operations obeying the equations

T= dl(z,z’y) ’ dl(zay’y) = d;(z,y,y) ’ dl(z’y:z) = d2(37y’z)

(15)
d2(zs -’D,y) = ds(z, zay)a ds(Z,y,z) = ds(y,z’z) =z

This implies that the variety generated by A(P;3) is congruence semi-distributive (see
(11, Theorem 9.11}). To define d;,dz,ds, we use D, M and U to denote the subsets
of P3 consisting of the bottom three elements, the middle two elements, and the top
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three elements, respectively. We define d;(z,y,z) to be zV y if {z,y}NU # 0; to
be z Ay if {z,y} is disjoint from U but intersects D; and to be z otherwise. (Here,
z Vy denotes the join, or least upper bound, of z and y, and z Ay denotes their meet.
These joins and meets obviously exist under the stated conditions.) Then we define
dy(z,y,2z) tobe zVyV z if {z,y,2} intersects U; to be z Ay Az if {z,y,2} intersects
D and is disjoint from U; and otherwise to be z if z £y and z if z = y. We define
ds(z,y,z) tobe (zVz)A(yVz)if z€U;tobe zAy if z and y are comparable and
belong to U while z does not belong to Uj;tobe (zAz)V (yAz)if {z,y,2}nU =0
and z € D;tobe zVy if z and y are comparable and belong to D while z € M; and
to be z otherwise. The reader can verify that these operations satisfy the equations
(15) and are monotone.

If f(21,...,%a) is an idempotent operation in M(P4) then the set of four mid-
level elements of P4, being its own convex hull, is closed under f. It follows by a result
from [6] mentioned below that when its variables are restricted to range over these four
elements, f(z,,...,%n) becomes a projection; that is, f(zi1,...,z,) = z; for some
fixed . Thus P4 cannot satisfy the Maltsev condition represented by the equations
(15), and in fact cannot satisfy any Maltsev condition involving idempotent operations
except those (trivial) Maltsev conditions that are satisfied by the variety of sets with
no operations.

Of course, if P is lattice—ordered, then it has a 3-nuf. In [4] one finds the ob-
servation that if P is bounded but not lattice—ordered then it admits no 3-nuf, and
admits no 4-nuf if it is of finite height. For if m(z,y,z) were a monotone 3-nuf for P
then m(a,1,b) would have to be the least upper bound of a and b; and if f(z,y,2,u)
were a monotone 4-nuf for P and if ¢,d are two distinct minimal members of {a,b}*
then f(a,b,c,d) = u would satisfy u € {a,b}* N{c,d}.. In [4] one finds also the result
that if P is an ordered set obtained by removing from a lattice L a subset H that
is convex in the sense that z < y < z, {z,z} C H imply y € H, and if L has no
chain of k + 1-elements, then P has a 2k + 1-nuf. The existence of a 5-nuf on P, is
a consequence of this result; it has been generalised in [19] to the result that any finite
bounded ordered set of height < 3 has a 5-nuf.

The ordered sets known as fences possess 3-nuf’s. Two fences, F, and Fj, are
pictured in Figure 2. There is precisely one monotone 3-nuf on the fence F,,, and it
can be defined with the aid of the visible notion of between-ness. For z,y, z elements
of F,, say that y is between z and 2z if every path from z to z in the covering graph
of the fence includes y. Then define m(a,d,c) to be the unique z € {a,b,c} whichis
between the other two elements. In [19] it is proved that a finite ordered set admits
a 3-nuf if and only if it is a retract of a product of finite fences. There is no known
characterisation of finite ordered sets that admit an n-nuf if n is a fixed integer greater
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C, C, Fy Fs
Figure 2

than 3, or of finite ordered sets that admit an n-nuf for some n > 3.

The ordered sets C; and C, pictured in Figure 2 are called crowns. All the
crowns C, (n > 2) have some unusual properties. Demetrovics and Rényai [6] have
shown that the clone of C,, is finitely generated; moreover, this clone is contained
in the Slupecki clone consisting of all operations on the given set that either have
proper range, or depend on at most one variable. Thus a crown admits no non-trivial
idempotent operation. This is the basis of our earlier claim about P4 (Figure 1).

The ordinal sum 1+2+4+C3+2+ 1, where 1 and 2 denote one and two—element
discretely ordered sets, is P;. The ordinal sum 1+2+F,+2+1 is a bounded ordered
set we denote by LF,,, and call a locked fence. Two locked fences are pictured in Figure
3. For a long time, we suspected that locked fences might supply examples of ordered
sets that admit Jénsson operations but no nuf’s. However, we eventually discovered
that they do admit nuf’s, although it does not seem to be an easy matter to construct
one. We leave this task as an exercise for the reader.

LF,

Figure 3
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