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QUASI-CONVEX FUNCTIONS AND HADAMARD'S INEQUALITY

S.S. DRAGOMIR AND C.E.M. P E A R C E

Some extensions of quasi-convexity appearing in the literature are explored and re-
lations found between them. Hadamard's inequality is connected tenaciously with
convexity and versions of it are shown to hold in our setting. Our theorems extend
and unify a number of known results. In particular, we derive a generalised Kenyon-
Klee theorem.

1. INTRODUCTION

Hadamard's inequality for convex functions has received renewed attention in recent
years and a remarkable variety of refinements and generalisations have been found (see,
for example, [1, 2, 3, 4]). Thus it was shown in [4] that a form of Hadamard's inequality
holds for the class Q(I) of Godunova-Levin functions on an interval / of real numbers,
that is, the nonnegative functions that satisfy

. /(*) , f(y)
' A 1 - A

for all x,y € I and A € (0,1).

The class Q(I) contains inter alia all monotone, convex and quasi-convex functions.
The class QC(I) of quasi-convex functions on I is defined as consisting of those functions
satisfying

(QC) /(Ax + (1 - X)y) < m*x{f{x), /(</)}

for all x,y G / and A G [0,1] (see Ponstein [10] and Roberts and Varberg [11, Section
81]).

In [4], the authors introduced the class of real functions of P type, defined as follows.

DEFINITION 1.1: Let / be an interval of real numbers. We say that a function
/ : / —> R is of P type, or that / belongs to the class P(I), if / is nonnegative and for
all x,y € I and A G [0,1] we have
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As seen in [4], P(I) C Q{I) but P(I) still contains all monotone, convex and quasi-
convex functions. Restricting from Q to P has some importance for applications, as it
enables a number of results to be sharpened. In particular, for / € P(I) PI Li[a, b] we
have the Hadamard-type inequality

(11)

for a,b € I and a < b. It was also proved in [4] that both inequalities in (1.1) are in a
sense best possible.

In this paper we take these ideas rather further and address some generalisations of
quasi-convexity appearing in the literature. In Sections 2 and 3 we present inequalities of
Hadamard type which hold respectively for Wright-quasi-convex functions and Jensen-
quasi-convex functions. As consequences we show that both inequalities in (1.1) may be
improved for the class of nonnegative quasi-convex functions.

In Section 4, we explore the set-inclusion properties of these classes. We show
in particular that quasi-convex functions form a proper subset of the class of Wright-
quasi-convex functions and that the latter constitutes a proper subset of the class of
Jensen-quasi-convex functions. This mirrors a classical result: it is known that if C(/),
W(I) and J(I) are respectively the sets of convex, Wright-convex and Jensen-convex
functions on / , then

(1.2) C{I) C W(I) C J(I)

and each inclusion is proper. This conjecture of Wright [12] was proved by Kenyon [8]
and Klee [9].

Hardy, Littlewood and Polya have remarked [6, Section 3.8] that a convex function
is either very regular or very irregular.

Thus if I is open, / e J(I) and / is not continuous on / , then / is unbounded on
every open subinterval of / [6, Section 3.18] and / is not measurable on / [6, Section
3.20].

This dichotomy is mitigated somewhat for quasi-convex functions - we shall see in
Theorem 4.3 that there are totally discontinuous Jensen quasi-convex functions which
are nevertheless bounded - but is still pronounced.

The axiom of choice is invoked implicitly in that we make use of a Hamel basis for
the reals (see Hewitt and Stromberg [7, p.18], Hardy, Littlewood and Polya [6, Section
3.20] and Hamel [5]). In Theorem 4.6 we show that, under the additional constraint of
continuity, the classes of quasi-convex, Wright-quasi-convex and Jensen-quasi-convex
functions in fact become identical.

In the sequel we assume without further comment that the subset / C K refers to
an interval.
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2. H A D A M A R D ' S INEQUALITY F O R . / - Q U A S I - C O N V E X F U N C T I O N S

We start with the following definition.

D E F I N I T I O N 2 .1 : The mapping / : / -» R is Jensen- or J-quasi-convex if

for all x,y e I.

Note that the class JQC(I) of J-quasi-convex functions on / contains the class J(I)
of J-convex functions on / , that is, functions satisfying the condition

foral, „ , , .
2

The following inequality of Hadamard's type holds.

THEOREM 2 . 2 . Suppose a, b e I C R and a < b. If f € JQC (I) D Li[a, b], then

rb

b/>>«*+'<»•"•
where

2 Jo I ^ ' ^ ' I

Further, I(a, b) satisfies the inequalities

^ldz, -^((6 - a) jj2{x)dx - J(a,6))1/2},(2.2) 0 ^ I M K ^

where

J(a, b) := (b - a)2 f f(ta + (1 - *)&)/((l - t)o +1&) dt.

PROOF: Since / is J-quasi-convex on / , we have for all x,y € I that

2

For t e [0,1], put x = ta + (1 - t)6, y = (1 - t)a + tb e I. Then

Integrating this inequality over [0,1] gives

/ ( ^ ) ^ \ \H f(ta + (1 - t)b) dt + fQ /((I - t)a + tb) dt] + I(a, b).

Since

(2.3) / /(to + (1 - t)b) dt= I /((I - t)a + tb) dt = —!— / fix) dx,
Jo v ' JO v ' b — a Ja
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(2.1) is proved.

We observe that

On the other hand, by the Cauchy-Buniakowski-Schwarz inequality

\ {[ [/(*» + (1 - t)b) - /((I - t)a + tb)f dtj ̂
2(ta + (1 - t)b) dt + jfl /2((1 - t)a + tfc) dt

-2^ f{ta+(l-t)b)f({l-t)a +

W dx - jf1 /(to

1 / 2

1/2

Inequality (2.2) follows. D

REMARK 2.3. Suppose / C E. If / : / -> R is quasi-convex and nonnegative, then / is
J-quasi-convex and thus satisfies

which improves the first inequality in (1.1) for quasi-convex functions.

3. HADAMARD'S INEQUALITY FOR vy-QuAsi-CoNVEX FUNCTIONS

Wright introduced an interesting class of functions in [12].
We say / : / -> E is a Wright-convex function on I C E if, for each y > x and <5 > 0

with y + 5, x € / we have

(W) f(x + S)-f(x)^f(y + S)-f(y).

The following characterisation holds for VK-convex functions (see also [4]).
PROPOSITION 3 . 1 . Suppose I C E. Tien the following statements are equiva-

lent for a function f : I -> E.

(i) f is W-convex on I;
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(ii) for all a,b £ I and t € [0,1], we have the inequality

(3.1) / ( t o + (1 - t)b) + / ( ( I - t)a + tb) ^ /(o) + /(6).

PROOF: For "(i) => (ii)", let a,b€l and t e [0,1]. First suppose a < b.

If / is W-convex on / , then for all y > x and S > 0 with y + 6, x € / we have
(W). Choose x = a, y = to + (1 - t)b > 0 and <5 := b - (to + (1 - t)b) > 0. Then
x + 6 = (1 - t)a + tb, y + 5 = b and thus by (W) we get

f((l-t)a + tb) - f(a) ^ f(b) - f(ta+(l-t)b),

whence we have (3.1).

The proof is similar for the case a > b.

For "(ii) => (i)", let y > x and S > 0 with y + 6, x 6 / . In (3.1) choose a = x, b > a
and t € [0,1] with to + (1 - t)b = y and b - (to + (1 - t)6) = 8. We have y + 6 = b € / ,
x £ I and a; + S — (1 — i)a + tb. From (3.1) we derive

which shows that the map is W-convex on I. D

The equivalence motivates the introduction of the following class of functions.

DEFINITION 3.2: For / C R, the mapping / : / -» R is Wright-quasi-convex if, for
all x,y £ I and t E [0,1], one has the inequality

(WQC) i [f(tx + (1 - t)y) + /((I - t)x + ty)} ^ max{/(z), f(y)}

or equivalently

I [/(») + /(i + «)] ^ max{/(z),/(y + *)}
for every x, y + 6 6 / with a; < y and <5 > 0.

We show that the following inequality of Hadamard type holds.

THEOREM 3 . 3 . Let f : I —t R be a W-quasi-convex map on I and suppose

a, b 6 / C R with a < b and f e Li[a, 6]. Then we have the inequality

^ fa f(x) dx < max{/(a),

PROOF: For all t € [0,1] we have

i [f(ta + (l-t)b) + f((l-t)a + tb)] <max{/(a),

On integrating this inequality over [0,1] and using (2.3) we obtain the desired inequal-

ity. D

REMARK 3.4. If / is quasi-convex and nonnegative, then

^ J* f(x) dx ̂  max{/(a), /(&)} ̂  /(a) + /(&),

which improves the second inequality in (1.1) for quasi-convex and nonnegative functions.
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4. SET-INCLUSION PROPERTIES

We begin by introducing, by analogy with some of the other classes considered in
this paper, the notion of a quasi-monotone function.

DEFINITION 4.1: For / C R , the mapping / : / -> R is quasi-monotone if it is either
monotone on / = [c, d] or monotone nonincreasing on a proper subinterval [c, d) c / and
monotone nondecreasing on [d,d\.

The class QM(I) of quasi-monotone functions on I provides an immediate charac-
terisation of quasi-convex functions.

PROPOSITION 4 . 2 . Suppose I CR. Then the following statements are equiva-

lent for a function f : I -¥ R.

(a) feQM(I);

(b) on any compact subinterval of I, f achieves a supremum at an end point;

(c) feQC(l).

PROOF: That (a) implies (b) is immediate from the definition of quasi-monotonicity.
For the reverse implication, suppose if possible that (b) holds but / £ QM(I). Then there
must exist points x,y,z € I with x < y < z and f(y) > max[/(a;),/(z)], contradicting
(b) for the subinterval [x,z]. The equivalence of (b) and (c) is just the definition of
quasi-convexity. u

The following inclusion results hold.

THEOREM 4 . 3 . Let WQC(I) denote the class of Wright-quasi-convex functions

on I CR. Then

(4.1) QC(I) C WQC(I) C JQC(I).

Both inclusions are proper.

PROOF: Let / 6 QC(I). Then for all x, y € / and t e [0,1] we have

f(tx + (1 - t)y) < max{/(z), /(y)}, /((I - t)x + ty) ^ max{/(x), f(y)}

which gives by addition that

(4.2) \ [f(tx + (1 - t)y) + /((I - t)x + ty)] ̂  max{/(z), f(y)}

for all x,y € I and t € [0,1], that is, / € WQC(I). The second inclusion is obvious on

choosing t = 1/2 in (4.2).

Let H be a Hamel basis over the rationals. Then each real number u has a unique

representation

u = J
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in which only finitely many of the coefficients rU)/, are nonzero. Define a mapping f : I -¥

Eby

Then

1

1

max *)}
= max

so that / €

We now show that H can be selected so that / £ QC(I). Choose x = 0, y = 1, A =

1 - (1/TT) and take 2, (1/TT) € if. Then

f(\x + (1 - A)y) = /(1/TT) = 1 > max{0, 1/2} = max{/( i ) , / (y )} .

Hence / 0 <2C(J).

For the second inclusion in (4.1), consider the Dirichlet map / : /—>• K defined by

. . . I 1 for u irrational
flu) = <

1 0 for u rational.

If x and y are both rational, then so is (x + y)/2, so that in this case

(4-3)

If one of x, y is rational and the other irrational, then (x + y)/2 is irrational and so again
(4.3) holds. If both x and y are irrational, then max{f(x), f(y)} = 1, so that

< max(/(x), /(„)}.

Hence / € JQC(I). However if x and y are distinct rationals, there are uncountably
many values of t 6 (0,1) for which tx + (1 - t)y and (1 — t)x + ty are both irrational.
For each such t

max{\ {/(a:),

so that / g WQC(I). Hence WQCf/j is a proper subset of JQCf/J.
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THEOREM 4 . 4 . We have the inclusions

W(I) c WQC(I), C(I) C QC(I), J(I) C JQC{I).

Each inclusion is proper.

PROOF: By Lemma 3.1, we have for f eW(I) that

\ [f(ta + (1 - t)b) + /((I - t)a + *)]

for all a, 6 € I and * G [0,1].
Since

fW+f(b) forall

the inequality in Definition 3.2 is satisfied, that is, / G WQC(I) and the first inclusion
is thus proved. Similar proofs hold for the other two.

By (1.2) and (4.1), for each inclusion to be proper it is sufficient that there should
exist a function / with / G QC(I) but / 0 J(I). Clearly any strictly concave monotone
function suffices. D

REMARK 4.5. In view of the result of the foregoing theorem, the fact that there are
functions in QC(I) which are not in J(I) makes it tempting to try to concatenate the
set inclusions (1.2) and (4.1). However, no result of this sort appears to exist without
the imposition of further assumptions. Thus, for example, by the use of a Hamel basis,
solutions to (3.1) may be constructed which are unbounded on every subinterval, whereas
all members of QC (I) are bounded on every finite interval. Hence it is not the case that
W(I) C QC(I).

We now show that the three notions of quasi-convex functions in Theorem 4.3 col-
lapse into one under the additional constraint of continuity. We denote by QM0(I) the
class of quasi-monotone functions under this constraint, with similar notation for the
other classes involved in Theorems 4.3 and 4.4.

THEOREM 4 . 6 . For a given interval / C R ,

QC0{I) = WQCQ(I) = JQC0(I).

PROOF: The proofs of the basic inclusion results of Theorem 4.3 do not involve
continuity, so that

QC0(I) C WQC0(I) C JQC0{I).

For the same reason, by Proposition 4.2 we have QMQ(I) — QC0(I). Hence it suffices to
prove that JQCQ(I) C QM0(I). We proceed by reductio ad absurdum.

Suppose, if possible, that / G JQC0{I) but that / £ QM0(I). Then there must
exist points x,y,z G / with x < z < y and f(z) > f(x) = f(y). Let \y - x\ = d. By
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continuity there exists an open interval 70 C [x,y] of length do(> 0) with z £ Io and /

strictly exceeding f(x) on 70. Since / € JQC(I), we have (x + y)/2 & Io, so that 70 is

properly contained in either (x, (x + y)/2] or [(z + y)/2,y).

Invoking continuity again, there must be, according to which of these two cases

holds, either a point x' € (x, (x + y)/2\ with f(x') — f(x) and 70 C (x,x') or a point

V' € [(x + y)/2,y) with f(y') = f{y) and 70 c {y',y). Call this interval (x',y'). Then

/(*') = f(y'), W ~ x'\ ^ d/2 and 70 € (x',y').

The previous argument may be repeated to show that there exist x", y" with f{x") =

f(y"), \y" - x"\ ^ d/4 and 70 C (x",y"). A continuation of this process yields that

d/2n > do for all n ^ 1, which is impossible. D

REMARK 4.7. Theorem 4.4 does not extend in this way. Thus, for example, if / is
continuous, strictly concave and monotone, we have / € QMQ but / £ WQ.
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